
Abstract 

The majority of existing image fusion techniques 
operate in the 2-d image domain which perform well for 
imagery of planar regions but fails in presence of any 3-d
relief and provides inaccurate alignment of imagery from 
different sensors. A framework for multi-sensor image 
fusion in 3-d is proposed in this paper. The imagery from 
different sensors, specifically EO and IR, are fused in a 
common 3-d reference coordinate frame. A dense 
probabilistic and volumetric 3-d model is reconstructed 
from each of the sensors. The imagery is registered by 
aligning the 3-d models as the underlying 3-d structure in 
the images is the true invariant information. The image 
intensities are back-projected onto a 3-d model and every 
discretized location (voxel) of the 3-d model stores an 
array of intensities from different modalities. This 3-d
model is forward-projected to produce a fused image of 
EO and IR from any viewpoint. 

1. Introduction 
Multi-sensor fusion techniques combine data from 

multiple sensors to achieve improved accuracies and more 
specific inferences than could be achieved by the use of a 
single sensor alone. Such techniques are widely used in 
both military and commercial applications, such as target-
detection, tracking and land classification for remote 
sensing. Specifically, multi-sensor fusion facilitates (i) 
improved confidence in decisions, such as target location 
and identity, by fusing different sources of information.
For example geo-coordinates from GPS and high 
resolution Electro-optical (EO) imagery , can be fused 
with a distinctive signature from Infra-Red (IR) imagery 
for identification; (ii) improved target detection especially 
in the case of countermeasures (camouflage, cluttered 
scenes, etc.) which can be defeated by exploiting a range 
of spectral bands, or even polarization sensing; (iii) robust 
performance by providing extended range of operating 
conditions and improved performance under adverse 
environmental conditions, e.g.,  low visibility due to 
smoke or fog for EO can be mitigated by IR or GMTI. 

The majority of existing image fusion techniques 
operate in the 2-d image domain [1]. Typically, images 
from different sensors are registered by estimating a 
mapping that aligns scene features between 2-d images,
but these techniques fail in the presence of 3-d relief, roof 
tops of the buildings are misaligned as shown in Figure 1
c). Aligning two images may seem straightforward since 
humans can perceive 3-d structures in images accurately 
due to their contextual information and recognition 
abilities. However, computer systems perceive these 
images as 2-d arrays of intensities and are unable to 
directly relate 3-d structures in one image to another. 
Approaches such as [2], [3] register 2-d images to existing 
3-d models for accurate alignment of 3-d relief in the 
images. However, the estimation of an alignment of a 2-d
image to a 3-d model suffers from projective ambiguity,
i.e., multiple transformations can align the image with the 
3-d model. Additionally, there is the lack of availability of 
high-resolution and up-to-date 3-d models.  

This paper presents a framework for multi-sensor image 
fusion in 3-d. The imagery from different sensors,
specifically EO and IR, are fused in a common 3-d
reference coordinate frame. The images from a single 
sensor are used to build a dense probabilistic and 
volumetric 3-d model [4–6] corresponding to each sensor. 
These dense volumetric models are of the same resolution 
as the imagery. The individual 3-d models from each 
sensor are registered to each other via existing 3-d to 3-d
matching [7][8][9]. By registering the 3-d models, the 
corresponding imagery is also registered automatically. 
The image intensities are back-projected onto a 3-d model 
corresponding to the highest resolution as shown in Figure 
1 d) and e). Every discretized location of the 3-d model 
stores an array of intensities from different modalities. 
This 3-d model can be forward-projected to produce a 
fused image from any viewpoint, Figure 1 f).

A major application of multi-sensor fusion is extended 
surface attribution for material and object classification.  
Information from different sensors, when fused, provides a
signature for object surfaces. Multispectral data 
constructed from fused video streams can be processed 
with a wide range of material classification algorithms 
developed by the remote sensing community over the last 
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few years [10]. The effectiveness of the 3-d fusion 
framework is further illustrated by evaluating region 
classification in images generated by the fused 3-d model.
A machine learning technique, Support Vector Machines 
(SVM), is used to train the classifier on the fused imagery 
and to classify the fused imagery of the test data into 
different regions. 

2. Related Work 
Multi-sensor fusion is prevalent in numerous fields such 

as ocean engineering, navigation, robotics and controls, 
computer vision, artificial intelligence and many more. In 
all of these fields, measurements from numerous sensors 
need to be fused to derive robust estimates and inferences. 
Hall, [1], lays out a complete hierarchical fusion 
framework for various layers of information ranging from 
raw sensor measurements to high level inferences. This 
paper describes different fusion techniques used for 
various sources of information in the presence of noise and 
bias. This work demonstrates that fusion is essential not 
only at the raw sensor data level but also for high–level 
information, such as target detection inferences from the 
measurements. DARPA’s urban challenge, [11], is a good 
illustration of these concepts where measurements from a
large amount of external sensors are fused to extract high-
level situation awareness information for control and 
decision making in autonomous driving.  

There exists a multitude of 2-d based fusion approaches 
where the images from EO and IR sensors are registered in 
the image domain. Since it is not practical to review all the 
existing approaches here, of the most relevant approaches 
are described. These approaches are applicable to planar 

scenes, with sufficiently large viewing distance so that a 2-
d affine transformation is sufficient to align images of 
different modalities. The authors in [12] propose to align 
the images from multiple EO and IR sensors. An image-to-
image affine transformation is estimated by aligning the 
gradient maps. The hypothesis is the gradient of the 
images is more invariant across different sensors. Another 
variant of the above approach, [13], uses the gradient 
along with the gradient vector field to find mapping 
between visible and infrared images. Another set of 
approaches, [14], [15], uses foreground image 
segmentations and their motion trajectories to register 
imagery from different modalities. Numerous feature-
based approaches exist such as corner-detection based 
methods [16], [17] and wavelet-description based methods 
[18] for image alignment. 

The most relevant and closely related 2-d to 3-d
registration approach is proposed in [2]. The authors use 
3-d site models to register imagery from different airborne 
sensors. The images are registered to a 3-d site model and 
the intensities from the imagery are texture-mapped onto 
the site model via a color fusion process. The site-models 
used in the work are, for the most part, widely available 
coarse resolution Depth Elevation Models (DEMs) or 
manually extracted 3-d models. The limitations of this 
approach are (i) that the 2-d to 3-d registration typically 
suffers from projective ambiguity which leads to 
inaccurate transformation between the 2-d image and 3-d
model, (ii) lack of high-fidelity and up-to-date models for 
registering imagery.  

Another relevant approach, [3], uses dense octree-based 
volumetric models created from engineering designs or the 

Figure 1. Fusion of EO and IR in 3-d as compared to 2-d. a) and b) show EO and IR images, respectively, to be fused; c) shows the results of a 2-
d registration approach using a projective homography.  The red channel is used for the IR image and the green is used for intensity of EO 
image. Note that the registration is not accurate at the top of the buildings. d) and e) 3-d models constructed from color EO and IR imagery,
respectively. f) shows the rendering of the 3-d fused model from a viewpoint similar to c). Note that the imagery is accurately aligned.
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silhouettes of objects from the imagery to predict multi-
sensor imagery. This approach is useful to study the 
physical models of the multi-spectral sensors, but is not 
robust to the complexity of real-world aerial video streams 
By contrast, the approach presented in this paper can infer 
3-d models directly from airborne imagery from each 
sensor and register the imagery reliably using 3-d to 3-d
registration which is free of any projection ambiguity. The 
resulting multi-spectral model is capable of supporting 
many analytic services such as predicting multi-spectral 
surface properties. 

3. Multi-Sensor Fusion in 3-d 

Figure 2 A schematic diagram of the proposed 
approach for fusion of EO and IR imagery in 3-d.  

The proposed approach, Figure 2, is novel in that it 
registers images in 3-d, which allows for an accurate and 
robust alignment of multi-sensor imagery. This approach 
reconstructs a probabilistic dense 3-d model, using [5], for 
each modality EO and IR separately. VisualSFM [6] is 
used to estimate the intrinsic and extrinsic camera 
parameters for each modality independently. The dense 
volumetric 3-d model is built for each modality from both 
the imagery and the associated camera parameters as 
shown in Figure 4. At this stage, the two models have 
independent coordinate systems and need to be registered
to a common coordinate system. The two dense 3-d
models, EO and IR, are converted into point clouds and 
are registered using a feature-based alignment algorithm 
followed by few iterations of Iterative Closest Point (ICP) 
algorithm [9].

The transformation obtained from registering the two 3-
d models is used to transform the projection parameters 
(cameras) of the imagery. The 3-d model with higher 

resolution, typically EO, is chosen as a reference model. 
The EO and IR imagery with registered cameras is back-
projected into the model and is stored at each discretized 
3-d location or voxels, as modulated by voxel surface 
probability and visibility The 3 RGB channels from EO 
and the grayscale value from IR are stored at each voxel 
either as 4 channels or fused together using a color 
conversion function, where IR is the red channel and the 
green and blue channels are used from EO. This results in 
a 3-d model that can be rendered from any viewpoint to 
obtain fused imagery. Each of the above steps is discussed 
in detail in the following subsections. 

3.1. Overview of 3-d modeling  

Figure 3 The interaction of a ray with the cells in the volume for 
probabilistic inference such as rendering image. 

Probabilistic Volumetric Representation (PVR) 
technology, [4], [5] , is used to build 3-d models from EO 
and IR imagery automatically as shown in Figure 4 b) and 
d). The PVR is a volumetric dense 3-d grid of voxels 
where each voxel contains a probability distribution for 
surface geometry and the associated appearance of each 
surface element. A voxel is assigned to one of two states: a 
surface, , or not a surface. The belief of a voxel, , being 
a surface is denoted by a probability, . The 
appearance of each voxel is represented by a probability 
density  which is modeled with a Mixture of 
Gaussians (MoG). Also note that the  is 
undefined - the appearance of a voxel given that it is not a 
surface. 

To reconstruct the geometry and appearance of a 
volume, each voxel incorporates pixel information from a 
set of images (video frames, satellite images, etc.).  Each 
pixel of an input image, , is back-projected into the 
volume along the ray, , using a known camera, shown in 
Figure 3. The underlying assumption is that only one voxel 

 along ray  produces the observed intensity in the 
image. The voxel must be un-occluded and have a high 
surface probability.  This condition will be referred to as 
the ``responsibility'' of a voxel producing some intensity in 
image , which is calculated as  
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where the product range  indicates the voxels closer 
to the sensor than voxel .  Each voxel also has an 
appearance distribution, . Given the 
responsibility and appearance of voxels along a ray, the 
expected intensity of some ray  cast through the model 
can be computed as 

, 

where the range  indicates the set of voxels that 
intersect with ray , ordered from closest to farthest from 
the camera center.   

Figure 4 3-d models reconstructed from video sequence of EO and 
IR images. a) and c) Sensor positions and viewpoints estimated using 
[6] for EO and IR images, respectively. b) and d) Renderings of a 3-
d model constructed from EO and IR image, respectively.  

The online updating algorithm for each process is a 
consequence of Bayes' theorem.  The updating of the 
surface probability of voxel  given the input image 
intensity  is given by  

where  indicates the distribution at time . This 
equation intuitively states that if the appearance model of 
voxel  accurately explains observed intensity I, the 
probability of that voxel being a surface is increased.  
Whereas if the appearance model of voxel  assigns a low 
probability density to intensityy , the probability of voxel 
being a surface is decreased. The parameters of the 
Mixture of Gaussian (MoG) for voxel  are updated given 
the input image intensity  using equations from [19]. 

The probability distribution of the surface geometry 
facilitates modeling of uncertainty or ambiguities in 3-d
terrain models, as opposed to mesh-based reconstruction 

techniques cannot handle any uncertainty. The PVR 
technology uses octrees for efficient storage, [20], and 
GPU implementation, [5], for efficient computation. The 
input to PVR technology is a sequence of pairs of an 
image and its corresponding camera to build the dense 3-d
model automatically. Typically, PVR has been extensively 
used to build models from EO imagery but this work also 
demonstrates 3-d models reconstructed from IR imagery as 
well. A PVR 3-d model can be rendered from a novel 
viewpoint to generate an image and the 3-d model surfaces 
can be painted with different intensities.  

3.2. 3-d to 3-d Registration 
A 3-d to 3-d registration approach is used to register 3-d

models reconstructed from each set of EO and IR image 
sequences. Unlike, image-to-image or image-to-3d model 
registration approaches, 3-d to 3-d registration intrinsically 
accounts for 3-d terrain relief and is not affected by 
intensity variations, even across different modalities. The 
underlying 3-d terrain is completely independent of how it 
is sensed. 

Figure 5: 3-d to 3-d registration by aligning the 3-d point clouds. a) 
and b) point clouds obtained from dense volumetric 3-d models for 
EO and IR imagery, respectively. c) initial alignment of the two 
point clouds and d) accurate alignment after applying [7], [9].

There exist numerous approaches for registering or 
aligning 3-d point clouds. The Iterative Closest Points 
(ICP) algorithm [9], and its variants, are the most 
commonly used algorithm for registering 3-d point sets. 
Such algorithms do provide accurate registration, however 
they require the point-clouds to initially be within close 
proximity. If this condition is not met, feature-based 
approaches [7] are used to align 3-d point clouds which 
differ by large rotations and translation.  The dense 3-d
probabilistic volumetric models are converted into a 3-d
point cloud by applying a threshold to the surface 
probabilities of the voxels. 

The 3-d point clouds obtained from dense 3-d models of 
EO and IR imagery are registered by estimating a 
similarity transform using [7].  The approach in [7] 
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computes a histogram of relative orientations of the 
neighboring points of the location under consideration. 
This feature is robust and discriminative and a Sample 
Consensus Initial Alignment is used to estimate the best 
transformation by minimizing the distance between 
matching features. This approach is typically able to 
estimate an alignment for the two point-clouds which is 
further refined using ICP, [9], to ensure high accuracy 
registration, Figure 5.

3.3. Fusion of EO and IR Imagery 
The biggest advantage of fusing EO and IR imagery in 3-d
is the accurate alignment of the images from different 
sensors in spite of the presence of occlusion due to the 3-d
structures present in the scene. Thus, the imagery from 
different sensors does not need to be collected from the 
same viewpoint, since the images from very different 
viewpoints can be accurately fused.  

Figure 6 a) A frame from an IR video sequence; b) a frame from an 
EO sequence; c) shows the fused EO and IR image. 

The aligned imagery from EO and IR sensor using the 
3-d registration approach is fused in 3-d. The 3-d model 
corresponding to the higher resolution modality is chosen 
as the reference model for fusion, denoted by . The color 
EO images have typically three channels, RGB, and IR 
images have a single channel. These four channels are 
converted into 3 channels using a transform, where IR is 
the red channel and the green and blue channels are used 
from EO, for visualization.  

For fusing two image sequences that are synchronized 
or unsynchronized, denoted by  and  which 
have  and  images respectively. Each of the image 
sequences update its respective appearance models at 3-d
locations of the reference model, . The intensities from 
all the images from a single modality are accumulated in 

the same appearance model at each location, Figure 6 a) 
and b). This allows for either direct use of the 3-d model 
itself or the rendered 2-d images different viewpoints as 
shown in Figure 6 c).  

4. Scene Classification  
The effectiveness of 3-d fusion framework is further 
illustrated by classifying different pixels from fused EO 
and IR imagery. A set of fused rendered images from a 3-d
model of the urban Virginia dataset, Figure 7 a), are used 
for training. A 14-dimesnional feature vector for each 
pixel in the training set is estimated. This feature vector 
comprises of raw intensities of all the channels, 4, pairwise 
difference of intensities in different channels, 6, and ratio 
of each channel value to the sum of all the channel 
intensities, 4.  A Support Vector Machine (SVM) classifier 
is trained on manually segmented pixels from 5 rendered 
images of the fused model from a site in Virginia, Figure 7
a). The SVM classifier is used to classify pixels in the 
rendered images of the fused model from a different site in 
Virginia, Figure 7 b) and the result is shown in Figure 7 d). 
The different categories are assigned different colors: trees 
(green), parking lots (blue), roads (magenta) and buildings 
(red). Note that black color is used for no category. 

Figure 7 a) Manually labeled regions for training the classifier; b) 
Clusters for different learned categories trees (green), parking lots 
(blue), roads (magenta), buildings (red) and no-class (black). c) ROC 
curve for different classes; and d) the region classification. 

The classification of rendered images the fused 3-d
model is also evaluated quantitatively. A ROC curve is 
plotted for each category and the performance of all the 
categories was satisfactory except that of the no-class 
category. The no-class category is a very broad category 
and requires extensive training data. Due to the limited 
training data, the performance of the no-class category is
close to random. Furthermore, the pixel classification of 
the 3-d fused image, Figure 8 a), was compared to the 
classification on a 2-d fused image, Figure 8 b). The latter 
image shows poor pixel classification in areas of mis-
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registration such as building tops.  Also, the classification 
using EO image and IR image alone are shown in Figure 8
c) and d) respectively. It can be seen that both EO and IR 
images individually are able to classify only few of the 
categories. 

Figure 8 compares the pixel classification of the a) 3-d fused image, 
b) 2-d fused image, c) EO image alone and d) IR image alone. 

5. Conclusion 
A multi-sensor fusion framework for EO and IR 

imagery in 3-d is proposed. Unlike, existing 2-d
approaches, which cannot accurately align imagery in 
presence of 3-d relief, the proposed framework accurately 
aligns the imagery. 
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