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Abstract

An effective way to improve the quality of image re-
trieval is by employing a query-dependent similarity mea-
sure. However, implementing this in a large scale system
is non-trivial because we want neither hurting the efficien-
cy nor relying on too many training samples. In this paper,
we introduce a query-dependent bilinear similarity measure
to address the first issue. Based on our bilinear similari-
ty model, query adaptation can be achieved by simply ap-
plying any existing efficient indexing/retrieval method to a
transformed version (surrogate) of a query. To address the
issue of limited training samples, we further propose a nov-
el angular regularization constraint for learning the simi-
larity measure. The learning is formulated as a Quadratic
Programming (QP) problem and can be solved efficiently by
a SMO-type algorithm. Experiments on two public datasets
and our 1-million web-image dataset validate that our pro-
posed method can consistently bring improvements and the
whole solution is practical in large scale applications.

1. Introduction
The goal of content-based image retrieval [26, 20, 24,

16] is to retrieve images from a database that are seman-

tically similar to a given query image under some defined

similarity measures1. In large scale image retrieval system-

s, a single similarity measure is often defined globally to

allow the deployment of an efficient indexing data structure

(e.g ., inverted file [26, 20], hashing [10, 31], or hierarchi-

cal search [16, 25, 30]). However, due to the diversity of

queries, a single global similarity measure is often insuffi-

cient to produce satisfactory results. For instance, a HoG-

like feature [24] is more preferable when a query image

has rich structures (e.g ., Fig. 1 (a)), whereas a query im-

age with salient spatial color layout (e.g ., Fig. 1 (b)) favors

˚This work is done when Zhanghui Kuang is an intern at Microsoft
Research Asia.

1We use “similarity” and “distance” interchangeably if there is no con-

fusion. Note that, in this paper, we focus on similar image retrieval but not

instance/object image retrieval.

(a) motorbike (b) firework

Figure 1. Different queries favor different similarity measures.

a color-based feature [23]. It is therefore natural to consider

a query-dependent similarity measure which is specific to

each query. Recent works [32, 9, 28, 24] have demonstrat-

ed the effectiveness of learning query-dependent similarity

measures. In order to apply a query-dependent similarity

measure in a large scale image retrieval system, however,

we need to address the following two main issues.

First, most of the efficient indexing schemes do not sup-

port query-dependent similarity measures. The commonly

used indexing methods [26, 20, 16, 25, 30, 10, 31] orga-

nize all database images using a pre-defined, fixed similarity

measure. Some works [9, 28] perform query adaptation on

the top returned results. This second stage post-processing

is, however, sub-optimal. It is still unclear how to build an

efficient index with a query-dependent similarity measure.

Second, there is usually no or very limited training sam-

ples for learning a similarity measure for each online query.

Existing works commonly choose the queries and their vari-

ants [28, 32, 24] as positive samples. However, generating

negative samples requires either user interactions [28, 32] or

time-consuming mining [24], which greatly affect the user

experience.

To address the first issue, we introduce the use of a bi-

linear similarity model which expresses the similarity be-

tween two images in a bilinear form. This model allows

the similarity be computed by first transforming one im-

age by a linear transformation and then evaluating its Eu-

clidian distance to the other image. To achieve search by

query-dependent similarity measure, a query image is first

transformed by a query-dependent transformation and the

resulting surrogate query can then be used with any exist-

ing efficient indexing/retrieval methods.
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Figure 2. The work flows for two modules in our system.

To address the second issue, we leverage a reference set

consisting of a number of reference queries. We collec-

t training samples and learn a linear transformation for each

reference query off-line. The transformation for an online

query is then approximated by a linear combination of the

transformations associated with its nearest neighbors in the

reference set. To reduce the risk of over-fitting under limit-

ed training samples (especially negative samples), we pro-

pose a novel angular regularization to encourage the learned

transformation to be not too far away from an identity ma-

trix (i.e., we respect the original similarity to a certain ex-

tent). The learning is formulated as a quadratic optimization

problem with only box bound constraints, and can be solved

efficiently by a SMO-type algorithm.

The main contributions of this paper are:

1. We introduce the use of a bilinear similarity model in

a large scale image retrieval system to achieve search

by query-dependent similarity measure without sacri-

ficing any efficiency of indexing and retrieval.

2. We propose an angular regularization for learning the

bilinear similarity measure that can greatly reduce the

risk of over-fitting under limited training data.

Although we focus on the large scale image retrieval prob-

lem, we believe our regularized, query-dependent bilinear

similarity measure is quite general and can be applied to

many other problems which need query adaptation.

2. Related Work
In the literature, there exist research studies that em-

ploy query-dependent similarity measures for ranking or re-

ranking. Cui et al . [9] learned a similarity measure for each

intention category to re-rank a short list of returned images.

However, the category specific similarity measure is too

complex to be used to rank images in the whole database.

Arandjelović and Zisserman [2] learned a discriminative

SVM with training samples generated by spatial geometry

verification. In cases where holistic feature representations

(e.g ., color histogram) are used, geometry verification (and

hence their method) is inapplicable. Shrivastava et al . [24]

trained an examplar SVM for each query online. Their hard-

negative mining, however, is too expensive (about three

minutes on a 200-node cluster) for many practical appli-

cations. Relevance feedback [28, 32] can also be regarded

as a form of learning query-dependent similarity measures.

However, it requires user feedback to learn the ranking sim-

ilarity measure online. On the contrary, our proposed ap-

proach does not need any user feedback online. Learning

query-dependent similarity measures are also found in re-

lated fields, such as web page retrieval [12, 15, 3]. In con-

trast to our proposed approach, they index web pages by

keywords without similarity of ranking, which makes the

problem different.

3. System Overview

Our system consists of an off-line module to learn a bi-

linear similarity measure for each query in the reference

set, and an online module to perform seach by a query-

dependent similarity measure for each online query.

As shown in Fig. 2, the off-line module has four stages:

1) build a static index for images in the database using any

indexing method (we use k-mean trees [21, 16] in this pa-

per); 2) construct a reference query set (we run simple k-

mean clustering on images in the database and use the clus-

ter centers as the reference set); 3) collect training data for

each reference query (each reference query is queried in the

database, and the top returned images are manually labeled

as either “relevant” or “not relevant”); 4) learn a bilinear

similarity transformation for each reference query using the

labeled training samples from the previous stage. Note that

similarity between images in the off-line module are mea-

sured by Euclidean distance.

In the online module, we first construct a bilinear simi-

larity transformation for an online query as a linear combi-

nation of the normalized transformations associated with its

M -nearest neighbors in the reference set. We then transfor-

m the query into its surrogate query which is queried in the

database.

4. Query-Dependent Similarities

As mentioned in Section 3, the core of our proposed ap-

proach is to learn one similarity measure for each reference

query. In this section, we first study the problem of using the

most common similarity measure, namely the Mahalanobis

distance, in a search by query-dependent similarity measure

scenario. We then introduce a regularized bilinear similar-

ity measure which does not suffered from the mentioned
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problem and can be learned efficiently by a SMO-type al-

gorithm.

4.1. Mahalanobis Distance

In image retrieval, Mahalanobis distance [10, 16] is

commonly used to measure similarity between images.

Let an image be represented by a d-dimensional fea-
ture vector xi, and let D “ txiu denote the image

database. The Mahalanobis distance between a query im-

age xq and a database image xi P D is defined as

dMpxq,xiq “ pxq ´ xiqTMpxq ´ xiq, whereM is a pos-

itive definite matrix. WhenM is an identity matrix, Maha-

lanobis distance reduces to Euclidean distance. In a search

by query-dependent similarity measure scenario, differen-

t queries have different similarity measures (i.e ., different

M), which require building different indexes for fast re-

trieval. However, this is not feasible in practice as the online

queries and hence their similarity measures are not known

beforehand, and it is not sensible or even possible to exhaust

the space of similarity measures and build an index for each

measure. If only one index is built, the returned images for

ranking may contain few relevant images and this results in

a low recall rate.

4.2. Bilinear Similarities

To avoid the aforementioned indexing problem, we con-

sider a bilinear similarity model [7, 8]. The bilinear similar-

ity between a query image xq and a database image xi P D
is defined as

sWq
pxq,xiq “ xTq Wqxi

9 x̂Tq xi

“ 1

2
px̂Tq x̂q ` xTi xi ´ }x̂q ´ xi}2q

“ 1´ 1

2
dIpx̂q,xiq, (1)

where x̂q “ pWT
q xqq{}WT

q xq} and dIpx̂q,xiq is the Eu-
clidean distance between x̂q and xi. Here, we assume xi is

L2-normalized 2. Finding an image xi that is most similar

to the query xq under the query-dependent measure sWq
is

therefore equivalent to finding an image xi that is closest to

x̂q in terms of Euclidean distance. It follows that we can

build a static index for the database images using Euclidean

distance and use it for fast retrieval without inducing any

efficiency loss. The only modification we need before car-

rying out the actual query is to transform the query xq into

x̂q by the query-dependent similarity measurement matrix

Wq . We refer x̂q to as the surrogate query of xq . Fig. 3

illustrates how the surrogate query works. Since the query-

dependent similarity measure is more specific to the query

than the indexing similarity measure, the surrogate query

2This is a common practice and hence not a restriction.

Figure 3. The symbols ˚ and � represent two types of feature

points on an unit ball. g denotes the original query which is rel-

evant to ˚, and its surrogate query is denoted by g. The circles
denote the neighborhoods of the original query and its surrogate

query respectively.

has more relevant images than the original query in their

corresponding neighborhoods. This has been validated in

our experiments.

4.3. Learning Bilinear Similarity Measure

The bilinear similarity measure can be learned by ex-

ploiting the relative similarities of image pairs generated

from the training data collected in Step 3 of the off-line

module. Formally, given a query xq , we form a set of

triplets T “ tpq, i, jqu which depicts xq and xi are more

similar than xq and xj . Let the number of triplets be n (i.e .,
|T | “ n). We formulate the learning problem of the bilinear

similarity measure as follows:

min
Wq,ξq,i,j

1

2
}Wq}2F ` C

ÿ
q,i,j

ξq,i,j (2)

s.t. xTq Wqpxi ´ xjq ě 1´ ξq,i,j ,

ξq,i,j ě 0, @pq, i, jq P T,
where } ¨ }2F indicates squared Frobenius norm and ξq,i,j
are slack variables which add robustness for noisy training

data. C is a trade-off parameter used to balance the margin

regularization term }Wq}2F and the hinge loss term
ř

ξq,i,j .
Fixing C to 1 gave good performance in our experiments.
Note that when Wq is a diagonal matrix, the bilinear

similarity model becomes the Ranking SVM model [18]:

min
wq,ξ

1

2
wTq wq ` CITnξ (3)

s.t. XTwq ě In ´ ξ, ξ ě 0,

where wq is a d-vector composed of the diagonal elements
of Wq , In is a n-vector with all elements being 1, ξ is a
n-vector composed of ξq,i,j , and X is a d ˆ n matrix with

pxi´xjq˝xq as columns
3. From the perspective of Ranking

SVM, xi ˝ xq are referred to as features. They are with a

special structure so that (3) is a bilinear model. For other

features (e.g ., pxq´xiq˝pxq´xiq), Ranking SVM does not

3a ˝ b represents the Hadamard product between a and b.
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belong to the bilinear similarity model. To summarize, not

all Ranking SVMs belong to the bilinear similarity model,

whereas the diagonal bilinear similarity model is a special

kind of Ranking SVMs. In this paper, we adopt the diagonal

bilinear similarity model for its simplicity.

4.4. Angular Regularization

Collecting sufficient training samples for each reference

query is both laborious and time-consuming. Meanwhile,

similarity measure learned from limited training samples

suffers from the over-fitting problem and has poor gener-

alization ability. In this paper, we introduce a novel angular

regularization to tackle the issue of limited training samples.

In image retrieval, a similarity measure with wq “ Id
(i.e ., cosine similarity) performs reasonably well in most

cases. Therefore, similarity measures with wq deviating s-

lightly from Id are desirable. A straightforward approach

to reduce the risk of over-fitting under limited training sam-

ples is therefore to regularize (3) by }wq ´ Id} [11]. Note
thatwq and swq , where s is an arbitrary positive scalar, are
equivalent under the bilinear similarity model. Therefore,

the angle betweenwq and Id (denoted by xwq, Idy) is much
more crucial than the magnitude of their difference. This

angle can be measured by the minus cosine value:

´ wTq Id

}wq} }Id} . (4)

The smaller (4) is, the smaller the angle is and the more de-

sirable wq is. However, (4) is non-convex and regularizing

(3) by (4) leads to local minima problem.

By Cauchy-Schwarz inequality [27], we have

´}wq}}Id} ď wTq Id ď }wq}}Id}. (5)

We propose a regularizer that minimizes

p}wq} }Id}q2´pwTq Idq2 “ p}wq} }Id}q2p1´cos2 xwq, Idyq.
(6)

Minimizing (6) encourages a small }wq} or a large

| cosxwq, Idy|, which corresponds to xwq, Idy being close
to 0 or π. Since a bilinear similarity measure with wq “ Id
works well for most data, xwq, Idy is more likely to be close
to 0. The learning problem in (3) can now be reformulated

as:

min
wq,ξ

1´σ
2 wTq wq ` σ

2d

`p}wq} }Id}q2 ´ pwTq Idq2
˘` CITnξ

s.t. XTwq ě In ´ ξ, ξ ě 0,
(7)

where σ P r0, 1q is a trade-off parameter used to balance
the impact of the margin regularizer and that of the angular

regularizer. Note that the impact of the angular regularizer

decreases with σ, and (7) reduces to (3) when σ “ 0.
Fig. 4 demonstrates how σ impacts the learning results.

We learned a query-dependent similarity measure using the

same set of training samples (we labeled 10-nearest neigh-

bors of one query under Euclidean distance) but under dif-

ferent values of σ. It can be observed that xwq, Idy becomes
smaller and smaller as σ increases, whereas the magnitude

of wq becomes larger and larger. We carried out the query

with the learned similarity measures and the top-10 ranked

images are shown in Fig. 4. It can be seen that the similarity

measures learned with the angular regularization performed

much better than that without it. This example shows that,

with the angular regularization, the bilinear similarity mea-

sure can be learned effectively from very few training sam-

ples.

4.5. Optimization Methods

Although the regularized bilinear model in (7) is con-

vex, its energy function is not differentiable at some points

as it contains the hinge loss term. In order to optimize

it efficiently, we consider its dual problem. Let A “
diagpIdq ´ σ

d IdI
T
d , where diagpIdq denotes a square ma-

trix with the elements of Id on its diagonal. Eq. (7) can be
rewritten as:

min
wq,ξ

1

2
wTq Awq ` CITnξ, (8)

s.t. XTwq ě In ´ ξ, ξ ě 0.

Note that wTq Awq ě 0 for all σ P r0, 1q. The equality

holds if and only if wq “ 0. Therefore, A is a positive-

definite matrix and its inverse A´1 exists. Introducing the
non-negative Lagrange multipliers α and μ for the inequal-
itiesXTwq ě In ´ ξ and ξ ě 0, respectively, gives

L “ 1

2
wTq Awq`CITnξ`αTpIn´ξ´XTwqq´μTξ. (9)

Taking the derivatives of L with respective to wq and ξ,
and setting them to zero gives wq “ A´1Xα and the dual

problem:

min
1

2
αTXTA´1Xα´ ITnα, s.t. 0 ď α ď CIn. (10)

The above dual problem is a Quadratic Programming

(QP) problem with only box bound constraints, and can be

solved by off-the-shelf solvers [29, 13]. When the number

of variables is large, decomposition algorithms [17, 6, 22]

are preferred. Chang and Lin [6] utilized SMO [22] to solve

a quadratic problem generated by SVM by selecting two

variables in each iteration. However, the algorithm which is

designed for QPs with equality constraints cannot be direct-

ly used to solve (10). Inspired by these work, a SMO-type

approach is proposed. We optimize one variable instead of

two in each iteration. Each subproblem is a simple QP with

one variable and hence can be solved efficiently with an an-

alytical solution.
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Figure 4. Impact of the angular regularizer. Images in the red boxes are the queries. For σ “ 0.00, 0.60 and 0.95, }wq} “ 0.724, 0.818
and 3.397, and xwq, Idy “ 1.339, 0.959 and 0.209 radians respectively.

Let Q “ XTA´1X and ∇fpαq be the gradient of (10).
According to the Karush-Kuhn-Turcker (KKT) condition-

s [5] of (10), the stopping criteria are given by:

∇ifpαq
$&
%
ď 0 if αi “ C
“ 0 if 0 ă αi ă C
ě 0 if αi “ 0.

(11)

In each iteration, αi with the largest absolute gradient

|∇ifpαq| in the variable subset, whose members violate the
stopping criteria in (11), is selected as the active variable.

We then solve the following subproblem:

min
αi

1
2Qiiα

2
i ` pQiBαB ´ 1qαi ` 1

2α
T
BQBBαB ´ ITn´1αB

s.t. 0 ď αi ď C,
(12)

where B “ t1, 2, . . . , nuztiu. αB denotes the set of non-

active variables. This subproblem has an analytical solution

given by

αi “
$&
%

0 if m ă 0
m if 0 ď m ď C
C if m ą C

(13)

where m “ 1´QiBαB

Qii`ε and ε is a positive infinitesimal. The
optimization procedure is summarized in Algorithm 1.

Algorithm 1 SMO-type Algorithm for solving (10)

1: InputQ and C. Set t “ 1. Initialize αt “ 0.
2: repeat
3: Find the active variable index i. Define non-active variable

index set B.
4: Solve subproblem (12) by (13).

5: Set αt`1
i to the optimal solution of (12), and αt`1

B “ αt
B .

t “ t` 1.
6: until the stopping condition (11) holds.

5. Experimental Results
We evaluated our proposed method on three datasets: the

MNIST dataset4, the CIFAR-10 dataset [19], and our own

dataset with 1 million images downloaded from the web.

For the first two, we exhaustively searched query-relevant

images to evaluate the performance of learning regularized

query-dependent bilinear similarity measures. For the third

one, the performance was evaluated in a large scale image

retrieval scenario, and multi-probe k-mean trees were em-

ployed to search approximate nearest neighbors efficiently.

5.1. Evaluation Protocols

Image retrieval was evaluated by two commonly em-

ployed protocols, namely the Mean Average Precision

(MAP) [1], (i.e ., the area under the recall precision curve)

and the average precision of top-R ranked images for each

test query [14] (denoted by Precision@R here).

We compared our regularized query-dependent bilinear

similarity measure with the following two baseline methods

and one state-of-the-art technique:

1. Euclidean: Euclidean distance is used to evaluate the

similarities between query and database images.

2. Query-Independent Ranking SVM (QI-RSVM): Rank-

ing SVM is used to learn a ranking function from the

training samples of all reference queries, which is then

applied to all queries.

3. Query-Dependent Ranking SVM (QD-RSVM): query-

dependent Ranking SVMs are learned [12]. It is equiv-

alent to our similarity measure with σ “ 0. For a fair
comparison, all other parameters were set the same for

both QD-RSVM and our method.

To show how the number of training samples for each

reference query (N ) affects our proposed method, we test-

ed our method under different N settings (denoted by

4http://yann.lecun.com/exdb/mnist/
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Figure 5. Results on the MNIST dataset. (a) MAP under different
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N and σ. “*” on each curve indicates the peak performance.
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Figure 6. Comparison with Euclidean, QI-RSVM and QD-RSVM

on the MNIST dataset.

Ours@N ). For comparison, we also tested QI-RSVM and

QD-RSVM under different values of N (denoted by QI-

RSVM@N and QD-RSVM@N respectively). 10-nearest

reference queries are found to construct transformation for

each online query in our experiments (i.e .,M “ 10).

5.2. Results on the MNIST Dataset

The MNIST dataset contains 70k 28 ˆ 28 aligned dig-
ital images. Each sample is associated with a label from

0 to 9. We rearranged the pixel intensities of each image
into a 784-vector. These vectors were projected into a 260-
dimensional subspace by PCA. 1,000 testing data were sam-

pled. The rest of the data were clustered into 1,000 clusters,

and the medoids were selected as the reference queries.

Our proposed method was evaluated under differen-

t values of N and σ, and the results are shown in

Fig. 5. Our method achieved the best MAP at σ “
0.910, 0.950, 0.960, 0.992, and the best precision@1, 000
at σ “ 0.993, 0.991, 0.970, 0.960, respectively, for N “
50, 35, 25, 15. As more and more training samples were

available (i.e ., as N increased), the gain arose from the

angular regularization became smaller and smaller. In a

large scale image retrieval scenario, collection of sufficient

training samples is both laborious and time-consuming, and

sometimes even impossible. We believe that the proposed

angular regularization is significantly useful since it enables

the similarity measures to be learned effectively from limit-

ed training data. As our proposed method works well with

σ P p0.9, 1q for different values of N , we will report its

performances at σ “ 0.95 for the rest of this paper.

Table 1. Ranking performance on the MNIST dataset measured by

MAP.�������Methods

N
15 25 35 50

Ours@N 0.480 0.529 0.558 0.578
QD-RSVM@N 0.419 0.488 0.530 0.570

QI-RSVM@N 0.450 0.454 0.468 0.476

Euclidean 0.462
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Figure 7. Performance on the CIFAR-10 dataset.

Fig. 6 compares the results of our proposed method

with that of Euclidean, QI-RSVM, and QD-RSVM in terms

of recall precision curves and precision@R. Our pro-

posed method clearly outperformed the others. Specifical-

ly, the gains in precision@300 are about 3.64%, 3.51%, and

17.05% over Euclidean, QI-RSVM, and QD-RSVM respec-

tively.

As shown in Table 1, our proposed method achieved the

highest search accuracy in terms of MAPs. The gain of

Ours@50 is around 21% to 25% over Euclidean and QI-

RSVM@50. The MAP of our method is 14.56%, 8.40%,

5.28% and 1.40% higher than that of its competitor QD-

RSVM when N “ 15, 25, 35 and 50 respectively.

5.3. Results on the CIFAR-10

The CIFAR-10 dataset contains 60k 32 ˆ 32 colour im-
ages in 10 classes, with 6,000 images per class. For each im-

age, we extracted a 320-dimensional Gist descriptor com-
puted at 3 scales with 8, 8, and 4 orientations respectively.

These 320-vectors were projected into a 225-dimensional
subspace by PCA. 10k images were sampled as testing da-

ta, while the rest were clustered into 2, 250 clusters and with
their medoids selected as the reference queries.

Fig. 7 compares the performance of our proposed

method on the CIFAR-10 dataset with that of Euclidean, QI-

RSVM, and QD-RSVM in terms of recall precision curves.

The MAPs for our proposed method, Euclidean, QI-RSVM,

and QD-RSVM are 0.205, 0.189, 0.193, and 0.194 respec-

tively.

5.4. Results on the Web Image Dataset

About 70k images were crawled from the Google im-

age search engine using 17 keywords. Non-relevant images

were filtered out manually. Some random images were also

crawled as background images to make up the total number

418418418418



Table 2. Recalls on the web image dataset under different probe

numberK settings.
�������Methods

K
5 10 15 20

Ours@50 0.371 0.451 0.506 0.545
QD-RSVM@50 0.221 0.275 0.321 0.350

QI-RSVM@50 0.311 0.409 0.474 0.518

Euclidean 0.328 0.412 0.468 0.511
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Figure 8. Performance on the web image dataset.

of images to 1 million.

Color histogram, Gist, PHoG [4] and spatial color his-

togram [23] were extracted from each image to form a fea-

ture vector, which was then projected into a 60-dimensional
subspace by PCA. 360 non-background images were sam-
pled as testing queries, and the reference query set was con-

structed from 2, 000 medoids of the non-background im-

ages. We evaluated our proposed method on this web image

dataset, and compared the results with that of Euclidean,

QI-RSVM, and QD-RSVM.

We clustered the dataset into 1,000 clusters with differ-

ent initializations and then built three k-mean trees. The

number of probes (i.e ., the number of buckets from one k-

mean tree returned for each query) wasK P r5, 10, 15, 20s.
The method based on Euclidean distance used the original

queries, while others used the surrogate queries. Table. 2

compares the proposed method with others in terms of re-

call rates under different values ofK. QD-RSVM@50 per-

formed the worst because its similarity measures learned

had poor generalization ability, and hence the surrogate

queries were not good. Ours@50 achieved recall rates high-

er than those of Euclidean by 13.11%, 9.47%, 8.12%, and

6.65% when K “ 5, 10, 15 and 20 respectively. This indi-
cates that simple applying one static index without query-

dependent transformation does sacrifice the retrieval recall.

Fig. 8 (a) shows the recall precision curves. It can be

seen that our proposed method is far superior to others. The

MAPs for Ours@50, Euclidean, QI-RSVM@50, and QD-

RSVM@50 are 0.189, 0.139, 0.146 and 0.117 respectively.

The very interesting observation is that the performance of

QD-RSVM@50 is even worse than that of Euclidean. This

may be due to insufficient training data. Fig. 8 (b) shows

the top ranked images precision. Our method greatly out-

performed its competitors. For example, the precision of

the Ours@50 for R “ 50 is 0.551 while that of Euclidean,
QI-RSVM@50, and QD-RSVM@50 are 0.460, 0.456, and

0.276 respectively. One interesting phenomenon is that the

precision of QD-RSVM@50 for R “ 1 is lower than that
for R “ 50. This can be explained as follows: the simi-
larity model employed by QD-RSVM is the bilinear model

which cannot guarantee that sW pxq,xqq ě sW pxq,xiq for
all i. Therefore, its precision@1 may be extremely low.

Although the proposed method also use the bilinear sim-

ilarity model, the angular regularization forces the model

to be close to Euclidean distance. Since ´dIpxq,xqq ě
´dIpxq,xiq for all i, our proposed method can avoid this
problem.

To visualize the quality of the nearest neighbors found,

we show top-25 neighbors retrieved by different techniques
for four example queries in Fig. 9.

6. Conclusion
In this paper, we introduce a regularized query-

dependent bilinear similarity measure for large scale image

retrieval. The proposed bilinear model allows the search to

be carried out using a surrogate query with a static index.

This makes search by query-dependent similarity measure

possible without sacrificing any efficiency of indexing and

retrieval. To tackle the problem of limited training samples,

the similarity transformation of an online query is approx-

imated by a linear combination of the similarity measure

matrices associated with its nearest neighbors in a reference

query set. A novel angular regularization constraint is pro-

posed to avoid the over-fitting problem in learning the sim-

ilarity measure for each reference query with limited train-

ing data. Experimental results on two public datasets and

our 1-million web-image dataset demonstrate that our pro-

posed method outperforms other state-of-the-art methods in

terms of MAPs, precisions and recall rates.
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