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Abstract

We propose a set of features derived from skeleton track-
ing of the human body and depth maps for the purpose of
action recognition. The descriptors proposed are easy to
implement, produce relatively small-sized feature sets, and
the multi-class classification scheme is fast and suitable for
real-time applications. We intuitively characterize actions
using pairwise affinities between view-invariant joint angles
features over the performance of an action. Additionally, a
new descriptor for spatio-temporal feature extraction from
color and depth images is introduced. This descriptor in-
volves an application of a modified histogram of oriented
gradients (HOG) algorithm. The application produces a
feature set at every frame, and these features are collected
into a 2D array which then the same algorithm is applied
to again (the approach is termed HOG2). Both feature sets
are evaluated in a bag-of-words scheme using a linear SVM,
showing state-of-the-art results on public datasets from dif-
ferent domains of human-computer interaction.

1. Introduction
Action representation and classification is an active

branch of computer vision and pattern recognition, with

many potential applications to human-machine interactivity.

In this paper we present three contributions. First, we in-

troduce a spatio-temporal feature for depth maps, based on

a modified histogram of oriented gradients (HOG) [4, 14].

In the case of full-body gestures, the proposed descriptor

(termed HOG2) involves applying the algorithm spatially at

each frame in box regions around each joint given by the

skeleton tracker, thereby producing a histogram descriptor

set for each frame. Then, in order to capture temporal dy-

namics in the spatial feature sets, we re-apply the algorithm

over time.

A second main contribution is by exploring pairwise

skeleton-based features that have not been extensively stud-

ied in the gesture classification literature. Such features

differ from other common techniques in the field in sev-

eral ways. For instance, unlike a common technique to

model joint trajectories as independent time-series’, we ex-

perimentally show that a more powerful descriptor can be

formed using pairwise affinities of joint trajectories along

a gesture. For action recognition, such a descriptor works

best when derived using simple distance functions, such as

the Euclidean distance, as opposed to those allowing time-

shifts and gaps (e.g. the Longest Common Subsequence

distance (LCSS) or dynamic temporal warping (DTW)) but

are often used in studying trajectory clustering.

Finally, the third contribution stems from the compu-

tational speed and relatively low-dimensional feature set

compared to other techniques on the same public datasets

achieving state-of-the-art. The two descriptors in the core

of the framework are studied with a linear SVM, suitable

for real-time applications.

2. Related Work
Recent efforts in the field of action recognition are sur-

veyed in [6, 1]. We focus on efforts which are closest to this

work, first in terms of the depth-based descriptor proposed,

and then in terms of the skeleton-based features.

Common methods for depth-based feature extraction

may use descriptors that were originally developed for color

images on depth images. Yang et al. [21] employ a HOG

[4] feature extraction after projecting the depth maps into

three orthogonal planes and accumulating the depth maps

throughout each gesture into a motion image. Occupancy-

based features have been proposed in [20, 19]. These may

be used around each joint location as provided by a skele-

ton tracker (similarly to our approach), or randomly sam-

pled over the scene, as in [19]. In [16], a 4D histogram

over depth, time, and spatial coordinates is used to encode

the distribution of the surface normal orientation. The main

difference between the aforementioned works and our pa-

per is in the spatio-temporal extraction and modeling of the

actions.

There have been several efforts for extending HOG to the
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temporal domain [7, 13, 17, 9]. We show that using a mod-

ified (it is applied in sub-cells of the image with 50% over-

lap) HOG descriptor applied spatially in each frame around

each joint provided by a skeleton tracker can be used to ex-

tract useful depth information. Next, a temporal descrip-

tor is proposed-by collecting the spatial descriptors over

time, and consequently applying the modified HOG algo-

rithm again to extract a temporal HOG descriptor. Such an

approach stems from a need to bridge object detection in

images and temporal events (in particular, hand detection

[2, 15]), and pose benefits that will be discussed in Section

4.

Motion models may employ joint trajectories as features.

Since we are concerned with a multi-variate series modeling

problem, DTW can be employed to perform action recog-

nition by template matching [12]. Alternatively, other com-

mon motion models may utilize a hidden Markov model

(HMM) [11], or a conditional random field (CRF) [5]. The

jury is still out on whether using such high-level features, as

opposed to only low-level image descriptors, is necessary.

With the overarching goal of understanding naturalistic hu-

man activity-it’s difficult to use such features on their own

to capture subtle differences in actions performed, such as

object-subject interactions. Therefore, skeleton-based fea-

tures are integrated with a depth-based descriptor in this

work.

Joint trajectories are transformed into joint angles to

gain view invariance. Next, pairwise affinities are used in

a bag-of-words approach. Relevant literature of such ap-

proaches is beyond the scope of this paper, but the main

insight is in demonstrating that such features are more pow-

erful than using the trajectories without this extra process-

ing step. Recently used features leverage such information

within a single frame or a small window in time of 2-3

frames [22, 3, 20]. Hence, these features are used to capture

a static posture information that most resembles an action

class. This is essentially different from our descriptor of

the dynamics between angles along the entire gesture. The

descriptor is shown to outperform some of these aforemen-

tioned methods with a significantly smaller sized feature set

and a simpler framework. It is also immediately extendable

to more complex activity analysis scenarios, such as multi-

ple people interaction.

3. Joint Angles Affinity Clustering
The general scheme proposed in this paper is shown in

Fig. 1. We observed that it was common to model joint

trajectories or joint angles as independent trajectories. That

is, template based approaches would involve comparison of

the features of each joint separately (i.e. in classification,

elbow joint trajectory in a gesture instance would be com-

pared to a elbow joint trajectory in another instance). To

explicitly distinguish our method, such features are catego-

rized as first-order, and it will show that useful information

for the classification of gestures can be derived using affini-

ties within sequences of joint angles along the same ges-

ture. This processing step produces a set of second-order
features.

3.1. Angular Skeletal Representation (First-Order
Features)

In the proposed feature extraction method, we use pair-

wise affinities between the joint angles along the gesture.

Such features naturally arise from the hierarchical nature of

the skeleton. Topologically, the human skeleton is an open

directed graph that can be depicted with a particular joint as

the root, and the other joints connected to the root in a hier-

archical manner. In such a tree, every node has exactly one

parent node (except for the root node). Nodes may have

zero or more children nodes below it. Descendants nodes

inherit a component of rotational and transnational transfor-

mations from their ancestors nodes in a relationship known

as forward kinematics. We aim to effectively incorporate

the relationship between the joints in the skeleton through-

out the gesture into our feature set.

High-quality skeleton tracking data, such as the one out-

putted by the Kinect camera, allows us to map motion in-

formation in the scene into a smaller set of features-point

trajectories. A depth-first tree traversal gives the relative

azimuth and elevation angles of each joint with respect to

its parent node. These will be referred to as first-order fea-

tures, and may be used as input to classification tools [18].

For example, in order to calculate the first-order features

at the left elbow (lE) joint, we translate the sensor coordi-

nate system such that the origin is at the left shoulder (lS).

Next, we construct a spherical coordinate system so that

now the vector
−−−−−→
(lS, lE) is in terms of (r,θ,ϕ) with θ as

the elevation angle (from the x-y plane), and ϕ as the az-

imuth angle (from the positive x-axis). We drop the radius

so that any ith joint is associated with two first-order fea-

tures, Si = {θi, ϕi}. Hence, we derive a skeleton configu-

ration Kt =
i=1:p

⋃
St
i (where p is the number of joints tracked)

at each time step t.

3.2. JAS-Joint Angles Pairwise Similarities
(Second-Order Features)

The set of first-order features is transformed using a sim-

ilarity measure into a set of second-order features. These

are shown to outperform a first-order feature set through

experimental validation in Section 5. Given a distance func-

tion d : Rn ×R
n → R (where n is the number of frames in

the gesture instance) the time series data is converted into a

distance matrix of joint angle similarities between each of

the angles along the entire action time series. The final set

of features is therefore a
m(m−1)

2 long feature vector, where
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Figure 1: Overview of the feature extraction and action classification scheme proposed in this paper.

m is the number of angles in the angular skeleton represen-

tation.

After experimenting with a wide array of distance func-

tions, simple ones were shown to perform best. In this work,

three functions will be used for demonstration. These are

compared against a first-order feature set, where the length

of each time series is interpolated to 60. Given two vec-

tors of joint angles over a gesture instance, xi, xj ∈ K, the

cosine distance between them is defined as

dcos(xi, xj) =
xT
i xj

‖xi‖2‖xj‖2 (1)

We also investigate another distance function, referred to as

weighted Euclidean:

dwEuc(xi, xj) =
t=1:n

∑
wi(t)‖xi(t)− xj(t)‖22(1 + λi,j(t))

(2)

the weight term wi(t) ∝ exp(−xi(t)
2/2(c2)) provides

higher weight to points in the middle of the gesture in-

stance and lower near the beginning and end. λi,j(t) is a

penalty term introduced in order to avoid propagating er-

rors in case of a noisy trajectory in a subset of the tracked

joints. λi,j(t) = 0 or λi,j(t) = a > 0 depending on the

noise in the time series. Using c = 1 was shown to improve

results on the MSR-Action3D dataset as opposed to simply

using the Euclidean distance.

The Euclidean or cosine distance functions are known to

be intolerable to time shifts between time series as well as

gaps. On the other hand, the longest common subsequence
(LCSS) is robust to these. It is defined as,

dLCSS(xi, xj) = 1− LCSS(xi, xj)

min(|xi|, |xj |) (3)

Where, given two sequences A = (a1, ..., am0
) and B =

(b1, ..., bn0), the LCSS measure is defined as

LCSS(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if A or B is empty

1 + LCSS(Head(A), Head(B))

if |am0 − bn0 | < ε1 and |m0 − n0| < θ0 and

|am0−1 − am0 | > ε2 and |bn0−1 − bn0 | > ε2

Max{LCSS(Head(A), B),

LCSS(A,Head(B))}
otherwise.

(4)

Head(A) is the remaining sequence of A after removing

the last element in the sequence, ε1 determines if am0
∈ A

and bn0
∈ B are matched or not, ε2 measures the similarity

only when the joint angles are changing, and θ0 tolerates

time shifting between the two sequences.

The outputs of the distance function can be turned into

affinities using
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sij =
exp[−dij/σ2]

j=1:m

∑
[exp(−dij/σ2)

(5)

yielding a m ×m similarity matrix. We use σ = 0.7 in all

of the experiments. Finally, adding a small set of descrip-

tors of the maximum and minimum (referred to as MaxMin
in Section 5) within each joint trajectory slightly improves

classification accuracy. Finally, we solve for a mapping, φ,

such that φ : Rm(m−1)/2 → χ, where χ := {1, ..., k} is the

multi-class label set using a linear SVM formulation and a

one-against-one scheme.

4. Spatio-Temporal HOG2 Descriptor from
Depth Maps

Modified HOG Spatial Feature Extraction The mod-

ified HOG descriptor is created as follows: the gradient im-

age of the image patch (using a centered mask [−1, 0, 1]) is

divided into rectangular cells along the x- and y-directions.

A 50% overlap between the cells is used. Within each cell,

an orientation histogram is generated by quantizing the an-

gles of each gradient vector into a pre-defined number of

bins. These resulting histograms are concatenated to form

the final spatial feature vector. For instance, a 2 × 2 grid

of cells with 8 histogram bins on the image results in a 32D

feature vector.

Spatio-Temporal Feature Extraction We collect the

spatial descriptors over time to form a 2D array (shown in

Fig. 1 for one joint). Changes in the feature vector corre-

spond to changes in the shape and location of the joint. Con-

sequently, the modified HOG algorithm is applied again to

extract a temporal HOG descriptor. The approach is termed

HOG2, since it involves applying the same algorithm twice

(once in the spatial domain, and then again in the tempo-

ral domain). The descriptor can be used on color or depth

images.

Such an approach bridges the spatial and temporal fea-

ture extraction in a way that has implications to other fields

in computer vision. It originated from a need to tempo-

rally extend a step of spatial application of HOG for object

detection. By separating the two steps, fast spatial object

detection approaches can first be used to detect a particular

object in the scene. Next, if needed, the temporal extrac-

tion doesn’t require as input the original image, which is

of high dimensionality, but simply the representation of the

image as a HOG descriptor. Representing changes in this

descriptor, which is of lower dimensionality than the origi-

nal image, allows for real-time gesture recognition. Finally,

in order to produce the final feature vector we also append a

vector of the average (over time) for each entry in the spatial

feature vector.

Similar to in [4], we investigated several block normal-

ization schemes. We may normalize the spatial descrip-

tor differently from the temporal descriptor. If v is the

un-normalized descriptor, spatial or temporal, it may be

normalized using the L2-norm, v → v/
√
‖(v)‖22 + ε, L2-

Hys, which is an L2-norm followed by clipping (entries

above a certain threshold) and re-normalizing, L1-norm,

v → v/‖(v)‖1 + ε, and the L1-sqrt, v → v/
√‖(v)‖1 + ε.

There wasn’t an observed benefit from different normaliza-

tion schemes to different steps in deriving the HOG2, and

L2 − norm and L1 − norm performed equally well and

slightly better than the other normalization schemes.

5. Experimental Evaluation
5.1. MSR-Action 3D Dataset

We perform evaluation of the proposed feature set on

a recently introduced dataset containing both skeleton and

depth information, the MSR-Action3D dataset [10]. It con-

tains 20 actions, 10 subjects, and a total of 557 action sam-

ples. The dataset is challenging due to the small inter-class

variations among actions, and the skeleton tracker fails of-

ten. Therefore, the tracked joint positions contain signifi-

cant noise at times. We follow cross-subject test settings,

where the first five actors are used in training and the rest

for testing.

We note that skeleton-based methods alone generally

performed below 70% on the dataset, yet JAS produced

good results on its own using a 703D feature vector, a rel-

atively small feature set (the distance measure is shown in

parenthesis in Table 2). As mentioned befre, distance func-

tions that don’t allow for time-shifts or gaps better repre-

sent the unique motion in a particular action class. The pa-

rameters for the HOG2 are optimizied together with the ap-

pended JAS feature set in. This is shown in Fig. 2 where

the two parameters in the HOG2 feature (a square block size

used for binning spatially and temporally) for a fixed orien-

tation quantization parameter of 9 bins were optimized. A

box of size 60× 60 pixels centered at each joint was shown

to perform best. For the final results we chose a 3 × 3 × 8
over space, and 4 × 4 × 9 over time for a final feature set

of size (4 × 4 × 9 + 3 × 3 × 8) × 20 = 4320. Even

lower-dimensional feature sets performed at state-of-the-art

as shown in Fig. 2.

Table 1 shows the state-of-the-art scheme of

HON4D+Ddisc [16]. We include both the scheme

with a discriminative learning refinement, and the perfor-

mance of the descriptor itself to emphasize the little effort

that was put into refinement of the raw feature set in our

scheme (besides tweaking two parameters). Discriminative

learning refinement is left for future work.

5.2. MSR-Hand Gesture Dataset

Introduced in [19], this is a depth-only dynamic hand

gesture dataset containing 12 American sign language ges-
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Method Accuracy

DMM-HOG (Yang et al. [21]) 85.52%

HON4D (Oreife and Liu [16]) 85.8%

Random Occupancy Patterns (Wang et al. [19]) 86.50%

Actionlet Ensemble (Wang et al. [20]) 88.20%

HON4D + Ddisc (Oreife and Liu [16]) 88.89%

Table 1: Existing results on the MSR-Action3D dataset.

Method Accuracy

JAS (LCSS) 53.95%

SVM on Joint Angles 80.29%

JAS (Cosine) 81.37%

SVM on Joint Angles+MaxMin 81.63%

JAS (Weighted Euclidean) 82.20%

JAS (Cosine)+MaxMin 83.53%

HOG2+SVM on Joint Angles 91.72%

HOG2 91.81%

JAS (Weighted Euclidean)+HOG2 92.96%

JAS (Cosine)+HOG2 93.66%

JAS (Cosine)+MaxMin+HOG2 94.84%

Table 2: Performance comparison of our proposed descrip-

tors on the MSR-Action3D dataset, with different distance

functions for deriving the second-order feature set, a first-

order feature set interpolated to length of 60 across the sam-

ples, and the depth-based descriptor, HOG2.

Figure 2: Accuracy of correct classification in cross-subject

settings on the MSR-Action3D dataset for varying block

size in the HOG2 descriptor for a fixed orientation binning

parameter of 9 bins. Results are shown after adding the best

performing JAS feature from Table 2 in order to assure min-

imum redundancy.

tures. Wang et al. [19] proposed a Sparse coding tech-

nique to handle to challenging self-occlusion issues with

this dataset. A total of 333 depth sequences performed by

10 subjects are tested in leave-one-subject-out cross valida-

tion. Results are shown in Table 3.

The HOG2 descriptor is applied on the entire image us-

ing different parameter configurations. Fig. 3 shows the re-

sults on the dataset by choosing the same parameter across

all cell sizes, both spatially and temporally, and a fixed bin-

Method Accuracy

HOG 3D (Klaser et al. [8]) 85.23%

HON4D (Oreife and Liu [16]) 87.29%

Random Occupancy Patterns (Wang et al. [19]) 88.5 %

DMM-HOG (Yang et al. [21]) 89.20%

HON4D + Ddisc (Oreife and Liu [19]) 92.45%

HOG2 92.64%

Table 3: Results of our approach on the MSR-Hand Gesture

3D dataset compared to previously published results.

Figure 3: Accuracy of correct classification on the MSR-

Hand Gesture 3D dataset for varying block size in the spa-

tial and temporal stages of the HOG2 descriptor for a fixed

orientation binning parameter of 9 bins. The figure exhibits

the strength of the descriptor even with a small sized feature

set.

ning parameter of 9. By varying this one parameter, we

achieved good results on the dataset. The best results on this

dataset were using a 8× 8× 9 spatially and 7× 7× 9 tem-

porally at 91.81%, and 8×8×18 and 8×8×18 at 92.64%

(shown in Table 3). As in the previous dataset, we compare

the results of our descriptor to both schemes in [16] to em-

phasize the lack of refinement step in our algorithm and the

little effort put into optimizing the descriptor’s parameters,

producing good results with a small sized feature vector.

5.3. UCF-Kinect Dataset [3]

Finally, we evaluate the JAS scheme in terms of latency,

to show its effectiveness even when partial gesture informa-

tion is available. its own under a larger dataset with more

reliable skeleton tracking. The dataset contains 16 actions

suitable for a gaming environment, 16 subjects, and a total

of 1280 actions samples. A 70/30 split is used for train-

ing/testing.

As before, incorporating a small number of first-order

features was shown to slightly improve latency. These are

the maximum and minimum azimuth and elevation angles

in the elbow and knee joints along the gesture performance.

Since there are 28 joint angles for body configurations in

this dataset, with these additional 16 first-order features

we get a total of 394 features for each gesture. This is

quite small compared to the feature set used to evaluate this

dataset in [3], which is of size 2776 and provides the best

classification performance of 95.94%. JAS achieves im-
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Method \ Frames 20 25 30 45 50 55 60

JAS (Cos29) 63.85 85.45 94.72 97.37 96.05 97.37 96.83

JAS (Cos20) 69.66 77.25 87.34 96.58 94.47 96.32 93.09

JAS (Cos) 47.63 72.75 86.54 96.05 96.05 96.84 97.07
LR (Ellis et al. [3]) 64.77 81.56 90.55 95.78 96.1 96.48 95.94

CRF (Ellis et al. [3]) 46.88 67.27 80.7 91.81 93.75 93.98 94.29

BoW (Ellis et al. [3]) 43.52 67.58 83.2 92.73 93.98 94.22 94.06

Figure 4: Results on the UCF-Kinect dataset [3] in terms

of observational latency. The latency evaluation of the JAS

descriptor using a cosine distance and a linear SVM.

proved latency performance compared to the two baseline

methods in [3]-CRF and bag of words (BoW) model-from

15 frames into the performance of the gestures. Towards

the end of the gesture (frame 45) our method outperforms

in classification accuracy the method proposed in [3]. Ex-

panding the JAS feature set to include pairwise affinities

between the joint angles in the initial frame of the gesture

instance and the angles in the 20th or 29th frame (or the lat-

est frame if less than 29 frames occurred) for a total features

set size of 1178D significantly outperforms in latency all of

the other methods shown in Fig. 4.

6. Conclusion

Two descriptors were proposed in this work, one of joint

angle similarities and another using a modified HOG al-

gorithm which was used for a depth-based spatio-temporal

feature extraction. The proposed features were tested for

multiple applications of gesture recognition, both alone

and combined, achieving state-of-the-art. The features are

lightweight in size, implementation, and with a linear SVM

are suitable for real-time gesture recognition.
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