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Abstract

With image capturing technology growing ubiquitous in
consumer products and scientific studies, there is a corre-
sponding growth in the applications that utilize scene struc-
ture for deriving information. This trend has also been re-
flected in the plethora of recent studies on reconstruction
using robust structure from motion, bundle adjustment, and
related techniques. Most of these studies, however, have
concentrated on unstructured collections of images. In this
paper, we propose a feature tracking and reconstruction
framework for structured image collections using heteroge-
nous features. This is motivated by the observation that im-
ages contain a small number of features that are fast/easy to
track and a large number of features that are difficult/slow
to track. By tracking these separately, we show that we can
not only improve the tracking speed, but also improve the
tracking accuracy by using a camera geometry based de-
scriptor. We demonstrate this on a new challenging dataset
which contains images of Arctic sea ice. The reconstruc-
tion pipeline constructed using the proposed method pro-
vides near real time reconstruction of the scene, enabling
the user to parse vast amounts of data rapidly. Quantita-
tive comparisons with baseline SFM techniques show that
reconstruction accuracy does not suffer.

1. Introduction
As the cost and effort required in capturing images

grows smaller, areas where Computer vision techniques,

and in specific scene reconstruction algorithms, may be

applied grow wider. As structure from motion algo-

rithms are applied to large datasets originating from vehicle

mounted cameras, surveillance networks, and other multi-

camera/video sources, feature tracking becomes a bottle-

neck that decides the performance in terms of accuracy and

speed. In this paper, we propose a feature tracking and re-

construction framework for structured image collections us-

ing heterogenous features. Our approach is motivated by the

following observations:

• Feature tracking through exhaustive search is compu-

tationally very intensive

• There are different kinds of features in images (Cor-

ners, points in homogeneous regions etc)

• Some features are easy/fast to track. But there are only

few of such features in each image (E.g., Corners using

LKT tracker)

• Some features are difficult/slow to track. There is a

large number of such features (Points in planar regions

using SIFT)

• If some correspondences are found between two im-

ages, they can be used in solving correspondence prob-

lem for other points faster.

The novelty of the proposed method is as follows - (a) we

track heterogenous set of features in image sequences, (b)

we develop a descriptor that incorporates epipolar geometry

and feature arrangement information, into a vector that can

be matched using L2 distance, (c) we use the advantages

of the various features in an incremental SFM to improve

accuracy.

In Section 2, we discuss some of the previous methods

in this area. Section 3 provides an overview of our method.

Section 4 discusses the various features used in this work

and the descriptors used to track them. In Section 5, we

present results on a challenging dataset of Arctic sea ice col-

lected aboard the icebreaker RV Polarstern during the cruise

ARK-27/3. As the dataset was collected using stereo cam-

era system, the 3D reconstruction from stereo provides an

independent basis of evaluation. We provide quantitative

evaluation of both tracking and 3D reconstruction errors to

show that the scheme of classification of features and the

proposed descriptors indeed improve the performance. We

provide quantitative evaluation of both tracking and 3D re-

construction errors to show that the scheme of classification
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of features and the proposed descriptors indeed improve

performance.

2. Background
Research related to structure from motion and feature

tracking forms a vast component of computer vision litera-

ture and hence we restrict ourselves to a discussion of works

that are most relevant to the proposed approach. We will

discuss only rigid structure from motion methods as most

of the data we consider here consists of stationary scenes

and the proposed technique is geared towards large scale

reconstruction where motion may either be ignored or fil-

tered out. For feature tracking methods, we only concen-

trate on methods that perform sparse feature matching as

these form the input to most of the structure from motion

algorithms. Although a denser reconstruction may be ob-

tained from dense wide baseline stereo techniques, the lev-

els of error precludes them from being used in estimation of

camera pose.

2.1. Structure from motion

Since the seminal work by Tomasi and Kanade [16],

there have been numerous attempts at designing methods

that are more accurate, robust to outliers, and scaleable. The

method of scaling image coordinates to obtain better recon-

struction proposed by Sturm and Triggs [14] was extended

by Oliensis and Hartley [10] using an iterative approach.

Bundle adjustment [17] provided a method for improving

results of structure from motion by exploiting the sparsity in

the minimization of the non-linear reprojection error based

objective function. An excellent collection of various struc-

ture from motion algorithms is available in [11]. There are

also methods that perform incremental SFM [12] and SFM

of ambiguous image sequences [8]. Unstructured data ob-

tained from internet databases have been used to reconstruct

cities [6, 1]. Frahm et al. [6] use cloud based computing to

reconstruct the city of Rome in a day whereas Agarwal et

al. [1] perform similar reconstructions by using GPU accel-

eration. Although these methods use large scale databases,

the datasets they use are seldom structured. In this paper, we

consider the methods that can exploit the structure, in terms

of contiguity of image sequences and overlap information,

to increase the speed and accuracy of the reconstruction.

2.2. Feature matching

For sake of this discussion, we classify feature match-

ing methods into appearance based and graph based meth-

ods. Appearance based methods use description of the im-

age region around a detected feature point to establish cor-

respondence, whereas graph based methods utilize the ar-

rangement and location of feature points. Several detec-

tor/descriptors combinations may be employed depending

on the nature of the images. SIFT [9], SURF [3] and

the more recent FREAK descriptors [2] are some of the

descriptors that are shown to be invariant to rotation and

affine scaling of the images. The matching process involves

building a table of descriptors for each image and solving

for correspondence using exhaustive pair-wise comparison

of descriptors, or nearest-neighbor based methods. Ten-

sor based node descriptors [4, 5], and adaptive geometric

templates [18] are some examples of graph based matching.

These methods exploit the invariance in local arrangement

of features to establish correspondences. The problem is

often formulated as a sub-graph matching problem where

the nodes of the graph correspond to the detected features.

Most of the tracking methods suffer from two drawbacks

- they treat all the features uniformly, they only incorpo-

rate epipolar constraints as a post-processing filter. In the

proposed method, we design a framework for handling het-

erogenous features by exploiting their relative strengths.

3. Overview

Figure 1 provides an overview of the proposed method.

There are two phases of the algorithm - feature tracking

and iterative reconstruction. To reflect the ease with which

features may be tracked, they are divided into corners and

non-corner features. Corners represent points which are

easy to detect, and can be tracked using methods using lin-

ear motion models such as Lucas-Kanade-Tomasi (LKT)

Trackers [15]. Correspondences are obtained accurately

and quickly (pyramid-based trackers which can track sev-

eral hundred features at frame rate are available in CPU and

GPU implementations). Corners that exist in overlapping

regions of the image sequence are used for iterative pose

estimation. We use 6-point RANSAC algorithm for pose

estimation of an orthographic camera provided in [7]. Non-

corner features are tracked through a hybrid graph-epipolar

based descriptor which uses the corners as reference. Since

the error rate in these features is larger, we use them only

in triangulation from the camera poses estimated using cor-

ners.

4. Tracking corners

Since we want corner features to be quickly and ac-

curately trackable, we use the detector/tracker combina-

tion of Shi-Tomasi features [13] with LKT tracker. Al-

though multi-scale LKT trackers can handle large move-

ments between images, owing to the challenging nature of

our dataset, these methods cannot satisfactorily track fea-

tures that are closer to the camera (displacements of about

one third of image width). For this we propose a method

that approximately aligns the images to reduce the displace-

ment between images. The method is shown in Figure 2. If

I1 and I2 are two images in a sequence, then four divisions

are created horizontally (Figure 2a), since our camera mo-
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Figure 1. Outline of approach. Two phases of structure estimation and tracking are shown. The features are indicated as circles in first

phase and shapes in the second phase. The numbers in the circles indicate the frame at which a feature was first tracked.

Figure 2. Warping for LKT. (a) Divisions in the images, (b) Block

SSD error of each division with respect to shift, and (c) Correspon-

dences based on block matching.

tion is mostly translational along the horizontal axes. The

orientation and layout of these divisions are based on the

expected camera motion and can be modified accordingly.

Approximate movement of each block is calculated via SSD

matching between the two images with horizontal shifts

(curves shown in Figure 2b). Artificial correspondences

are created between the two images by creating points in

each division with the corresponding estimated shift (Fig-

ure 2c). These correspondences are used to estimate a per-

spective transform that aligns the two images. When LKT

is performed on this warped version of I2, more points are

tracked correctly (Table 1).

5. Tracking Non-corner features

Non-corner features consist of points on edges, flat re-

gions, and other areas where a linear motion model would

have ambiguity in establishing correspondences. Though

appearance descriptors such as SIFT provide a robust

method of matching such features, they are associated with

a large computational complexity owing to their large di-

mensionality (commonly used SIFT is 128 dimensional).

The extraction and matching of such large dimensional en-

tities for every frame of a video sequence is time consuming

when image sizes are large.

We propose a new feature descriptor which does not de-

pend on appearance of the patch, but only epipolar geome-

try of camera poses and neighboring feature points. Since

the descriptor should be easily matchable using Approxi-

mate nearest neighbor (ANN) or clustering methods, we

cannot use bi-linear forms such as the Fundamental equa-

tion constraint directly. Also, since we have already es-

tablished correspondences for corner features, we can use

them in constraining the match for non-corner features (un-

like other graph-based correspondence methods that treat
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all the features uniformly). The descriptor we propose will

have the form [x, y, d1, d2, α1, · · · , αK ]. x, y refers to the

position of the feature point. d1, d2 are the scalars obtained

from epipolar constraints. α1, · · · , αK are from neighbor-

hood constraints. The descriptors are constructed for pairs

of images and the correspondences are carried over to ob-

tain tracks.

5.1. Epipolar descriptor

If pl and pr are corresponding points in images I1 and

I2, then they satisfy the following relation:

plFpr = 0.

F is the fundamental matrix that contains the description

of the epipolar geometry. To derive a descriptor embodying

the above constraint that can be matched using L2 norm,

a descriptor is defined as seen in Figure 3(a). For obtain-

ing descriptor of a point (x, y) in I1, we consider two lines,

the line joining (x, y) to the first epipole e1 in I1 and the

line obtained by transforming the point (x, y) using F in

I2. Due to epipolar constraints all the possible correspon-

dences of (x, y) lie on the line indicated in I2. The feasi-

bility of any point in I2 being correspondence of (x, y) can

be estimated by distance from this line. However, since we

cannot encode this as a L2 distance based descriptor, we

use the intercept of the line on an arbitrary vertical line (left

edge of image in the case shown). Similarly, we can extract

descriptors for points in I2 by transposing F and using e2.

5.2. Corner-neighborhood descriptor

The neighborhood descriptor uses corner correspon-

dences to constrain matching of non-corner features. Since

the scene is rigid, the arrangement of feature points in the

images seldom change. If there are no points of reference,

then the arrangement itself can be used as a descriptor (as

in [5]). However, since we have some known correspon-

dences, they can be used to provide a reference around

which other points move. For every non-corner feature de-

tected, we find the K nearest corners around it (K = 3 case

shown in Figure 3(b)). α1 is the orientation of the line con-

necting the non-corner feature with its nearest corner, α2 is

for the next nearest and so on. The descriptor is made up of

these orientations - α1, · · · , αK . The estimation of nearest

neighbors can be accelerated using tesselations such as De-

launay triangulations, or data structures such as Quadtrees.

Since the number of corner points are small compared to

non-corners, we tesselate the image with corners as nodes.

6. Results
We test our algorithms on a challenging dataset of Arctic

icescapes (regions covered in snow and ice) collected us-

ing a stereo camera system. The dataset consists of many

swaths hundreds of kilometers in length totaling more than

2500 kilometers along the ARK-27/3 cruise track1. The

images are 5 megapixels in size and the cameras are cal-

ibrated for intrinsic parameters. The data contains a total

of about 1,223,355 images with sections of contiguous se-

quences that have 50,000 or more images. The application

demands a sparse reconstruction of the entire region. If the

sparse reconstruction can be performed at speeds at which

a user can interact, it would facilitate identification of ar-

eas where a denser reconstruction is desirable. The images

contain little color and large homogeneous regions.

To test the algorithm, we generated 3D models of two re-

gions (Scene 1 and Scene 2) from stereo pairs. These point

clouds were then rendered with the original colors to create

image sequences (of length 8) of the scene with known cor-

respondences. The 3D model and two contiguous frames

from Scene 1 are shown in Figure 4 (a) and (b) respectively.

6.1. Evaluation of tracking

We evaluated the various descriptors proposed in this pa-

per. The correct correspondences between every pair was

identified using the ground truth. The average of features

found and tracked correctly using the various methods are

summarized in Table 1. For corner features, the LKT algo-

rithm with warped and unwarped images show that warping

increases correct correspondences by about 75%. We con-

sider SIFT detector/SIFT descriptor as reference for non-

corner features. We then evaluate a host of other descrip-

tors against it. These are coded as - XY for only using

image coordinate as descriptor, XYE for image coordinate

and epipolar descriptor and XYEG for including the neigh-

borhood descriptor. It can be seen that adding epipolar

and neighborhood descriptor increases the tracking accu-

racy significantly. Varying the number of neighbors used

does not seem to have a significant impact if K > 3. To ver-

ify that the matching is truly invariant to appearance of the

patch around the feature, we used Harris detector with our

descriptor. As expected, the fraction of correct correspon-

dences does not decrease by much. This can be extended to

simpler features such as LoG maximas with distance sup-

pression.

6.2. Evaluation of 3D reconstruction

We evaluated the 3D reconstruction produced by the

tracks from XYEG matching (K = 5) using three dif-

ferent techniques. The average errors are provided in Ta-

ble 2. Column SFM contains errors from algorithm in

which SFM [10] was performed for each set of overlap-

ping features and the results were aligned. This is treated as

1Boetius, A; ARK-XXVII/3 Shipboard Scientific Party (2013): Track

of POLARSTERN cruise ARK-XXVII/3 (IceArc). Alfred Wegener In-

stitute, Helmholtz Center for Polar and Marine Research, Bremerhaven,

doi:10.1594/PANGAEA.796209
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Figure 3. Descriptors for non-corner features. (a) Epipolar feature - consists of two scalars d1 and d2 for matching features between

images I1 and I2. F is the fundamental matrix and e1 is the first epipole for the image pair. (b) Graph feature - A non-corner point and

its neighboring corners are shown. The feature consists of scalars defining the orientations of the lines connecting the non-corner to its

neighboring corners.

Figure 4. Results of tracking. (a) 3D model of Scene 1, (b) Two contiguous frames in the image sequence, (c) Result of using SIFT

detector/SIFT descriptor for matching, and (d) Result of using SIFT detector and XYEG descriptor for matching. In (c) and (d), the

correctly tracked points are marked in green and incorrectly tracked points are marked in red.

the reference, as pose for each frame is estimated directly

by SFM algorithm. In the second column ISFM(all), SFM

was performed on first four frames and poses for subsequent

frames and the 3D coordinates of features seen in them were

obtained using triangulation. This is the naive version of the

incremental SFM algorithm where all features are treated

uniformly. As seen in the table, the errors increase due to

inaccuracies in tracking the non-corner points. For the third

column ISFM(corners), we use the same method as second

column, except that only corner points are used for pose

estimation. The non-corner points are only triangulated us-

ing these estimated poses. This decreases the error signifi-

cantly compared to ISFM(all) without the need for multiple

SFM operations. We wish to highlight that the same feature

tracks were used for all the algorithms.

SFM ISFM (all) ISFM (corners)

Scene 1 10.34 60.44 16.44

Scene 2 12.95 72.23 17.19
Table 2. Evaluation of reconstruction error. Average of errors

across all points are provided as a percentage of the mean distance

of the scene from camera.

7. Conclusions

In reconstructing large scenes, feature tracking is a bot-

tleneck in performance. We observed that images contain

a small number of features that are fast/easy to track and a

large number of features that are difficult/slow to track. By

tracking these separately, we showed that we can not only

improve the tracking speed, but also improve the tracking
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Detector Tracker/Descriptor Features found Correct Correspondences

Shi-Tomasi LKT (unwarped) 1000 560

Shi-Tomasi LKT (warped) 1000 980

SIFT SIFT 4664 4323

SIFT XY 4664 2397

SIFT XYE 4664 2763

SIFT XYEG (K=1) 4664 3287

SIFT XYEG (K=2) 4664 3359

SIFT XYEG (K=3) 4664 3787

SIFT XYEG (K=5) 4664 3890

Harris XYEG (K=5) 7838 6540
Table 1. Performance of various tracking schemes. The numbers present averages over two test sequences.

accuracy by using a camera geometry based descriptor. By

using a combination of epipolar and neighborhood descrip-

tors, we showed that features can be matched irrespective of

their appearance. We demonstrated this on a new challeng-

ing dataset which contains images of Arctic sea ice. Quan-

titative comparisons with baseline SFM techniques showed

that reconstruction accuracy did not suffer. In future, we

wish to extend this method to include descriptors from mul-

tiple images (such as trifocal tensors) and also improve the

tracking accuracy by incorporating low dimensional appear-

ance descriptors.
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