
GPU-SHOT: parallel optimization for real-time 3D local description

Daniele Palossia,b,∗ Federico Tombarib,† Samuele Saltib,†

Martino Ruggieroa,† Luigi Di Stefanob,† Luca Beninia,†
aDEI, University of Bologna bDISI - University of Bologna

Bologna, Italy
∗daniele.palossi@gmail.com †name.surname@unibo.it

Abstract

The fields of 3D computer vision, 3D robotic perception
and photogrammetry rely more and more heavily on match-
ing 3D local descriptors, computed on a small neighbor-
hood of a point cloud or a mesh, to carry out tasks such as
point cloud registration, 3D object recognition and pose es-
timation in clutter, SLAM, 3D object retrieval. One major
drawback of these applications is currently the high com-
putational cost of processing 3D point clouds, with the 3D
descriptor computation representing one of the main bottle-
necks. In this paper we explore the optimization for paral-
lel architectures of the recently proposed SHOT descriptor
[22] and of its extension to RGB-D data [23]. Even though
some steps of the original algorithm are not directly suit-
able for parallel optimization, we are able to obtain notable
speed-ups with respect to the CPU implementation. We also
show an application of our optimization to 3D object recog-
nition in clutter, where the proposed parallel implementa-
tion allows for real-time 3D local description.

1. Introduction
3D local descriptors are becoming a standard tool for

several tasks related to disciplines such as computer vi-

sion, robotic perception, photogrammetry, computer graph-

ics, given their ability to provide a repeatable, albeit com-

pact, representation of a 3D surface. The main tasks that

currently exploit such ability are point cloud registration

and surface alignment, 3D object recognition and pose esti-

mation in clutter, 6D SLAM, 3D object retrieval, the major-

ity of which is also being pushed by the current advent of

low-cost, real-time 3D sensors such as the Microsoft Kinect

and the Asus Xtion. Given the importance of these tasks in

many applications, several 3D local descriptors have been

recently proposed in literature [6, 11, 15, 18, 28, 20, 22].

3D local descriptors are usually deployed in a matching

framework with the aim of determining point-to-point cor-

respondences between common parts of two different sur-

faces. They are computed on a set of points from both sur-

faces and matched via fast indexing schemes [3]. This set

of points is usually obtained by means of a specific interest

point detector or by means of uniform sampling of the point

cloud. A common aspect among most 3D descriptors is the

definition of a support, i.e. a local neighborhood around the

point being described, usually determined by a sphere cen-

tered on the point. The support is used not only to deter-

mine the points which will be included in the description,

but often also to compute a Local Reference Frame (LRF)

[6, 22, 15, 18, 28].

One of the main disadvantages is using 3D local descrip-

tors is the computational burden associated with most pro-

posals. Indeed, the local description stage represents often

the main bottleneck of application pipelines: this limits the

applicability of this powerful tool, especially in those appli-

cations having real-time constraints. To tackle this problem,

in this paper we explore the optimization of 3D local de-

scriptors by means of general purpose GPU programming.

We propose a GPU optimization aimed at achieving real-

time processing on typical 3D datasets of a state of the art

3D descriptor, SHOT [22]. To this aim, we divide the SHOT

computation (see Fig. 1) in several elementary steps, ana-

lyze their computing time requirements and propose a GPU

optimization of every one of them, which will be outlined

in more details in Section 5. As for the experimental evalu-

ation (Sec. 6), we compare the proposed GPU optimization

with the original CPU implementation to measure the ob-

tained speed-up, and we also show some results of the pro-

posed GPU-SHOT algorithm within a 3D object recognition

pipeline to demonstrate the practical usefulness of our pro-

posal.

2. Related work
The development of computer technology has recently

led to an unprecedented performance increase of Graphi-

cal Processing Units (GPUs). Modern GPUs integrate hun-

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.88

578

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.88

578

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.88

578

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.88

584

0

10

20

30

40

50

RADIUS
NEIGHBOR

SEARCH

LOCAL
REFERENCE

FRAME
HISTOGRAMS NORMAL

COMPUTATION
INTERPOLATION NORMALIZATION INIT

% CPU TIME

Figure 1: The elementary steps involved in the computation of the SHOT descriptor on each 3D point together with their

computational weight (in % of the total CPU execution time) estimated by our profiling.

dreds of processors on the same device, communicating

through low-latency and high bandwidth on-chip networks

and memory hierarchies. Additionally, such scalable com-

putation power and flexibility is delivered at a rather low

cost by commodity GPU hardware. Besides hardware per-

formance improvement, the programmability of GPUs has

also been significantly increased in the last years [12]. Sev-

eral GPU-accelerated image processing and computer vi-

sion libraries are already available in literature [7, 1, 9, 2].

Usually, they offer an OpenCV-like programming interface

to easily port existing OpenCV applications, while taking

advantage of the high level of parallelism and computing

power available on recent GPUs. GPU acceleration has

been applied to several computer vision tasks, such as seg-

mentation [25], feature processing [4, 27], stereo imaging

and vision [29, 30], machine learning and data processing

[17, 8, 31], particle filtering [14], optical flow [16], edge

detection [13].

However, only a few 3D descriptors have been already

ported on GPUs. The Fast Point Feature Histograms

[18] and Point Pair Features [5], for example, have paral-

lelized versions already available in the PCL library [19].

However, almost all the mentioned GPU-accelerated com-

puter vision algorithms use the CUDA programming inter-

face, which strongly limits the portability and flexibility of

the implementation. Though CUDA provides a general-

purpose model for data parallelism as well as low-level ac-

cess to hardware, only OpenCL provides an open, industry-

standard framework which is supported by nearly all pro-

cessor manufacturers including AMD, Intel, and NVIDIA,

as well as others that serve the mobile and embedded com-

puting markets. As a result, applications developed in

OpenCL are theoretically portable across a wide variety of

GPUs and CPUs. This scenario motivated our idea of port-

ing and optimizing the 3D SHOT local descriptor [22] on

GPU-based architecture leveraging an OpenCL implemen-

tation.

3. The SHOT descriptor

The SHOT descriptor [22] encodes a signature of his-

tograms of topological traits. A 3D spherical grid of radius

r, made out of 32 sectors, is centered at the 3D point being

described and oriented according to a unique Local Refer-

ence Frame (LRF) which is invariant with respect to rota-

tions and translations. The computation of the LRF is based

on the EigenValue Decomposition of the distance-weighted

covariance matrix of the points within the 3D grid. For each

of the 32 spherical grid sectors a one-dimensional histogram

with bS +1 bins is computed by accumulating the cosine of

the angle between the normal at the keypoint and the normal

of each of the points belonging to the spherical grid sector.

The final descriptor is then formed by orderly juxtaposing

all histograms together according to the canonical orienta-

tion provided by the LRF, its size being equal to (bS + 1)·32
elements. To better deal with quantization effects, quadri-

linear interpolation is applied to each accumulated element.

Finally, to improve robustness with respect to point density

variations, the descriptor is normalized to unit length. Fig. 1

reports the several steps involved in the computation of the

SHOT descriptor. For more details concerning the SHOT

descriptor we refer the reader to [22]. If color information

is available at each 3D point (e.g. when using RGB-D sen-

sors), an additional set of histograms can be computed [23],

where the L1 norm between the Lab triplet of the keypoint

and that of each point of the spherical grid sector is accu-

mulated in each histogram, quantized into bC +1 bins. The

two sets of histograms, i.e. those associated to shape and

those related to color, are joined together to form the final

color-SHOT descriptor [23].

4. The Fermi GPU Architecture and OpenCL

The Fermi-based GPU used in this work is a Nvidia

Tesla C2075, a two-level shared memory parallel machine

comprising 448 SPs (Stream Processsors) organized in 16

SMs (Streaming Multiprocessors). SMs manage the execu-

579579579585

tion of programs. All instructions are executed in a SIMD

fashion, where one instruction is applied to all threads.

This execution method is called SIMT (Single Instruction

Multiple Threads). All threads in the same group execute

the same instruction or remain idle (different threads

can perform branching and other forms of independent

work). One of the key architectural innovations that greatly

improved both the programmability and performance of

GPU applications is on-chip shared memory. In the Fermi

architecture, each SM has 64 KB of on-chip memory that

can be configured as 48 KB of shared memory with 16

KB of L1 cache or as 16 KB of shared memory with 48

KB of L1 cache. Fermi features also a 768 KB unified L2

cache which provides efficient data sharing across the GPU.

OpenCL (Open Compute Language) is an open indus-

try standard for programming a heterogeneous collection

of CPUs, GPUs and other discrete computing devices or-

ganized into a single platform. OpenCL programming in-

volves running code on two different platforms: a host sys-

tem that relies on one or more CPUs to perform calcula-

tions, and a OpenCL-enabled NVIDIA GPU (the device).

The device works as a coprocessor to the host, so a part of

the application is executed on the host and the rest, typically

calculation intensive, on the device. The OpenCL frame-

work fits the concepts of SP and SM, respectively, with WI

(Work-Item) and WG (Work-Group).

5. GPU optimization

To carry out a GPU optimization of the SHOT descriptor,

we first performed an accurate profiling, aimed at determin-

ing which elementary operations involved in the descriptor

computation are computationally more relevant, as well as

those that are more suited to parallelization. Fig. 1 reports

the average % over the total measured CPU execution time

associated to each elementary step of the SHOT descrip-

tor. The three steps taking the longest time to complete are

the search of the neighbors within the spherical support, the

computation of the LRFs, and the quadrilinear interpola-

tion.

It is worth pointing out that a preliminary task to be

carried out previously to the descriptor computation con-

cerns the setup of the OpenCL structures. In particular,

the OpenCL program is created together with all kernel in-

stances on which it will be executed. In addition, also the

data structures (buffers) aimed at data transferring between

CPU and GPU have to be allocated. However, this over-

head has to be paid only once, at application start-up. We

will now analyze all elementary step related to the SHOT

descriptor, and describe the proposed specific optimization.

�

Figure 2: Spherical support built around the given feature

point used during Radius Neighbor Search.

5.1. Normal computation

The normal computation kernel takes as input a 3D

mesh. The computation of the normal vectors for each point

of the mesh can be divided into two main stages. The first

stage computes the normal vector for each polygon of the

mesh, while the second one calculates the normal vector

for each point. The normal vector at each point is obtained

by weighting, according to the polygon areas, the polygo-

nal normals on all polygons adjacent to each point which

were calculated in the first step. Clearly, the computational

time taken by the entire task is proportional to the num-

ber of points in the input cloud, however it is usually less

than 10% of the overall description time even considering

meshes with huge number of points (Fig. 1).

Our OpenCL implementation of the normal computation

reflects the described steps since this task is split into two

distinct OpenCL kernels: the first computes the polygonal

normals, while the second one computes the normal at each

point. In the first kernel, one OpenCL work-item has been

allocated for each polygon normal calculation. The second

one exploits one OpenCL work-item for the computation of

the normal for each point in the mesh. This implementation

choice has been mainly dictated by the lack of synchroniza-

tion barrier between different work-groups in the OpenCL

API. This becomes particular relevant in this case because,

considering the second step, it is not guaranteed that all the

polygonal normals are being computed by the work-items

in the same work-group. Considering the data structures

deployed in this step of the algorithm, all the information is

stored in the global memory of the GPU.

5.2. Radius Neighbor Search

Given each Feature Point (FP), the radius neighbor

search step determines the index of all points within the

spherical support centered at the given FP (neighbors

points) (see Fig. 2).

The OpenCL kernel implementing the radius neighbor

search exploits a number of work-groups equal to the num-

580580580586

ber of FPs. All points in the cloud, stored in the global

memory, are used by every work-group. Considering each

work-group, the computation is equally partitioned among

the work-items considering the indexes of the points within

the cloud. Each work-item scans the subset of the points

whose index is a multiple of its local id. This way, it is

unlikely that a single work-item will find a big amount of

neighbours, because typically indexes of neighboring points

are numerically close to the index of the central point (FP),

and we obtain a more balanced parallel execution.

In order to perform the point search, two private mem-

ory buffers are allocated in the private memory and assigned

to each work-item. These buffers are used to store tempo-

rary results of each work-item (i.e. index and distance of

the found neighboring points). Additionally, each work-

item updates a variable stored in the shared memory with

its total number of found neighbors. This information is

then used during the last step of the kernel, where all work-

items move in parallel their results from the private to the

global memory. This also avoids using further barrier syn-

chronization or the delegation of all writes to one work-item

only.

A last optimization is obtained by reducing the effective

number of points examined by the radius search task. As

previously said, the index of a point within the spherical

support is typically close to the index of the FP. We can thus

reduce the number of visited points, using only those closest

to the FP’s index (we take a sub-group both before and after

the FP’s index). Using such optimization, a performance

improvement proportional to the size of the cloud has been

obtained.

5.3. Local Reference Frame

This step computes a Local Reference Frame (LRF) for

the current FP, first by computing the 3x3 covariance matrix

of the spherical support centered on the FP, then by comput-

ing the EigenValue Decomposition of the matrix and dis-

ambiguating the sign of the three eigenvalues. Thanks to its

iterative procedure, the covariance matrix computation is a

good candidate for a parallel porting. The input to this sub-

step is represented by the list of the neighboring points ob-

tained in the previous radius search step, since each neigh-

bor will contribute to build up the covariance matrix.

The covariance matrix computation kernel is executed by

a number of work-groups equal to six times the number of

the FPs, since each work-group computes one of the six el-

ements of each covariance matrix (exploiting the symmetric

property of the covariance matrix). Every work-item within

the work-group uses two local memory buffers for tempo-

rary partial data. The final 3x3 matrix, which is stored in the

global memory shared by all work-groups, is generated by

reducing the temporary buffers exploiting Warp Synchro-

nization [26]. This technique avoids to perform the final

sum of the partial results with only one work-item, thus

maximizing performance of the parallel execution.

After the covariance matrix computation, the LRF is

computed by taking two eigenvectors of the matrix as two

reference axes and performing sign disambiguation of each

axis by selecting the hemisphere on which the majority of

neighboring points falls [22]. We remind here that, ac-

cording to the available implementation, in case the den-

sity of the two hemispheres is equivalent, a different disam-

biguation procedure is applied based only on 5 neighboring

points. The third reference axis is then computed as the

cross product of the other two.

A number of work-groups equal to the number of FP is

used for this second substep. The OpenCL implementa-

tion presents two particular design choices: the eigenvec-

tor computation is assigned to a single work-item for each

work-group; the second disambiguation (which is rarely

needed and represents anyway a light computational task)

is performed on the host side. Two structures are allocated

in local memory to store the temporary results of the first

disambiguation procedure applied for the two axes. These

are then reduced with the same warp synchronization tech-

nique used for the covariance matrix computation.

5.4. Histogram Computation

In this stage, a spherical grid of 32 sectors (see Fig. 2)

defines 32 volumes in the 3D space, each one used to com-

pute a histogram. Every point falling within each volume

contributes to the histogram associated to that volume. The

specific contribution brought in by each point is related to its

normal (in case only the 3D shape information is deployed)

or also to the color triplet associated with the point (in case

the color SHOT descriptor is computed, exploiting RGB-D

data). We will refer to these two sources of information,

respectively, as shape channel and color channel. From a

memory footprint viewpoint, there is an important differ-

ence between the two channels, since the number of bins

associated to a color SHOT histogram is usually three times

that associated to a shape-only SHOT histogram. In any

case, the task allocates a work-group for each FP and uses

the maximum number of work-items allowed by the GPU

used. The results are stored in global memory via coalesced

accesses, thus exploiting the high bandwidth provided by

the memory interface.

5.5. Quadrilinear Interpolation

Following the computation of the histograms associated

to the SHOT descriptor, there’s an interpolation stage where

the contribution brought in by each point within the spheri-

cal support is distributed to neighboring histograms along

the 4 domains represented by the azimuth, elevation and

radial spatial directions, and binning domain of each his-

togram (for more details about this stage we refer the reader

581581581587

Figure 3: The three clouds used for the experiments in Sub-

section 6.1: from left to right, Happy Buddha, Dragon,

Mario.

to [22]).

This is the heaviest step in term of computational com-

plexity of the original SHOT implementation. The algo-

rithm has to: find the 3D grid sub-sectors involved in the

redistribution (three interpolations), compute the interpola-

tion weights, add each weight to the correct histogram and

finally compute and add the interpolation weight between

adjacent bins of the current histogram (fourth interpola-

tion). The OpenCL implementation of this step is based on

two mutually-exclusive kernels, i.e. either single-channel

(shape-only SHOT) or double-channel (the color SHOT de-

scriptor) interpolation. The allocated work-groups are as

many as the FPs, with a number of work-items equal to the

warp size. This configuration is due to the amount of private

memory used to store temporary data. A higher number of

work-items will indeed generate issues with the size of the

available memory. Every work-item executes the interpola-

tion of a sub-set of the neighborhood. The final write oper-

ation to global memory is coalescent: all work-items write

consecutive locations of the memory and shift a position af-

ter every operation.

5.6. Normalization

The final step applies L2 normalization to all elements

of the descriptor. In case the color SHOT descriptor is com-

puted, two separate normalization procedures are applied,

one on the shape histograms, another one on the color his-

tograms.

The OpenCL parallelization uses a number of work-

groups equal to the number of FPs. The L2 norms are ob-

tained cooperatively by all group-items storing the partial

results in an area of local memory sized as the work-group

elements. When every item has finished its task, a reduc-

tion is performed with the Warp Synchronization technique.

The final normalization is computed by one work-item for

each element of the descriptor. The final results is stored in

global memory with coalescent accesses.

Table 1: GPU configuration used for the experiments in

Subsection 6.1

Model Name Tesla C2075

of CUDA Cores 448

Frequency of CUDA Cores 1.15 Ghz

Dedicated Memory 6 GB GDDR5

Memory Speed 1.5 Ghz

Memory Interface 384-bit

Memory Bandwidth 144 GB/sec

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

20

25

30

35

40

Feature Points
Sp

ee
d-

Up

Happy Buddha (shape)

Dragon (shape)

Mario (shape+color)

Figure 4: Exp. 1: speed-up yielded by the proposed GPU

optimization over the CPU implementation encompassing

all stages of the SHOT descriptor.

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ti
m

e
(s

)

Feature Points

"Happy Buddha" (shape)

"Dragon" (shape)

"Mario" (shape+color)

Figure 5: Exp. 1: execution times of the proposed GPU

optimization on the three point clouds.

6. Experimental Results

We tested our parallel implementation against the se-

quential implementation of SHOT made available by its au-

thors1. We performed experiments to measure the speed-

up brought in by the proposed parallel implementation, and

experiments that show how the parallel implementation en-

ables real-time description for the task of object detection

in RGB-D data.

1http://vision.deis.unibo.it/SHOT/

582582582588

6.1. GPU vs. CPU evaluation

In this subsection, we present the evaluation of the pro-

posed GPU-based parallel implementation against the orig-

inal CPU-based sequential implementation of the SHOT

descriptor. We provide quantitative results by measuring

the total speed-up, computed as the ratio between the CPU

measured execution time and the GPU one. The specific

GPU configuration employed is reported in Table 1, which

is compared with an Intel Xeon 2.13GHz Quadcore CPU

equipped with 8192 Kb of cache and 20 GB of system

memory. We propose four different experiments, which

are based on 2 point clouds (Happy Buddha, Dragon, com-

posed of, respectively, 32328 and 100250 points) taken

from the Stanford 3D Scanning Repository2 and 1 point

cloud (Mario, 90190 points) taken from the Bologna dataset

[22]. The three point clouds are shown in Fig. 3. On the first

two clouds we compute the only-shape SHOT descriptor,

whereas on the third one we compute the color extension

of the SHOT descriptor [23]. The color SHOT descriptor,

which computes histograms also for the RGB channels, is

computationally more demanding.

In Experiment 1, we have measured the total speed-up

obtained by the proposed GPU optimization over the serial

CPU implementation. Results are shown in Fig. 4 for dif-

ferent numbers of feature points on each point cloud, rang-

ing from 1000 to 10000. These results demonstrate the ef-

fectiveness of the proposed optimization, with speed-ups of

at least 7-8 with 1000 feature points and ranging up to at

least 15 for 10000 feature points. Although the RGB-D

version seems to benefit less from the parallel optimization,

this should instead be ascribed to the smaller size of the

Mario point cloud with respect to the other two. Addition-

ally, Fig. 5 reports the measured execution times of GPU-

SHOT on the three evaluated point clouds, showing that the

time to compute standard sizes of descriptor sets (i.e. be-

tween 1000-5000 descriptors) is always greatly below 1s,

even in the case of color SHOT.

In Experiment 2, instead, we analyzed the GPU vs. CPU

speed-up for each single elementary step associated with the

SHOT descriptor. Results are reported in Fig. 6 and are av-

eraged over 1000 descriptors computed on the Mario point

cloud. The elementary steps that mostly benefit from the

GPU implementation are the radius search, the histogram

binning and the interpolation step. Notably, two of these

three steps, i.e. radius search and interpolation, were two of

the three most computationally intensive steps of the origi-

nal CPU implementation (see Fig. 1).

In Experiment 3 we analyzed how the GPU time con-

cerning each SHOT elementary step varies on different

point clouds and by extracting different amounts of descrip-

tors (i.e. 1000 and 10000). In this experiment we evalu-

2http://graphics.stanford.edu/data/3Dscanrep/

0,3 2,1

37,2

21,1

73,1

46,8

4,5

Init Normal
Computation

Radius
Neighbor

Search

Local
Reference

Frame

Histograms Interpolation Normalization
0

10
20
30
40
50
60
70
80
90

100

Sp
ee

d-
U

p

Figure 6: Exp. 2: GPU vs. CPU speed-ups relative to each

SHOT elementary step averaged on 1000 descriptors com-

puted on the Mario point cloud.

ate two point clouds: Happy Buddha (shape channel) and

Mario (shape and color channels). Results are shown in

Fig. 7. As it can be seen from the pie charts, a higher

number of points being described reduces the relative com-

putational weight of keypoint-independent stages such as

initialization and normal computation which are prominent

when computing a small number of descriptors, while on

the other hand it proportionally increases the relative burden

associated to the keypoint-dependent computational stages.

In particular, LRF computation, radius search and interpo-

lation become the most relevant stages with 10000 feature

points.

Finally, Experiment 4 aims at comparing the GPU and

CPU SHOT implementations not in terms of efficiency but

in terms of accuracy for the goal of descriptor matching.

Hence, a different version of each of the three evaluated

point clouds has been created by randomly rotating them

and by adding on each point white Gaussian noise with σ
equal to 0.3 times the cloud resolution. Each cloud pair has

been then matched by computing the Euclidean distance be-

tween SHOT descriptor sets computed on each cloud. Fig. 8

reports the Precision-vs.-Recall curves yielded by descrip-

tor matching on each cloud pair. The GPU and CPU ver-

sions are basically equivalent in all tested cases, the GPU

version exhibiting even slightly improved performance with

respect to the serial implementation.

6.2. 3D object recognition in clutter with GPU-
SHOT

As an additional experiment, we have plugged in the pro-

posed GPU optimization of the SHOT descriptor in a re-

cently proposed pipeline for RGB-D object recognition in

clutter [24]. The pipeline exploits both depth and color in-

formation coming from a RGB-D sensor and handles mul-

tiple instances of the same model simultaneously present in

the scene. The model library is represented by a set of dif-

ferent RGB-D views taken around the models. As for the

583583583589

40,04

21,5
10,11

11,86

1,07

14,6

0,81

9,35
4,92

21,18

28,64

1,73

31,18

2,99

26,83

35,43
13,63

6,08

1,15

14,17

2,71 6,42
8,46

30,82
14,71

2,08

30,72

6,79
Init

Normal
Computation
Radius Neighbor
Search
Local Reference
Frame
Histograms

Interpolation

Normalization«Happy Buddha», 1000 descs. «Happy Buddha», 10000 descs. «Mario», 1000 descs. «Mario», 10000 descs.

Figure 7: Exp. 3: percentages of total GPU time spent along the several SHOT elementary steps for different clouds (Happy

Buddha, Mario) and different numbers of computed descriptors (1000, 10000).

0,00 0,05 0,10 0,15 0,20 0,25
0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1-Precision

Re
ca

ll

"Happy Buddha" - CPU (shape)

"Dragon" - CPU (shape)

"Mario" - CPU (shape+color)

"Happy Buddha" - GPU (shape)

"Dragon" - GPU (shape)

"Mario" - GPU (shape+color)

Figure 8: Exp. 4: Precision-Recall curves yielded by

matching descriptors over rotated and noisy versions of the

evaluated point clouds using the GPU and the CPU SHOT

implementations.

first step, a set of keypoints are extracted from the scene

and each model view by means of the SURF detector ap-

plied on the color frame; then, they are described by means

of the color-enhanced version of SHOT [23]. After the de-

scription stage, point-to-point correspondences between the

scene keypoints and the views in the model library are at-

tained by means of descriptor matching based on kd-trees.

Next, a 3D Hough Voting stage [21] followed by RANSAC

is applied to cluster together subsets of geometrically coher-

ent keypoints, discarding outliers. For each model, the view

with the highest number of remaining correspondences is

selected as the best view: if this number is higher than a

threshold (set to 5 in our experiment), the 6-Degree-Of-

Freedom (6DOF) pose aligning the best model view to the

scene is computed via Absolute Orientation [10] on the val-

idated correspondences.

The proposed optimization did not result in a loss of ac-

curacy of the pipeline, whose good detection performance

are retained even when deploying GPU-SHOT. Qualitative

samples of the recognition capabilities of the pipeline when

used in conjunction with the proposed parallel implemen-

tation of SHOT are provided in Fig. 9. GPU-SHOT allows

for real-time feature description within such experiment: on

average it describes 1500 SURF keypoints in 180 ms, i.e. at

5.5 frame/s. The overall pipeline still takes some seconds

to go through all steps, mainly because of detected feature

re-projection from 2D to 3D data, which in turn involves

a search for a point nearest neighbor, and the matching of

the scene descriptors with the model library. Both steps call

for the relative GPU optimizations, to obtain a full real-time

pipeline.

7. Conclusion and Future Works
This paper has proposed GPU-SHOT, the GPU optimiza-

tion of the various stages building up the SHOT descrip-

tor. The proposed optimization yields notable speed-ups

with respect to the sequential CPU version, pushing the

use of this descriptor in scenarios based on tight compu-

tational constraints. In addition, several steps analyzed and

optimized by the proposed implementation are common to

other state-of-the-art proposals, i.e. normal computation, ra-

dius neighbor search and covariance matrix computation.

Hence, the proposed optimization could be further deployed

to inspire and enable the parallel optimization of other 3D

descriptors.

References
[1] Y. Allusse, P. Horain, A. Agarwal, and C. Saipriyadarshan.

GpuCV: an opensource GPU-accelerated framework for im-

age processing and computer vision. In ACM Multimedia,

pages 1089–1092, 2008. 2

[2] P. Babenko and M. Shah. MinGPU: a minimum GPU library

for computer vision. Journal of Real-Time Image Processing,

3(4):255–268, 2008. 2

[3] J. Beis and D. Lowe. Shape indexing using approximate

nearest-neighbour search in high dimensional spaces. In

Proc. of Comp. Vision and Pattern Recog. (CVPR), pages

1000–1006, 1997. 1

[4] N. Cornelis and L. Van Gool. Fast scale invariant feature de-

tection and matching on programmable graphics hardware.

In Proc. of Comp. Vision and Pattern Recog. Workshops
(CVPRW), pages 1–8, 2008. 2

[5] B. Drost and S. Ilic. 3D object detection and localization

using multimodal point pair features. In 3DIMPVT, pages

9–16, 2012. 2

584584584590

Figure 9: 3D object recognition in clutter with GPU-SHOT: the two models (bunny, green bounding box, and doll, blue

bounding box) are correctly recognized and localized despite the presence of clutter and occlusions

[6] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik.

Recognizing objects in range data using regional point de-

scriptors. In Proc. of the European Conference on Computer
Vision (ECCV), volume 3, pages 224–237, 2004. 1

[7] J. Fung and S. Mann. OpenVIDIA: parallel GPU computer

vision. In ACM Multimedia, pages 849–852, 2005. 2

[8] V. Garcia, E. Debreuve, and M. Barlaud. Fast k nearest

neighbor search using GPU. In Proc. of Comp. Vision and
Pattern Recog. Workshops (CVPRW), pages 1–6, 2008. 2

[9] GPU4Vision project. http://gpu4vision.icg.
tugraz.at. Accessed: 2013-04-29. 2

[10] B. Horn. Closed-form solution of absolute orientation using

unit quaternions. J. Optical Soc. of America A, 4(4), 1987. 7

[11] A. Johnson and M. Hebert. Using spin images for efficient

object recognition in cluttered 3D scenes. IEEE Trans. Pat-
tern Anal. Mach. Intell., 21(5):433–449, 1999. 1

[12] Khronos OpenCL Working Group. The OpenCL Spec-

ification, version 1.0.29. http://khronos.org/
registry/cl/specs/opencl-1.0.29.pdf. Ac-

cessed: 2013-04-29. 2

[13] Y. Luo and R. Duraiswami. Canny edge detection on

NVIDIA CUDA. In Proc. of Comp. Vision and Pattern
Recog. Workshops (CVPRW), 2008. 2

[14] O. Mateo Lozano and K. Otsuka. Real-time visual tracker

by stream processing. Journal of Signal Processing Systems,

57:285–295, 2009. 2

[15] A. S. Mian, M. Bennamoun, and R. A. Owens. On the re-

peatability and quality of keypoints for local feature-based

3D object retrieval from cluttered scenes. Int. J. Comput.
Vision, 89(2-3):348–361, 2010. 1

[16] Y. Mizukami and K. Tadamura. Optical flow computation

on compute unified device architecture. In Image Analysis
and Processing (ICIAP). 14th International Conference on,

pages 179–184, Sept. 2

[17] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-

throughput screening approach to discovering good forms of

biologically inspired visual representation. PLoS Comput
Biol, 5(11):e1000579, 2009. 2

[18] R. Rusu, N. Blodow, and M. Beetz. Fast point feature his-

tograms (FPFH) for 3D registration. In Proc. of the Int. Conf.
on Robotics and Automation (ICRA), 2009. 1, 2

[19] R. Rusu and S. Cousins. 3D is here: Point Cloud Library

(PCL). In Proc. Int. Conf. Robot. Autom. (ICRA), 2011. 2

[20] J. Sun, M. Ovsjanikov, and L. Guibas. A concise and prov-

ably informative multi-scale signature based on heat diffu-

sion. In Proc. Symp. Geom. Proc., 2009. 1

[21] F. Tombari and L. Di Stefano. Object recognition in 3D

scenes with occlusions and clutter by Hough voting. In

Proc. Pacific-rim Symposium on Image and Video Technol-
ogy (PSIVT), 2010. 7

[22] F. Tombari, S. Salti, and L. Di Stefano. Unique signatures

of histograms for local surface description. In Proc. of the
European Conf. on Comp. Vision (ECCV), 2010. 1, 2, 4, 5, 6

[23] F. Tombari, S. Salti, and L. Di Stefano. A combined

intensity-shape descriptor for texture-enhanced 3D feature

matching. In Proc. of the Int. Conf. on Image Processing
(ICIP), 2011. 1, 2, 6, 7

[24] F. Tombari, S. Salti, and L. Di Stefano. RGB-D object recog-

nition and localization with clutter and occlusions. In Proc.
RGB-D Workshop on 3D Perception in Robotics in conj. with
euRobotics Forum, 2011. 6

[25] V. Vineet and P. J. Narayanan. CUDA cuts: Fast graph cuts

on the GPU. In Proc. of Comp. Vision and Pattern Recog.
Workshops (CVPRW), volume 0, Los Alamitos, CA, USA,

2008. IEEE. 2

[26] OpenCL programming for the CUDA architec-

ture. http://www.nvidia.com/content/
cudazone/download/OpenCL/NVIDIA_OpenCL_
ProgrammingOverview.pdf. 4

[27] C. Zach, D. Gallup, and J. M. Frahm. Fast gain-adaptive KLT

tracking on the GPU. In Proc. of Comp. Vision and Pattern
Recog. Workshops (CVPRW), 2008. 2

[28] A. Zaharescu, E. Boyer, and R. Horaud. Keypoints and lo-

cal descriptors of scalar functions on 2D manifolds. Int. J.
Comput. Vision, 100(1):78–98, 2012. 1

[29] K. Zhang, J. Lu, G. Lafruit, R. Lauwereins, and L. Van Gool.

Real-time accurate stereo with bitwise fast voting on CUDA.

In Proc. of Int. Conf. on Comp. Vision Workshops (ICCVW),
pages 794–800, 2009. 2

[30] Y. Zhao and G. Taubin. Real-time stereo on GPGPU using

progressive multi-resolution adaptive windows. Image Vi-
sion Comput., 29(6):420–432, 2011. 2

[31] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-

tree construction on graphics hardware. In ACM SIGGRAPH
Asia 2008 papers, pages 126:1–126:11, 2008. 2

585585585591

