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Abstract

The paper presents a method for human detection and
tracking in depth images captured by a top-view cam-
era system. We introduce a new feature descriptor which
outperforms state-of-the-art features like Simplified Local
Ternary Patterns in the given scenario. We use this fea-
ture descriptor to train a head-shoulder detector using a
discriminative class scheme. A separate processing step
ensures that only a minimal but sufficient number of head-
shoulder candidates is evaluated. This contributes to an ex-
cellent runtime performance. A final tracking step reliably
propagates detections in time and provides stable tracking
results. The quality of the presented method allows us to
recognize many challenging situations with humans tailgat-
ing and piggybacking.

1. Introduction
Detection of human individuals in video data is an essen-

tial need in the field of video surveillance. One is often in-

terested in derived information from these detections, such

as human tracks or the count of humans in the scene. Mul-

tiple humans in the observed scene can lead to challenging

problems. Segmentation of human individuals close to each

other, potentially overlapping each other is one example.

This problem is often encountered when a traditional cam-

era setup is used under a 2D side view. In this context robust

human detection and separation becomes an extremely dif-

ficult task especially when dealing with crowded scenes.

Illumination changes in scenes are another burden when try-

ing to develop a reliable human detection algorithm. Es-

pecially color data captured by traditional color cameras

is sensitive to these illumination changes since the pixel

values can change drastically in consecutive frames over a

short period of time. Furthermore, shadows and reflections

can lead to spurious results of a detection algorithm.

Human detection and counting based on range data is be-

coming more and more popular due to the benefits over

traditional approaches based on color data. Stereo camera

systems provide solutions for shortcomings of traditional

methods like sensitivity to illumination conditions.

When the camera is mounted above the observed humans

and is pointing straight down the problem of humans oc-

cluding each other can be decreased or even eliminated.

Nevertheless, certain tasks remain a challenge like humans

walking close to each other (piggybacking, tailgating).

This paper presents a new method for human detection and

tracking in top-view depth images. We want to point out

three important benefits of our method: (1) In contrast to

many other approaches our method does not rely on back-

ground modeling for foreground/background segmentation.

Therefore it does not suffer from typical problems related

to background modeling, e.g. foreground objects becom-

ing part of the background after a certain period of time or,

sensitivity to short-term illumination/lighting changes and

invalid foreground segmentation arising from it. (2) We

present a new feature descriptor to maximize the detection

performance of a discriminatively trained head-shoulder

classifier. (3) We present how we minimize the number

of input head candidates (potential heads that need to be

tested) for the classifier to decrease processing time drasti-

cally.

A discussion of related work follows in Section 2. In Sec-

tion 3 we describe the method developed. Next, we present

experiments and results in Section 4. Finally we give a con-

clusion of our paper in Section 5.

2. Related Work
Several methods have been proposed which employ

depth information and use a traditional side-view camera

scenario. In [7] a mean and standard deviation background

model of the background image is maintained, and back-

ground subtraction is applied to detect foreground blobs.

Depth information of each foreground blob is used to es-

timate the location of humans in the scene, though head

detection is done without stereo information by applying a

partial-ellipse fitting algorithm. In [6] a stereo-based back-

ground subtraction algorithm is used to segment the image

into different disparity layers which are used in a contour fit-
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ting step. Finally a tracking step is performed. In [5] stereo-

based human head detection is done with scale-adaptive fil-

ters based on an elliptical shape approximating the head

contour. They suppress spurious clues and localize heads

in the likelihood map with a mean-shift algorithm. In an-

other work [9] a method for human detection is presented

which uses histogram of oriented depths features to perform

a scale-space search and a combination of these features and

color data is proposed. In [12] Histogram of Depth Differ-

ence is proposed as a new feature descriptor. The detec-

tion window is partitioned into grids and blocks and local

descriptors for depth differences in the x- and y-direction

are aggregated into a histogram. They use this descriptor

to train a support vector machine classifier to detect pedes-

trians in depth images. In [14] another feature descriptor

is presented, the Simplified Local Ternary Pattern. Depth

differences in x- and y-direction are quantized into 0,+1,

and -1 indicating their difference relationship and leading

to 9 different observable patterns. The detection window is

partitioned into non-overlapping blocks and a histogram is

build from the blocks.

Other approaches use a setup where the camera is mounted

above the humans observed and pointing straight down at

the scene. In [1] a 3D volume of interest in head height

is investigated to locate heads. The depth image is re-

sampled from a vertical projection into a occupancy map to

remove perspective distortion. The occupancy map is used

to compute the locations of humans with a gaussian mix-

ture model. In [13] the height map is segmented into differ-

ent height intervals resulting in binary images for each level

containing only regions with a height belonging to the cor-

responding interval. Morphological operations as openings

with circular structuring elements are used to locate the hu-

man heads. Tracking of these heads is done in a tracking

step and a Kalman filter for predicting the head positions is

employed. In [10] an adaptive background model is used

to extract foreground regions. On these foreground regions

a spherical crust template is matched. They determine the

number of heads and their position and height in a fore-

ground blob. In a blob separation step they split the fore-

ground blobs that contain more than one head. Eventually

detections are fed into a tracker based on a set of Kalman

filters.

3. Method
We propose a method for human detection, tracking and

counting consisting of several algorithmic steps. In the first

step we search the depth map for local maxima 3.1. These

are used as seed points for a head localization algorithm

in the next step 3.2. The centers of the head candidates

are found in this step and handed over to the classification-

based head detector 3.3. The head detector predicts if the

head candidate is a valid head. In a final step a tracking al-

gorithm aggregates the detections over time and computes

trajectories for every head 3.4.

Note that our algorithm does not depend on background

modeling for foreground/background segmentation. There-

fore it does not suffer from its typical shortcomings, e.g. a

person that stands still for a while eventually gets integrated

into the background (and is not detected anymore). Further-

more abrupt short-term illumination/lighting changes can

lead to incorrect foreground segmentation.

The foundation for the method presented is the top-view

depth image of the scene provided by a 3D stereo camera

system. The 8-bit depth image contains pixels of smaller

depth values for near objects and higher values for objects

more distant to the camera. Invalid pixels are encoded with

a zero indicating that there is no valid depth information

available for this pixel position. In our scenario the mount

height of the camera is known beforehand. So we can eas-

ily determine the height of an object in world coordinates.

In an additional step we invert depth values of the depth

map. Therefore depth values of objects on the floor start

with small values and become larger for nearer objects (pix-

els with zero depth value indicating invalid pixels are kept

unchanged).

3.1. Local maxima search

Aim of this algorithmic step is to create a sufficient num-

ber of initial head candidates for the subsequent step, the

head localization algorithm. We achieve this by computing

local maxima in the depth image. The size of the search

window for the maxima search was set to the minimum ex-

pected head diameter (head diameter size of a head near the

floor).

Equation 2 in Section 3.3 is used to compute object dimen-

sions (in pixels) for a given object of well-known size and

distance from the camera.

We extend the 2D-neighborhood scan-line algorithm for

Non-Maxima Suppression from [8] to search the depth im-

age for local maxima. Our extensions to the original algo-

rithm comprise three aspects, (1) we enhance the algorithm

to support non-square search windows, (2) we allow max-

ima plateaus to generate local maxima for the plateau in the

search window, (3) we allow multiple local maxima with

the exact same value in the search window to generate local

maxima.

Note that plateaus or multiple maxima with the exact same

depth value can and will indeed occur in practice. This is

due to the fact that we use 8-bit depth images and several

identical depth values in local neighborhood are not un-

likely. Thus the presented extensions to the original algo-

rithm are vital to prevent heads from being suppressed by

accident.
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(a) regular non-overlapping grids (b) overlapping grids (c) rings of grids (separate histograms)

Figure 1. Different configurations of grids

3.2. Head localization algorithm

Candidate points (seed points) created by the local max-

ima search are likely to differ from the true center points of

the head candidates. This true center of the head is exactly

what we are interested in since we want to use it as the input

for the head detector later on. The purpose of this algorith-

mic step is thus to localize the centers of the heads.

We use a gradient climbing algorithm similar to the Mean-

Shift algorithm [3]. We take into account invalid depth val-

ues in the computation of the shift vector. A search window

of the size of the expected diameter of a head is used. This

size can be computed from the seed point’s depth value.

By performing this gradient climbing algorithm for all seed

points we get a list of final head candidates. Different ini-

tial head candidate points can result in final head candidate

points with the same position. We take account for this by

eliminating multiples in this list.

3.3. Head detection

We propose a new depth feature descriptor which uses a

reference value to compute depth differences.

The motivation for our feature descriptor is the fast and ac-

curate computation of mean depth values within a rectangu-

lar pixel area in the depth image. Note that the depth image

may contain invalid depth values marked as zero values. We

have to take invalid pixels into account in the calculation

(see Equation 1). We will further call this rectangular pixel

area a block. The computation of mean depth values within

such a block is done with:

dB =

∑
x∈B

iD
(
‖B‖ − ∑

x∈B

iI

) (1)

where iD is the depth image, iI is a map of zeros and ones

where a one indicates invalid depth values, and B is the

block of pixels. We need to consider blocks of pixels instead

of individual pixels since we want to use a scale-adaptive

detection window. We use integral images [11] for iD and

iI to efficiently compute the corresponding sum over the

values of the block. Invalid depth pixels are taken into ac-

count to ensure correctness of the result. The value of in-

valid depth pixels is zero and this would decrease the mean

block pixel sum when the block sum is divided by the full

number of pixels in the block area. So the amount of invalid

pixels is computed and subtracted from the denominator.

In order to create the description of local depth neighbor-

hood we use a reference block (centered at the head loca-

tion) to compute depth differences between other blocks and

this reference block. A histogram of these depth difference

values is created and the vector of histogram values of the

histogram bins is the input for the SVM.

We tested several sets of configurations of blocks. Our

tests included regular grids of blocks of different sizes both

non-overlapping (see Figure 1(a)) and overlapping (see Fig-

ure 1(b)) as well as manually placed blocks over the de-

tection window. We now present the manual placement of

blocks and we want to point out that this presented config-

uration of blocks results in an invariance to rotation. We

define several sets of blocks in a circular pattern around the

reference block (see Figure 1(c)). Each ring of blocks has a

different radius from the center of the reference block. We

create separate histograms of these rings of blocks and con-

catenate all histogram bins into a vector. This vector is the

input for the SVM.

The size of the blocks is derived from the detection window

size. The detection window itself is scale-adaptive as ex-

plained next.

The size of the detection window in pixels can be computed

with

sw =
f

d
· sr (2)

where f is the focal length in pixels, d is the expected dis-

tance of the object and sr is the extend of the object in pixels

perpendicular to the optical axis of the camera.
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We use support vector machine (SVM) learning and pre-

diction to classify head candidates. The features presented

above were used to form data vectors for the svm training

and classification. We use the LIBSVM [2] library with the

radial basis function kernel. We do a grid-search to opti-

mize parameters with cross validation as suggested by the

LIBSVM documentation.

As one can see in Section 4, in our required scenario our

feature descriptor outperforms the Simplified Local Ternary

Patterns [14] feature descriptor, which is claimed in their

work to outperform other descriptors from [9], [12].

3.4. Tracking algorithm

The final algorithmic step is a tracking algorithm. The

tracking algorithm tries to find an association of detections

in the current frame and already tracked object (tracks) from

previous frames. The resulting trajectories allow to derive

information from them and one can see the path of move-

ment of the tracked persons. Furthermore with tracking it is

possible to suppress single false alarms of the detector.

Our solution to the tracking problem is only an approxima-

tion to the optimal solution since we had the requirement of

runtime performance in mind.

An association distance cost matrix Cd,t is computed for all

possible detections d and tracks t. We use the squared Eu-

clidean distance to compute the distance costs. A maximum

allowed distance for associations is defined by a threshold.

Association distances larger than this distance are penal-

ized, and thus should prevent this association to be selected

for the final association configuration. We try to find an op-

timized association configuration of detections and tracks

by computing costs for three different association rules and

pick the configuration with minimal costs. The three associ-

ation rules are: (1) nearest neighbor association (detections

are sorted by the minimal distance and associated in this

order), (2) tracks with minimal number of allowed detec-

tions for association (which are an allowed candidate for

this track) and (3) detections with minimal number of al-

lowed tracks for association.

In the vast majority of cases the nearest neighbor associ-

ation configuration is picked by the algorithm. There are

though difficult cases where (2) and (3) are indeed the bet-

ter choice. Especially when dealing with low frame-rates

and people move fast and thus their inter-frame displace-

ment is large it happens that the nearest neighbor rule picks

a suboptimal configuration. We maintain a list of tracks

(both potential and valid). In every frame the best associa-

tion configuration of detections and tracks is computed. Ex-

isting tracks are updated with the new position of the asso-

ciated detection (the old position is also saved in their track

history). Unassociated tracks are marked as tracks with a

failed association and their position is not updated. When

a track could not be associated for a predefined number of

frames we erase it from the list of tracks. Detections that

were not associated to an existing track in the current frame

will be used to start a new track. A new track is by default

a potential track (invalid). A potential track is required to

be detected for a predefined number of frames to become

a valid track. This way, occasional false alarms of the de-

tector will not become valid tracks and thus decrease the

overall performance of the method.

4. Experiments and Results
We carried out a comparison of the detection perfor-

mance of the SVM classifier based detector employing

our features as well as Simplified Local Ternary Patterns

(SLTP) features. In [14] SLTP features are presented and

evaluated. It is shown that SLTP outperforms Histogram of

Oriented Depths (HOG) [4] features proposed in [9] and

Histogram of Depth Difference (HDD) features invented

in [12]. Like our features HDD features use depth differ-

ences. But instead of using a depth reference value only

local depth differences are computed. As we will show our

features outperform SLTP features in our scenario, which

again are superior to HDD features as claimed in [14].

We did our tests on a learning dataset of 4212 positive and

14040 negative samples and a test dataset of 5184 positive

and 7344 negative samples. Samples were annotated man-

ually and rotated automatically in steps of 10◦ rotations to

generate a larger number of samples and to increase varia-

tion in the data sets. In our tests we found our features to

perform better than SLTP features (see Table 1). While the

true positive detection rate is pretty good for all variants our

approach is superior when it comes to true negative detec-

tion rate.

detection performance of SLTP features

regular grid of blocks

true positive rate 0.91

true negative rate 0.36

grid of blocks (overlapping)

true positive rate 0.91

true negative rate 0.54

detection performance of our features

regular grid of blocks

true positive rate 0.90

true negative rate 0.95

sets of rings of blocks

true positive rate 0.93

true negative rate 0.99

Table 1. Feature performance comparison

We implemented our algorithm in C++. We used the In-
tel Integrated Performance Primitives for fast image oper-

ations. We used LIBSVM [2] for support vector machine

training and classification. The runtime performance of our

algorithm is shown in Table 2. The test system consisted of

an Intel Xeon CPU with 4 physical and 4 virtual cores @

2.93 GHz, 12 GB RAM running on Windows7 64-bit ma-
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chine. We compiled both 32-bit and 64-bit versions of the

algorithm. The 64-bit version is slightly faster than the 32-

bit version. This was expected as the operating system is a

native 64-bit system. We therefore only give timing results

for the 64-bit implementation. The algorithm is only run-

ning on one processor core at the moment.

The head hypothesis generation takes up the largest amount

of time. This is expected since it involves both the max-

ima search as well as the gradient climbing algorithm. Es-

pecially the maxima search involves scanning the whole

image and thus is computationally intensive. Computation

time of the SVM head classification for all head candidates

is moderate due to the fact that the number of head candi-

dates was drastically reduced in the head hypothesis gener-

ation step. Thus the processing time for this step is about 1
millisecond. The conversion of depth values as mentioned

in Section 3 takes up 0.5 milliseconds. As one can see from

table 2 the remaining steps (feature computation and the

tracking) are negligible.

The overall processing time with less than 3.5 milliseconds

is promising.

runtime performance of the algorithm

algorithmic step runtime

depth values conversion 0.52 msec

head hypothesis generation 1.77 msec

depth difference histogram computation 0.04 msec

svm-based head classification 1.09 msec

association/tracking 0.01 msec

total 3.43 msec

algorithm runtime (average of 1000 frames)

depth image dimensions: 608×328 pixels

test system: Intel Xeon CPU with 4 physical

and 4 virtual cores @ 2.93 GHz,

12 GB RAM running on Windows7 64-bit

Table 2. Average runtime performance of the algorithm

The algorithm was incorporated in an automatic border

control system where person separation and counting are

required. In Figure 2 some tracking results of our meth-

ods in such a scenario are shown. Trajectories are com-

puted within a predefined region of interest (ROI). Inside

the larger (yellow) ROI new potential trajectories are started

but only inside the smaller (green) ROI they are allowed to

become valid trajectories). Each track gets a unique identi-

fier assigned. Furthermore the calculated height of the per-

sons in centimeters is shown. In the upper left corner the

current person count is presented which is simply the sum

of all valid tracks.

In Figure 2(a) the trajectories of two persons walking close

to each other (piggybacking) are shown. Although the right

person crouches just beside the taller left person the algo-

rithm is still able to correctly detect and track the two per-

sons. Figure 2(b) shows 3 persons piggybacking and the

algorithm was able to correctly detect and track each in-

dividual person. In Figure 2(c) and 2(d) cases are shown

where we tried to distract the system with a hat. The head

has similar depth values like a human head. What can be

seen is that a hat alone without depth values correspond-

ing to human shoulders does not result in a wrong detection

(Figure 2(c)). When the hat is carried at the height of a

human head and close to a human’s shoulder it produces a

wrong detection and distracts the tracker by assigning it the

track of a previous tracked head (Figure 2(d)). Figure 2(e)

and 2(f) show two examples of humans with luggage and

carrying a backpack which does not result in wrong detec-

tions or false tracks.

5. Conclusion and Future Work

We presented a method to detect, track and count humans

in top-view depth images. We described the algorithmic

steps involved, especially our findings regarding adequate

features and their impact on the classification performance.

It was shown that we could successfully solve particular dif-

ficult scenarios with persons piggybacking and tailgating.

Since our algorithm does not depend on background mod-

eling it does not suffer from its shortcomings. This makes

our approach very robust and suited for real-world scenar-

ios. We gave an overview of the runtime of the algorithm.

We can think of several extensions and improvements to

our algorithm. A combination of the presented feature de-

scriptor with other features like e.g. HOG features on color

data could further increase detection performance. A fur-

ther enhancement of the computation performance of our

algorithm could be achieved by utilizing several processor

cores for algorithmic parts, e.g. the gradient climbing com-

putation in the head localization step could be done in par-

allel for every seed point.
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