
 

 
Abstract 

 
In this paper, a new method of human detection based on depth 

map from 3D sensor Kinect is proposed. First, the pixel filtering 
and context filtering are employed to roughly repair defects on the 
depth map due to information inaccuracy captured by Kinect. 
Second, a dataset consisting of depth maps with various indoor 
human poses is constructed as benchmark. Finally, by 
introducing Kirsch mask and three-value codes to Local Binary 
Pattern, a novel Local Ternary Direction Pattern (LTDP) feature 
descriptor is extracted and is used for human detection with SVM 
as classifier. The performance for the proposed approach is 
evaluated and compared with other five existing feature 
descriptors using the same SVM classifier.  Experiment results 
manifest the effectiveness of the proposed approach.  
 

1. Introduction 
There has been a growing effort in the development of 

intelligent video surveillance systems based on automatic 
detection and understanding of human activity in video 
images. Different methods have been brought forward to 
detect human in still image and have achieved high 
accuracy. These methods can be roughly divided into three 
different categories; human model based methods [1], 
template matching based methods [2] and statistical 
classification methods [3-5]. The approaches in the last 
category, in which the choice of suitable feature descriptors 
is critical to the design of a detector, have demonstrated 
promising results since they are more robust than the other 
two categories of methods. 

Over past few years, several feature descriptors for 
visible light two dimensional images have been proposed, 
such as HOG [3], PHOG [6], et al [7-9]. Among them, the 
LBP (local binary pattern) feature, which is a string of bits 
obtained by binarizing local neighborhood of pixels with 
respect to the brightness of central pixel, was recently 
proposed to capture microscopic local image texture and 
was applied for human detection successfully [7]. Wang [8] 
put forward the HOG-LBP human detector with partial 
occlusion handling, where HOG as a shape feature is 

complemented with LBP as a texture feature. Other 
variants from LBP, such as the LTP (local ternary patterns) 
[9] and CENTRIST (census transform of histograms) [4] 
also have been attracted many attentions. Although lots of 
works have reported that these features could be used to 
obtain accurate results in human detection, they 
encountered many difficulties in perceiving the shapes of 
human objects with articulated poses and cluttered 
background [10,11]. 

Since depth map represents an object’s space 
information which is an important cue for human to 
recognize objects, while visible map includes color and 
illumination mainly. The application of depth map has 
attracted much more research interests in recent years. For 
example, Plagemann [12] used local shape features to 
identify body parts in depth map for human detection. 
Ikemura [10] proposed a window-based human detection 
method by using relational depth similarity feature based 
on depth information. Lu [11] proposed a method of 
human detection approach based on depth map by using a 
two-stage model containing a 2-D head contour model and 
a 3-D head surface mode. 

However, since most of the existing depth map sensors, 
such as TOF camera and binocular cameras, are expensive 
and lack of friendly application interface, human detection 
on depth map is rarely applied in practice. Recently, the 
Microsoft’s Kinect provides an easy way to capture real 
time depth map due to its low cost, simple operation and 
friendly application programming interface. It has been 
used in many applications, such as face recognition, pose 
estimation [1,2,19] etc. Its application on object detection 
should be an attractive research topic. Unfortunately, since 
the Kinect mainly depends on speckle method [13], the 
depth map captured by Kinect often contains much noise. 
Furthermore, detectors trained from the existing image 
feature descriptors that are demonstrated very successful 
on visible images cannot achieve promising results on 
depth map of Kinect due to its unstable quality and 
inherent defect. Since there's no significant progress to 
overcome the defects of depth map currently, human 
detection based on such depth map is still a challenging 
task. In fact, effective preliminary filter process and a 
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suitable feature descriptor are quite necessary for the 
designing of human detector based on such depth map. 

 In this paper we aim to build an integrated human 
classifier which would perform well based on depth map 
collected by Kinect. For this purpose, two filtering methods 
are adopted to process the depth map and a normalized 
dataset composed of depth maps with various indoor 
human poses is constructed. A novel feature named LTDP 
(local ternary direction pattern) with strong noise resistance 
derived from LBP feature is proposed. Its various 
performances are evaluated and compared with some 
existing features based on the created dataset. A SVM 
classifying algorithm is utilized to generate the integrated 
human classifier. Furthermore, related theoretical analysis, 
experimental work and discussion, as well as future works 
are presented. 

The remaining of this paper is organized as follows. 
Section 2 briefly describes LBP feature and its improved 
algorithm. The proposed LTDP feature and human 
detection approach on depth are illustrated in detail in 
Section 3. In Section 4, experiments are presented and 
results are analyzed. Some concluding remarks and 
suggestions for future work are given in Section 5. 

2. Overview of LBP-related features 
Initially derived from texture analysis, the LBP feature is 

created as a gray-level texture measure to model texture 
images [14]. Later, it showed excellent performance in 
many other fields in terms of speed and discrimination 
capability [7]. Mathematically, it marks each pixel cI  of an 
image as a decimal number P,R cLBP (I ) , which is formed by 

comparing the P  equally spaced neighboring pixels 

p,RI (p 0, ,P 1)= −�  on a circle of radius R  with the center 

pixel cI  and concatenating the results binomially with 
factor p2 , as 

P -1 pLBP = s(I - I )2p,R cP,R p = 0
�

                          (1) 

 
where the threshold function  is defined as 
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When  is (0,0), the coordinates of  can be given by . The 
values of gray level of p,RI that do not fall exactly in the 

center of pixels can be estimated by interpolation. By 
defining the number of spatial transitions (0/1 changes) in 
LBP pattern with a U value defined as below in (3), the 
uniformity of LBP patterns, which refers to the patterns 
having limited transition or discontinuities (U�2) in the 
circular binary presentation, can be determined, where the 
U value is given as 
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The uniform LBP only has 59 bins, one each for 58 possible 
uniform patterns and one for all of the non-uniform ones. 

Later, the LTP [9] feature was proposed to extend LBP to 
3-valued codes, in which the gray levels within a zone of 
width ±t around cI  are quantized to zero and those above 
this zone are quantized to +1 and below to -1, i.e., the 
indicator is replaced with a 3-valued function s’ as 
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Hence, the binary LBP code can be replaced by a ternary 
LTP code. Usually, LTP uses a coding scheme that splits 
each ternary pattern into its positive and negative halves. 
Although the introduction of such a user-specified 
threshold in LTP breaks the monotonic illumination 
invariance of LBP feature, it helps suppress the noise that 
dominates LBP responses in near-uniform regions and 
provides an additional parameter that can be tuned to 
extract complementary information.  
    Recently, the CENTRIST [4] was proposed. Originally, 
census transform is a non-parametric local transform 
designed for establishing correspondence between local 
patches and equivalent (modulo a difference in bit ordering) 
to the LBP code. Therefore, the values of CENTRIST for an 
image or image patch can be easily computed. It adopts a 
spatial pyramid structure by dividing an image into 
sub-regions and integrating the corresponding results 
within these regions. The spatial pyramid encodes rough 
global structure of an image and usually improves the 
quality of recognition. 

In summary, the uniform-LBP reduces the dimensions of 
LBP, while LTP extends LBP to three-valued codes and 
therefore enhances its anti-noise performance. The 
CENTRIST introduces a pyramid structure to LBP and 
makes a multi-scale observation. Since all of the LBP 
variants create a model of the image from the comparison 
between individual pixels, they consequently lack the 
capability of anti-noise especially for some particular 
noises.  

3. Proposed Human Detection Method 
The procedure of the proposed method for human 

detection based on depth map has four steps. Firstly, the 
depth map is processed with two filtering methods, i.e. 
pixel filtering and context filtering. Secondly, a normalized 
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dataset with various indoor human poses is established. 
Thirdly, the proposed LTDP feature is employed to encode 
the depth map into feature vectors. Lastly, classification 
algorithm is utilized to generate the human classifier. The 
details are given as follows. 

 

3.1. Noise Reduction Filters to Depth Map 
Anti-noise approaches based on mean filtering or 

Gaussian techniques by using appropriate noise models for 
TOF depth map have been widely studied [3,5,8,12,14]. 
Compared with TOF data, the depth map captured by 
Kinect has mounts of null-value areas, which present as 
‘white holes’ in depth map (Fig.2(b)). Moreover, it is 
obvious that these ‘white holes  always exist at 
boundaries of objects where depth changes sharply. The 
purpose of filtering is to give the truth depth values for the 
pixels in  that null-value area. However, traditional filters, 
e.i., mean filtering, Gaussian filtering, usually are utilized 
to remove salt and pepper noises. They have poor 
performance in the case discussed in this paper. Fig.2(c) 
shows the Gaussian filtering result. It is obvious that the 
‘white holes’ cannot be filled up properly. 

In this paper, two filters, pixel filter and context filter, are 
adopted to process the noisy depth map. The pixel filter is 
designed to compensate the 'holes', while the context filter 
is employed to further reduce noise in general.  
    The procedure of pixel filtering is given as below 
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Firstly, find a zero pixel I and create a filter window with 
the candidate pixel as its center. Then, count the non-zero 
pixels in filter window with size of the 2L  pixels. When the 
counted number  exceeds a user-defined threshold T, the 
value of candidates will change to the mean value V of 
non-zero pixels; otherwise left it unchanged. An example of 
5×5 pixels filer window with threshold T=3 is shown in 
Fig.1. The number of non-zero pixels in this window is set 
to be 7, which exceeds the threshold. Thus, the filtering 
candidate pixel is reset to 45 that is the mean value of the 7 
non-zero pixels. 

Since the Kinect depth maps are unstable even for the 
same scene, several frames could be fused together to 
overcome this defect. This can be done by using context 
filter. The procedure of context filtering is given as follows. 
Firstly, find a zero pixel in the depth map and filter it using 
the pixel filer as described above. Then, retrieve the value 
on the same location of previous frames. The latest 
non-zero pixel will be adopted to filter the candidate. If all 

of the previous values are zero, the candidate will not 
change. It should be noted that the frames waiting to be 
retrieved are limited, because the method ignores the scene 
change between frames. In the experiment of this paper, we 
fused four frames for waiting to be retrieved.  
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40 47 0 0 0

44 45 0 0 0

45 45 49 0 0
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Y
 Axis

Filter Window Filter Window
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These two methods can either be used to a depth map 
separately or in series to produce a smoothed result. Fig.2 
gives an experiment result by using various filtering 
methods. In this example, the number of zero pixels in raw 
depth map, pixel filtering, context filtering, and combined 
filtering are 1605, 622, 1241 and 498, respectively. We 
evaluated the performance of the combined filter for an 
indoor environment. Statistical results by 2000 filtering 
samples show that this filter can reduce in average 60% of 
zero pixels. Although the solutions cannot completely 
remove all noises, they do achieve an appreciable result. It 
is clear that the depth map after smoothing is more 
appropriate for extracting accurate feature descriptors. 

 
3.2. The LTDP Feature 

Although there exist various techniques to describe local 
image regions by image features, searching for an ideal 
feature descriptor having desired properties is still a tough 
task with few theoretical guidelines. Alternatively, the 
problem can be solved by combining multiple 

Figure 2: An example of filtering result to a depth map: 
(a)visible map of the scene; (b)raw depth map; (c)smoothed 
with Gaussian filter; (d)smoothed with pixel filter;(e) 
smoothed with context filter; (f)smoothed with two filters 
combined 

Figure 1: An example of 5×5 pixels filer window with 
threshold 3 
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complementary features based on different aspects e.g. 
HOG-LBP. However, the combination of features usually 
causes a mass dimension of features. Hence, in the 
proposed method, only one single type of features is 
adopted and a fast and efficient feature descriptor named 
LTDP (local ternary direction pattern) is derived from the 
LBP-related feature descriptors by plugging a specific 
Kirsch mask [15] and three-valued codes into it. This 
process is described as follows. 

At first, the LTDP is calculated by comparing the relative 
edge response value of a pixel in different directions. The 
edge response value (S0~S7) of a particular pixel is 
calculated with the Kirsch mask at eight different directions. 
The masks (M0~M7) are shown in Fig.3. 
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Second, the 3-valued codes for the eight directions with 

threshold t  are defined as follows. 
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where,  denotes the neighboring pixels around the center 
pixel. A sample of LTDP code is shown in Fig.4. When the 
user-defined threshold t  is set too large, there will be 
many zeros in the 8-bit LTDP codes; alternatively there is 
no zero when t  is set too small. Both cases will reduce 
discriminative capability. Therefore, the parameter  must 
be set to an appropriate value to distribute 1, 0, -1 
homogeneously. In the experimental study of this paper, it 
is set as 12.  

In the experiment of this paper, a uniform pattern 
argument is designed and a coding scheme is used to split 
each ternary pattern into its positive and negative halves 
and subsequently treating them as two separate channels of 
LTDP features for which separate histograms are computed 
by combining the results only at the end of the computation. 
As a result, after these improvements, the LTDP possesses 
stronger anti-noise capability. For instance, as shown in 
Fig.4, as the pixel 53 turns to 48 due to noise, the LBP code 
is changed while LTDP code did not change. 

LBP=01110000
LTDP=(-1) (-1) 1 1 1 1 0  (-1)

LBP=01010000
LTDP=(-1) (-1) 1 1 1 1 0 (-1)  

 
3.3. Histogram of LTDP Feature for Depth Map 

Since the histogram of LTDP features contains the 
distribution information of local features in an image, in 
order to preserve spatial information, a depth map should 
be divided into several non-overlapping rectangular blocks. 
By letting  denote the histogram of LTDP patterns extracted 
from block i i 1, ,NR | = � , the spatial histogram of an image can 

be represented as . A spatial histogram, concatenating the 
histograms of all blocks can be employed to represent the 
whole image. The spatial histogram encodes both the 
appearance and the spatial relationships of an image. For 
instance, given a 64×128 detection window, an image can 
be divided into 32 blocks. In each block, a 118-dimensional 
LTDP feature vector with 59-dimension for negative and 
the other for positive can be extracted. Consequently, a 
3776-dimensional feature vector can be extracted from the 
whole detection window. 

In the application of various image features, some 
parameters, such as the number and size of block, block 
overlapping, dimension and pyramid space should be 
considered carefully. Block is the smallest image patch to 
calculate the feature vector. Some features will be extracted 
from overlap of blocks, alternatively one can calculate 
feature vector from pyramid space (i.e., to shrink image in 
various size). Some features make a more detailed 
description, but will increase their dimensions at the same 
time. To illustrate this, with a given 64×128 pixels image, all 
the aforementioned features are implemented, and the 
parameters were list in table 1, in which we try to keep the 
block in similar size as it is a key factor for implementation. 

 
Feature  HOG LBP PHOG LTP CENTRIST LTDP

Block size 16×16 16×16 8×16 16×16 16×32 16×16
Overlapping YES NO NO NO YES NO 

Spatial 
pyramid 

NO NO YES NO YES NO 

Block 
number 

105 32 21 32 31 32 

Description 
dimension 

3780 1888 1260 3776 3968 3776 

 

Table 1: Parameters of features for a 64 128 image 

Figure 3: Kirsch mask used in LTDP 

Figure 4: A sample of LTDP code shows stronger noise 
tolerance than LBP 
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3.4. Construction of Dataset on Human Poses 
There are some public available benchmarks of visible 

map dataset for human detection, such as INRIA dataset [3] 
and Caltech Pedestrian Dataset [7]. However, they do not 
have a depth map dataset. The only one we found up to 
now is the Shenzhen University Depth Map in [18]. 
However, this simple dataset only contains a limited range 
of scale, occlusion and pose variation of human body, 
which is too small to assess real performance of different 
features.  

In this study, we constructed a depth map dataset in our 
laboratory so as to provide a fair benchmark to compare the 
performance of different features on depth map. In this 
dataset, nearly 3×104 frames were collected in various 
indoor scenes such as meeting room, living room, kitchen, 
and office, by using a Kinect with 11-bit and 640x480 
resolution depth map video generated at 30Hz. In order to 
make a comparable quality with still image, the device is 
moved slowly. About 40% of the frames had no pedestrians, 
and about 60% of the frames contained one or two persons.  

All frames containing human body are annotated with 
totally 2 104 labeled bounding boxes and are split into 
training part and testing part. Fig.5 gives some samples in 
this dataset, where Fig.5 (a) are positive samples of walking, 
occlusion, strolling and running in sequence from left to 
right, and Fig.5 (b) are negative samples of drinking 
fountains, air-conditioner and chair.  

 

 
 
 

3.5. Classification Algorithm 
For binary classifications, there are many classification 

methods such as the nearest neighbor, neural networks, 
decision tree, and support vector machine (SVM).  Among 
these algorithms, SVM is relatively robust and easy to be 
implemented. In this study, both linear kernel SVM and 
nonlinear kernel SVM are used as classification algorithm. 
Commonly, the polynomial kernel, radial basis function 
kernel and sigmoid kernel are used as nonlinear kernels in 
SVM. In each nonlinear kernel, the optimal value of gamma 
parameter can be estimated by using the method 
introduced in [16], where the inverse of the mean value 
obtained from a distance matrix of the feature vectors is 
adopted to reduce computational cost by further doing 

cross validation. In the experiments of this paper, the 
feature vectors of the training depth map dataset are sent to 
SVM for generating a classification model. 

4. Experiments and Discussions 
In the experiments, the performance of the proposed 

LTDP feature is evaluated and compared with five existing 
features, i.e. LBP, LTP, CENTRIST, HOG and PHOG, on the 
constructed depth map dataset. And the Performance of 
LTDP based SVM classifiers are investigated.  

4.1. Feature Evaluation  
Considering that the ROC (receiver operating 

characteristic) curve concerns the true positive rate and the 
false one, we adopt it to demonstrate the detailed 
performance of detectors using different features in the 
experiments. With this criterion, by tuning the threshold, 
the corresponding ROC space points and the value of AUC 
(area under the ROC curve) can be readily obtained 
according to the classification results. Typically, the values 
of AUC range from 0.5 to 1.0, the larger it is the better the 
performance is. 

During the training procedure, each feature is tested on 
five sub-datasets, i.e. reasonable set, un-occlusion set, 
occlusion set, typical set and atypical set. The five 
sub-datasets are selected from dataset we constructed and 
are classified by whether the human body is occluded from 
the view point of camera, i.e. reasonable set, un-occlusion 
set, occlusion set, typical set and atypical set. The occlusion 
set was collected by considering a human body with over 
15% areas being occluded, while the un-occlusion set 
contained the others. The typical set and the atypical set 
contained samples with abnormal view point or human 
pose divided by different viewing points and poses. While, 
the reasonable set was collected from dataset randomly. 
Each subset contains 100 positive samples and 100 negative 
samples.  

The ROC curves obtained from experiments are given in 
Fig.6. All of them were the result of corresponding classier 
trained by a linear SVM. It should be noted that although 
the searching for hard examples in the negative dataset is 
critical in training, the number of retraining iterations used 
in experiments is also important. In training procedure, 
only two bootstrapping rounds are retrained since more 
rounds of retraining may lead to exaggerated memory 
requirements for SVMs [17]. The occlusion will degrade the 
performances for all classes of features tremendously as it 
can be observed that the ROC curves of each feature are 
declined in Fig.6 (b). In addition, it can be observed that the 
changes of human pose and viewing point also slightly 
decrease the performance.  

More detailed analysis of the ROC curve is listed in 

Figure 5: Samples in the constructed depth map dataset
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Table.2, where the AUC of all features together with linear 
SVM are given. Because the data of reasonable subset are 
selected from the four subsets randomly, this subset has 
more generality in classification task. Therefore, in the table, 
all features are ranked in the last column in term of the 
AUC value obtained from reasonable set. It can be 
observed that the proposed LTDP feature performed better 
than others. The results also indicate that, even though the 
LTP extends LBP to 3-valued codes, the improvement is 
limited, while the LTDP with a Kirsch mask significantly 
improves the performance of classification.  

 

   
(a) un-occlusion set                     (b) occlusion set 

   
(c) Typical set                              (d) Atypical set 

 
(e) Reasonable set 

 

 
 

 Atypical Typical Occlusion 
Un-occl
usion 

Reasonable Rank

LBP 0.9756 0.9836 0.9649 0.9974 0.98038 3 
LTP 0.9725 0.9785 0.9744 0.9979 0.98083 2 

HOG 0.9437 0.9525 0.9364 0.9731 0.95143 5 
PHOG 0.9438 0.9364 0.9251 0.9604 0.94255 6 

CENRIST 0.9664 0.9645 0.9215 0.9894 0.96045 4 
LTDP 0.9859 0.9872 0.9680 0.9926 0.98342 1 

 

Table 2  AUC value of ROC curves 
 

4.2. Performance of LTDP with SVM Classifiers 
In order to validate the effect of the proposed approach, 

the performances of LTDP based on SVM classifiers with 
different kernels are evaluated and compared in this 

section. The results are given in Fig.7. It shows that linear 
kernel SVM slightly outperform the nonlinear kernels SVM, 
which implied that the depth map reduced nonlinear effect 
on classification. It is not a simple task to simply declare 
one kernel is better than another in complicated 
hydrological simulation. Theoretically linear kernel may be 
considered as a private case of non-linear ones. However, 
when optimal decision is the border of linear decision, 
linear kernel will outperform other kernels. Some results of 
pedestrian detection on depth map by using LTDP based 
linear kernel SVM are shown in Fig.8, it manifests the 
effectiveness of the proposed method. 

 

 

 
 

5. Conclusion and Future works 
In this paper, we proposed a new method of human 

detection using SVM algorithm via extracting the new 
designed LTDP feature descriptor only based on depth 
map collected by Kinect sensor. Two effective filtering 
methods, pixel filtering and context filtering, were 
employed to smooth the depth map at first. A normalized 
dataset composed of depth maps with various indoor 
human poses was constructed as benchmark for evaluating 
the new feature. The LTDP feature was then derived by 
simply introducing a Kirsch mask and three-valued codes 

Figure 6: ROC curves obtained from five sub-datasets

Figure 7: Performances of LTDP based SVM classifiers 
with different kernels 

Figure 8: Samples of pedestrian detection results
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into the LBP and LTP feature. Experiments results on the 
collected dataset showed that, not only the LTDP feature 
outperformed other five existing feature descriptors which 
were commonly used for visible images, but also the 
nonlinear effect of SVM classification task were reduced by 
using the LTDP on depth map. Since the occlusion was 
challenging for all features including the LTDP feature, 
future work will focus on the LTDP based human detection 
on depth map including occlusion case in outdoor 
environment. And further investigation will put more 
attention on comparison task. 
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