
 

 
Abstract�� 

 
Multiple-look fusion is quickly becoming more 

important in statistical pattern recognition. With 
increased computing power and memory one can make 
many measurements on an object of interest using, for 
example, video imagery or radar. By obtaining more 
views of an object, a system can make decisions with 
lower missed detection and false alarm errors. There are 
many approaches for combining information from 
multiple looks and we mathematically compare and 
contrast the sequential probability ratio test, Bayesian 
fusion, and Dempster-Shafer theory of evidence. Using a 
consistent probabilistic framework we demonstrate the 
differences and similarities between the approaches and 
show results for an application in infrared video 
classification.  
 

1. Introduction 
There have long been multiple competing approaches 

for accomplishing multiple look sensor fusion. By multiple 
look fusion we assume we can make multiple 
measurements on an object, as it passes through the field 
of view of the sensor. For example, multiple frames in an 
infrared video or the extraction of multiple high-
resolution-range profiles from ground-moving-target-
indicator radar can produce multiple sensor measurements 
on an object. 

 
Here, we will compare and contrast three data fusion 

approaches: sequential probability ratio test (SPRT), 
Bayesian, and Dempster Shafer (DS). To accomplish this 
we will use a common probabilistic framework that is 
useful in real-world pattern recognition problems in 
unconstrained environments. Our goal is not to say one is 
better than the other, but to find commonalities between 
the various approaches and use one approach to find 
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insights into others.  This objective leads to a more unified 
approach in sensor fusion that can take advantage of the 
best features for all the approaches. 

2. One Class Classifiers 
A popular assumption in most pattern recognition and 

multilook fusion approaches is the “closed-world” 
assumption [3]. Here, all the objects or actions sequences 
are assumed to be known. This allows the use of “key 
features” to distinguish objects/actions from each other 
and early termination of a sequential test when one of 
these key features is detected [3]. Unfortunately, this 
approach does not work in unconstrained environments 
where potentially any moving object can appear in a scene. 

 
For unconstrained environments, a structure one might 

choose for a classification problem is based on a one-class 
classifier [1]. For one class classifiers, we are interested in 
one specific target 1�  represented by the alternative 
hypothesis 1H , and the null hypothesis 0H  represents the 

nontarget 1�  class. While this might seem like an 
oversimplification, one could argue that for a multi-class 
problem with other targets of interest m�� ,...,2  one would 
design a one-class classifier for each of them. For the 1�  
one-class classifier we can further divide the nontargets 
into two groups: the other targets of interest m�� ,...,2  and 
the unknown class 0� . This allows us to further distinguish 
between two types of false alarm errors: between-class and 
out-of-class. Between-class errors occur when alarming on 
another target m�� ,...,2  by calling it the target 1� . Out-of-
class errors occur when alarming on an unknown signature 

0�  by calling it the target 1� . In making any decision, we 
want to control two types of errors: missed detection 
errors and false alarm errors. Missed detection errors 
result from missing a target signature by calling it a 
nontarget, and false alarm errors result from alarming on a 
nontarget signature by calling it a target. 

 
For example, suppose we are interested in classifying 

moving objects in infrared video as humans, vehicles, or 
unknown. Here, 1�  would represent the human class and 
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2�  the vehicle class. The unknown class 0�  would 
represent all moving objects not in 1�  or 2� . This could 
be wind-blown objects (tumbleweed, boxes, trash cans, 
etc.) or animals. These unknown moving objects, a 
possible source of the out-of-class errors, are a significant 
problem in real-world pattern recognition problems in 
unconstrained environments. A Bayesian classifier 
approach designed for the human vs. vehicle problem, 
while minimizing the between-class errors, would require 
models of all the possible objects that could be imaged by 
the sensor to control the out-of-class errors. Otherwise it 
would classify an animal as human or vehicle. Modeling 
“the whole world” of possible objects is untenable for 
most realistic systems deployed in unconstrained 
environments. Instead, we use a goodness of fit (GOF) 
classifier to control the out-of-class errors, and power 
analysis [9] to model the unknown class. 
 

Whereas Bayesian classifiers minimize the between-
class error, they do nothing to control the out-of-class 
errors. Figure 1 illustrates this potential problem. The 
figure shows a two-dimensional feature space, with 
samples from two targets: Target A represented by stars 
and Target B represented by filled circles. Assuming 
normal distributions and equal covariance matrices for the 
targets, the Bayes decision boundary has a linear form 
Figure 1a). Whereas the Bayes classifier minimizes the 
between-class errors of the A and the B targets, it does not 
control the out-of-class errors caused by unknown objects 
represented by “x” symbols. Depending on which side of 
the boundary the nontarget falls, the classifier will assign 
the unknown to one of the known classes and make an out-
of-class error. Figure 1b shows a GOF classifier that tries to 
surround the target class. Here, the unknown objects, that 
have widely differing features from the target class (“x” 
symbols), will be classified correctly. In general, the GOF 
classifier have improved out-of-class errors, but the 
between-class errors will increase, since it is not 
necessarily an optimal Bayes classifier.  

3. Probabilistic Framework 
We will use the same probabilistic framework for 

comparing and contrasting the fusion algorithms. We start 
by assuming a stream of observations represented as 
random variables �,, 21 xx . These samples result from the 
best match scores in the GOF metric. We also assume 
knowledge of the functions )|( Txp i  and  )|( Txp i  which 
represent the probability density function (PDF) of an 
observation ix , given the target T  and the nontarget T , 
respectively. The PDF’s can be discrete or continuous and 
can be determined through theoretical means or empirical 
modeling. 

 
Figure 1: Comparison of Bayes and goodness of fit (GOF) 
classifiers. (a) Bayes classifier. (b) GOF classifier.  

 
 The PDF )|( Txp i  is usually straightforward to 

determine, since one has knowledge of the target of 
interest. This information can come from data collections 
or modeling and simulation using CAD descriptions and a 
physics-based sensor signature prediction software such as 
Irma [10].  The PDF )|( Txp i  is usually more 
problematic. One approach for modeling the nontarget 
class uses statistical power analysis [9] to model the worst 
case nontarget. The approach has some similarities to that 
taken by [1] for modeling composite hypotheses by 
determining the least favorable choice. Power analysis 
assumes the tested effect is linear and the measured effect 
size (small, medium or large) is known. Typically, power 
analysis allows the statistician to determine if enough 
samples were collected to give the test a high power. 
While the exact form depends on )|( Txp i , we show an 
example from [6] where )|( Txp i  is )1,0(N . This is 
convenient in problems where the central limit theorem 
can be applied. In [6], it was shown that the worst case 
nontarget PDF is )1,( NN � . Here the location parameter 

N�  represents the smallest acceptable effective difference 
between the target and nontarget. 

4. Sequential Probability Ratio Test 
One approach for combining match scores as they 

become available is to use the Wald sequential hypothesis 
test or SPRT [12]. After n  observations the likelihood 
ratio is: 
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Often it is more numerically convenient to work with the 
log-likelihood: 
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The SPRT uses two decision boundaries ),( ba   to make a 
decision: 
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One desirable property of the SPRT is that the decision 
boundaries can be determined from the desired error rates. 
Thus, these decision boundaries can be obtained using the 
desired false alarm rate,� , and the desired missed 
detection rate, � : 
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1
log   and  1log ba . (4) 

It has been shown that the SPRT, on average, uses the 
smallest number of observations to make a decision [12].  

5. Bayesian Fusion 
A sequential update formula can be derived from Bayes 
formula: 

� �TxpTpTxpTp
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The quantity )|( 1xTp  is the posterior probability of a 
target after one observation 1x . By substituting )|( 1xTp  
for the prior )(Tp  and a new observation 2x for 1x in (5) 
we get the posterior probability of a target after two 
observations as: 
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Using Y(n) to represent the Bayesian posterior probability 
after n  observations or )|( 1 nxxTp �  we get 
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where )(n�  is the Wald likelihood ratio in (1) and 0�  
represents the a-priori likelihood ratio: 

))(1(
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�
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The Bayesian posterior probability is always between 0 
and 1. By (1) and the definition of a PDF ���� )(0 n , so 
as ��� )(n  then 1)( �nY  and if 0)( �� n  then 

0)( �nY . We can use the SPRT stopping conditions to 
determine thresholds on the Bayesian posterior probability. 
If 

)log(  and  )log( BbAa ��  (9) 
then A  and B  are the upper and lower stopping 
conditions for )(n� , respectively. Thus the Bayesian 
stopping rule becomes: 
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Note the )1/( 00 �� �  basically tweaks the threshold 
according to the a-priori information. For 10 ��  the 
thresholds will go lower to make target calls more 
probable and if 10 ��  the thresholds will go higher to 
make nontarget calls more probable. 

6. Dempster-Shafer Theory of Evidence 
The Dempster Shafer (DS) theory [11] is a 

mathematical theory of evidence that allows combining 
evidence from different sources to arrive at a degree of 
belief. It models uncertainty by not requiring one to assign 
all of one’s belief to a single proposition. 

 
The main assumption we make is that evidence is 

consonant. This allows us to use the probabilistic 
framework that we established in section 3. Shafer defines 
consonant evidence as evidence that points in a single 
direction and only varies in the precision of focus [11]. 
This fits well with the GOF metric. The GOF describes the 
difference between stored knowledge, for example a 
template of the target, and the measured data. Thus it 
points only in the direction and focus of the hypothesis 
represented by the stored knowledge. 

 
For the one-class problem the frame of discernment or 

set of possible outcomes is },,,{ �TT�  where },{ TT��  
and �  represents the empty set. From [11] the support 
function for the target T is   

1
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and the support for the nontarget T is 
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where � �"m  represents the DS basic probability assignment 
(BPA) function and )(�xm represents the amount of 
uncertainty in the observation x . 
 

For what we want to show it is simpler to work with 
DS’s weight of evidence. If m(A) represents the BPA for 
the proposition �#A  then weight of evidence w(A) is: 

))(1  log()( AmAw ��� . (15) 
In terms of weight, of evidence equation (13) becomes: 
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and equation (14) becomes 
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Using equation (2) 
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where z represents the log-likelihood ratio in the SPRT. As 
long as we separate the evidence and combine only 
evidence supporting the same proposition, then we have 
the homogenous weight of evidence combination rule 
where the weights of evidence combine additively. For the 
total support of the target class T , let �w  represent the 
total amount of positive weight of evidence. Similarly 
define �w  for the total support for the nontarget class T . 
Here 
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Combining conflicting weights ( �w  and �w )  of evidence 
cannot be done by simple addition. From [11] the weight 
of evidence for the contradictory propositions T  and T  
becomes: 
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Using (15) in reverse we can get the corresponding BPA 
for propositions T  and T  
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The DS uncertainty is the BPA assigned to �  or 

1
1)(
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Since 1)()()( ���� mTmTm  for a one-class classifier. Note 
the uncertainty of the system’s belief is driven down to 0 
as evidence is collected or as �w and/or �w  increase. Thus 
high but equal �w and �w  would give low uncertainty, but 
an uninformed decision. 
 
 The most obvious decision rule is 

otherwise
0)()( If

    
  Decide
  Decide �� TwTw
T
T

 (27) 

For the one-class problem, this turns out to be equivalent 
to the three unambiguous decision rules proposed by Kim 
in [5]. After some algebraic manipulation one can show 
that (27) is equivalent to 

otherwise
0 If

    
  Decide
  Decide �� �� ww
T
T

 (28) 

This is equivalent to a forced SPRT decision if one is 
unwilling or unable to wait for any more observations. 

7. Results 
We show results on a one-class problem for video 

motion classification (VMC). The target class T  
represents upright-human dismounts and the nontarget 
class T  is any other mover detected by the video motion 
detection (VMD) algorithm. The imager is an uncooled 
DRS E3500 infrared camera with 240320$  resolution and 
8-bit precision. We have collected over 150 video clips of 
humans walking, running, and crawling. VMD was 
accomplished with background subtraction [1] and 
tracking with an alpha-beta tracker. The features for VMC 
were histograms of oriented gradients (HOG) [2] and the 
GOF metric was based on multinomial pattern matching 
(MPM) [7]. 
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 Figure 2 shows a mosaic of chips (subimages containing 
the detection) collected of a runner at a range of about 135 
meters. The chips are of size 2429$ ,  which is very small, 
giving on the order of 100 pixels on target. Performance 
on only one observation per frame is mediocre, especially 
when the runner is obscured by a brighter object as is the 
case in the first row of chips in the mosaic. 

 
Figure 2: Infrared detections of a runner tracked in an uncooled 
infrared video imager. 

 
Figure 3 shows the result of multilook fusion using the 

SPRT, Bayesian Fusion, and DS on the outputs of the 
MPM GOF classifier. Since MPM is designed to 
produce )1,0(N scores for HOG features from a target, 

)|( Txp i  is set to )1,0(N . As discussed in Section 3, we 
use )1,( NN �  for )|( Txp i  where N�  is empirically set to 
5. The desired error rates � and � are set to 3101 �$ . 

 
Figure 3: Results of different multilook fusion algorithms of the 
runner GOF scores from runner chip sequence. 

The black line in Figure 3 shows the SPRT cumulative 
log likelihood )(nZ  (2) normalized by the upper SPRT 
threshold a  (4). This puts the SPRT on the same scale as 
the Bayesian posterior probability and DS BPA and gives 
a target or nontarget declaration when  anZ /)(  passes 1 or 
-1, respectively (since ba � ) . The green line shows the 
Bayesian posterior probability )(nY  (7) with 0�  set to 1 
(equal priors). The DS BPA is shown by three curves. The 
red curve is the BPA for the T  class )(Tm , the blue curve 
is )(Tm , and the magenta curve represents the uncertainty 
of the belief )(�m .  

 
Note that as the uncertainty )(�m  goes to zero the 

Bayesian posterior probability Y(n) approaches )(Tm . 
Also when the current SPRT Bayesian posterior 
probability points to a nontarget or 0)( �nZ  then 

)()( TmTm �  and then for )(nZ >0 )()( TmTm � . This 
supports the result in (28) that SPRT and DS make the 
same forced decision. There is also a similar relation 
between the Bayes posterior probability Y(n) and )(nZ . 
When 0)( �nZ , 5.0)( �nY , and 0)( �nZ , 5.0�Y(n) . 
This becomes evident from (7) when 10 ��  and the 
knowledge that 0)( �nZ  corresponds to )(n� =1. 
 
 It is interesting to note that between observation 30 and 
40 the DS uncertainty )(�m  is close to 0, but so is the 
SPRT log-likelihood. Any decision at this point would be 
an uninformed decision at low uncertainty. When anZ /)(  
goes above the threshold of 1, then we can make a high 
confidence decision that corresponds to low error rates of 
� and �  set to 3101 �$ . Also note the Bayesian posterior 
probability of )(nY  and D.S. BPA )(Tm  of a target are 
very close to 1. 
 
 Figure 4 shows a mosaic of a chicken tracked by the 
system. The chip size is 3451$ . Even though the chip size 
is different than that of the runner the use of the HOG 
features with the same number of horizontal and vertical 
blocks gives a system that is scale invariant. 
 

Figure 5 shows the multilook fusion results for the 
tracked chicken against the upright-human dismounts 
classification system. When the SPRT log likelihood 

anZ /)(  falls below the threshold of -1, we can make a 
nontarget decision with low error rates. Also )(nY  and 

)(Tm  go to zero indicating a nontarget. 
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Figure 4: Infrared detections of a chicken tracked in an uncooled 
infrared video imager. 

 
Figure 5: Results of different multilook fusion algorithms of the 
chicken GOF scores. 

8. Conclusion 
Here we compared and contrasted three approaches for 

multilook sensor fusion: the sequential probability ratio 
test (SPRT), Bayesian fusion, and Dempster Shafer (DS) 
theory of evidence. The comparison was done in the frame 
work of a one-class classifier using a goodness of fit 
metric. While a one-class classifier approach may seem 
severely limiting one could solve a multi-class problem by 
designing a one-class classifier for each class.  

 
The SPRT is attractive because one can specify the 

desired missed detection and false alarm errors of a 
decision. Here, the SPRT remains undecided until enough 
observations are gathered and the log-likelihood ratio 
surpasses the a  or b  thresholds. On the other hand 
computing a Bayesian posterior probability is attractive 

because that is a concept most people can relate to since 
probabilities are commonly used in weather forecasting. In 
the paper we showed how to compute SPRT type 
thresholds, but based on the Bayesian posterior 
probability. The DS approach is unique in that it 
incorporates the uncertainty of a belief in its belief 
combination rule. We showed that for consonant evidence 
and using the one-class classifier framework this 
uncertainty decreases as the weight of evidence for either 
proposition increases or as the number of observations 
increases. Once this uncertainty approaches zero the DS 
BPA for a target approaches the Bayesian posterior 
probability. We also showed that to make a decision with 
the DS is equivalent to a forced SPRT decision. 
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