

 Abstract

This paper describes an architecture framework using
heterogeneous hardware accelerators for embedded vision
applications. This approach leverages the recent single-
chip heterogeneous FPGAs that combine powerful
multicore processors with extensive programmable gate
array fabric on the same die. We present a framework
using an extensive library of pipelined real time vision
hardware accelerators and a service-based software
architecture. This field-proven system design approach
provides embedded vision developers with a powerful
software abstraction layer for rapidly and efficiently
integrating any of hardware accelerators for applications
such as image stabilization, moving target indication,
contrast normalization enhancement, and others. The
framework allows the service-based software to take
advantage of the hardware acceleration blocks available
and perform the remainder of the processing in software.
As performance requirements increase, more hardware
acceleration can be added to the FPGA fabric, thus
offloading the main processor.

1. Introduction
It has been long recognized within the embedded vision

community that heterogeneous computing systems present
the best solution to address the processing needs for
applications powered by computer vision algorithms.
There is a considerable level of data and pipeline
parallelism at the pixel and feature level, combined with
task level parallelism at the object classification level [2].
Companies have provided dedicated ASICs [5], as well as
FPGA based processing [9][10] to solve a range of vision
problems, including real-time stereo processing [6],
optical flow computation[7], and object detection [8]. The
challenge for heterogeneous processors, and in general,
multicore solutions, is the difficulty in programming the
separate cores or accelerators to best match the algorithm
flow, to meet memory requirements, and to choreograph
the movement of data with computation, in order to meet
the desired efficiency for an embedded vision system.

This paper introduces a new embedded vision services
framework that incorporates a number of dedicated

hardware acceleration modules along with a service-based
software architecture. The framework takes full advantage
of new reconfigurable SoCs (System-on-Chip) with
hardened processor cores and reconfigurable fabric. Our
framework is highly adaptable, enabling existing hardware
modules to be upgraded, with a “plug-and-play” capability
in the provided software architecture. We have
successfully implemented this framework on a Xilinx
Zynq® FPGA [11], running our software on its dual ARM
A9 processors and our dedicated hardware on its logic
fabric.

1.1. Heterogeneous Hardware Accelerators
In this paper, we present a portfolio of specialized

hardware accelerators, each implementing a particular
computer vision function. These modules are optimized
building blocks connected together by the user application
at run time, thus forming a processing network for one or
more video streams (as multiple parallel networks may
also be formed). A video DMA engine with a built-in
synchronization mechanism reads and writes multiple
streams of data to external memory, while special purpose
modules interface with multiple cameras and output
displays.

The hardware accelerators are derived from the
Acadia® Real Time Vision processor [3,4], which
includes modules such as a three channel image fusion,
local area-based image contrast normalization, image
warpers for alignment, image stabilization, object
detection for panning cameras, and generation of live
video mosaics. The hardware accelerators operate on a
multi-resolution or pyramid representation of the image of
different resolutions generated by smoothing and
subsampling of the image using wavelet basis functions
[1]. At the lower resolution, textural information has been
removed from the image such that analysis can be
performed on coarse salient features of the object being
analyzed. Processing at different resolution scales reduces
processing workload and enhances the robustness of many
algorithms, by analyzing coarse data first at low
resolution, and then refining the analysis at higher
resolutions. This minimizes the search space and localized
correlation errors if analysis were performed only at high

An Embedded Vision Services Framework for Heterogeneous Accelerators

Eduardo Gudis, Pullan Lu, David Berends, Kevin Kaighn, Gooitzen van der Wal, Gregory

Buchanan, Sek Chai, Michael Piacentino
SRI International

201 Washington Rd, Princeton NJ 08543
{first.last}@sri.com

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.90

592

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.90

592

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.90

592

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.90

598

resolution.

1.2. Software Framework
The hardware accelerators are managed via constructs

called video devices, each of which implements a specific
defined function. All video devices use the same
programming interface for status and control; additional
interfaces may be added for device specific functions.

Video devices can be connected to create more complex
functions, referred to as a video network. Typically one
video device in the network is designated to signal the
software when its video network completes its function.
Video networks are typically established at initialization;
their acceleration is based upon three simple interactions
with the software:
• The Starting of the video network
• The Waiting for the video network to complete
• The Delivering of the result (e.g. a processed image) to

another video network or software function for further
processing

As programming video devices directly can be rather
cumbersome, we developed a Vision Service Framework
to shield the device programming details from the
applications developer via vision services, a set of C++
classes. Existing Vision Services classes include many
commonly used imaging functions such as stabilization
and target tracking. Developers may also add their own
Vision Services based upon standard templates.

2. Framework Overview

2.1. Vision IP Hardware Architecture
The hardware component of the adaptable computer

vision framework consists of a collection of video devices
interconnected via a crosspoint switch (Figure 1). VDMA
devices read and write video frames from/to external
memory into video streams, while VIN devices interface
with external cameras and can accept multiple video
formats. VOUT devices interface with external display
devices such as HDMI/DVI. Core processing modules
(VIP) connect to a comprehensive crosspoint switch,
allowing the creation of multi-device networks and
multiple networks running in parallel. This level of
parallelism thus enables complex high performance
computer vision algorithms with very low latencies.

One key feature of this architecture is the unified
memory, which allows vision acceleration devices to share
memory with the ARM® processor core. This is achieved
by using the High-Performance port of the Xilinx Zynq
Processor System to share its memory with the
programmable logic component of the FPGA. This shared
memory structure enables high-level vision algorithms that
are better executed by the ARM than by the logic fabric,

but which need the results of previous calculations
performed by the hardware acceleration.

2.2. Vision Service Framework
The Vision Service Framework is a middleware that

encapsulates the complexity of programming hardware
devices, provides common functionalities, allows custom
implementations, and implements a steady application
programming interface. It is developed using the following
priorities:
• Rapid development of accelerated applications
• Secure reusability, portability, and expandability
• Flexible customization

Figure 2 shows its functional block diagram.
The Vision Service Framework currently supports up to

128 video devices. Each instantiated video device
occupies a slot of thirty-two 32-bit addressable registers.
Each video device is specified using a text file to describe
which FPGA slots have instantiated devices and of what
type. Video device drivers are created accordingly for all
specified video devices.

Video device drivers are implemented as C++ classes

deriving from the base class VideoDevice. This is an
abstract class defining the common API functions that all
video device drivers must implement. Figure 3 shows the

Figure 2 Vision Service Framework

Figure 1: Vision IP Hardware Architecture

593593593599

class hierarchy of some existing device drivers.
Except to support new video devices, the video device

driver code is rarely changed. If Linux is used, a kernel
module is needed to create device nodes for available
video devices.

2.3. Vision Service Implementation
A vision service is a C++ class that implements a

defined image-process function. Depending on its
function, a vision service may use video devices for
acceleration. Most built-in vision services are accelerated.
A fundamental difference between a video device and a
vision service is that the I/O of a video device is image
pixels on the wire and the I/O of a vision service is an
image buffer in memory.

The main objective of a vision service is to provide
reusable building blocks for rapid development of image
applications. Vision services are parameterized to support
different requirements. For example, without changing
code, a vision service can support different image sizes
and formats by setting its parameters properly. Parameters
may be set via XML configuration files at initialization or
API functions at run-time.

As shown in Figure 4, all vision services are derived
from the BaseService and must implement the common set
of API functions defined therein. A vision service can
enclose other vision services. For example the StabService
in Figure 4 is only a container class providing
Stabilization interfaces; the actual work is done by
PryService (generates image pyramids), MeService
(estimate motion), and WarpService (warps image). In a
tracker application, the same PyrService and MeService
may be contained under a TrackService. Custom services
such as the XyzService can be added to address special
needs.

Most image applications use significant memory to
store images. Utility functions are provided to create pools
of image buffers at initialization. All available devices are
initially kept in the video device pool. Utility functions are
provided for vision services to obtain and release video
devices. For applications that have dedicated video
devices for all functions, vision services can be set to keep
the obtained video devices for the entire time. Some
applications share video devices between functions. In this

case vision services can be set to obtain and release device
when needed.

2.4. Application Development
Theoretically writing an application with Embedded

Vision Service Framework is like building Legos R : one
first decides what to build, then one chooses the
appropriate building blocks (vision services), and finally,
one puts them together. We use the MyApplication
example in Figure 5 to describe some key characteristics
of the Vision Service Framework.

• What to build:

MyApplication has two video inputs, A and B. The
output of A is rendered to the left half of the display; and
the output of B is on the right. At any given time, one of
the channels should stabilize the video.
• Choose the building blocks:

For each channel, choose a VinService to receive and
correct input frames and a VoutService to render output to
designated display area. Only one instance of StabService
is used for the channel requiring stabilization.
• Put them together:

Write MyApplication to setup the video path A as
(1,2,3) to show pass through A; and the video path B as
(6,7,8,9) to show stabilized B. Upon user’s request,
reconstruct at run-time the video path A as (1,4,5,3) to
show stabilized A; and the video path B as (6,10,9) to
show pass through B.

Using Embedded Vision Service Framework,
MyApplication achieved the following:
• Rapid Development: VinService, VoutService, and

StabService are included in the framework. The only

Figure 4 Built-in Vision Services

Figure 5 MyApplication Example

Figure 3 Video Device Driver Hierarchy

VideoDevice

XPointDevice

Vin Fsp Wrp Ovl

Blwrp Bqwrp Hemiwrp

594594594600

new code is MyApplication.
• Deterministic low latency: each channel has its own

dedicated video devices running independently.
Latency is low and constant.

• Reusability: all vision services may be reused in other
applications.

• Expandability: additional functions may be added in the
pipeline by inserting new vision services to individual
video path.

2.5. Achieving Low Latency in Linux
Since video device networks run independently, the key

to minimizing latency in a pipelined processing
architecture is to start each video network as soon as its
input is ready. Recall that since the I/O of a video device
is pixels, the input to the next video network can be ready
before current video network completes. With careful
timing design, a video network can be programmed to
generate an interrupt after a certain number of lines are
processed instead of after the last line is processed. In
either case, the sooner the software that starts next video
network gets started, the shorter the latency will be.

Linux divides run-time environment into user and
kernel spaces. Video device drivers shown in Figure 3 are
in the user space. A kernel module is required for Linux to
create device nodes, handle device interrupts, and wakeup
waiting threads as shown in Figure 6.

When an interrupt occurs, Linux suspends current

running process and gives control to the ISR (Interrupt
Service Routine), then the pending kernel threads, and at
last the pending user threads.

Vision services run in the user space. The delay
between an interrupt occurs and the waiting vision service
gets executed varies upon CPU utilization and application
complexity. For applications with stringent latency, the
kernel module provides hooks for vision services to install
functions to execute in the scope of IRQ and/or kernel
threads.

3. Applications
We briefly describe several computer vision

applications that have been ported to the framework. Each
application is a real time, low latency computer vision
process of a relatively complex nature.

3.1. Video Stabilization (STAB)
Video stabilization is one of the fundamental

preprocessing steps in image processing. It is used to align
successive video frames captured from a moving or
shaking platform, or to match two or more images of the
same scene taken at different times, from different
viewpoints, and/or from different sensors. This process is
based on the registration, or alignment, of matching pixels
between video frames. The SRI patented pyramid-based
video registration application provides highly accurate
video registration and stabilization; its algorithm consists
of pyramid generation, image correlation and motion
estimation. The result of the frame-to-frame motion is
used in a warping function to render the display. Figure 7
shows an example for pre and post image stabilization.

The video frames to be stabilized are fed into the

registration process. The pyramid generation consists of
multi-scale multi-level Laplacian images. Each Laplacian
image contains contrast features of the scaled original
image. The correlation and motion estimation block
computes the motion or 2-D displacement between the
incoming frame I(t) and a reference frame from an earlier
time I(t-�t). The motion estimation algorithm estimates
the motion successively over a dozen iterations, each time
yielding a more precise answer, until the registration of the
pixels reaches the accuracy of up to a tenth of a pixel.

Many different applications beyond basic stabilization
are enabled through the use of image registration. Once
frames are aligned to a fraction of a pixel, they can be
further manipulated to support other vision plug-ins,
including video enhancement, mosaic construction, video
fusion, change and motion detection, image compression,
and 3D depth mapping from stereo imagery.

3.2. Moving Target Indication (MTI)
The detection of moving objects from a fixed camera is

performed by simple arithmetic operations and filtering of
the video image. The simplest method for detecting
independently moving objects is to subtract one frame
from a previous frame. The observed change indicates
where the objects have moved in the scene. However, due
to factors such as noise and changes in lighting, some
filtering is required to extract only the movers and avoid
spurious detections. The algorithm implemented for the

Figure 7 Stabilization Example

Figure 6 Linux Kernel Module

595595595601

pyramid-based MTI application uses a Laplacian
representation for the images and computes change
between the adjacent frames.

The change image is binarized by setting a threshold on
the difference term at each pixel, which is computed in a
5x5 window at each pixel in a Laplacian image. This
binary image is a convenient representation for the
“blob tracker.” Once independently moving objects have
been detected in the scene, they can be tracked over time.

Blob tracking, so named because it uses input images
that have binary change mask (blobs), is done as follows:
• Compute the change detection between the adjacent

frames.
• Perform connected components analysis on the detected

change regions.
• Extract blobs from the connect components.
• Merge blobs to remove spurious blobs belonging to a

single moving object.
Additionally a tripwire detection feature, allows the

user to define an arbitrarily positioned “tripwire” across
the camera field of view. Whenever a tracked object
crosses or intersects with the tripwire an alarm event is
triggered.

3.3. Contrast Normalization (CN)
The Contrast Normalization application provides

dramatic dynamic rage enhancement of video images as
shown in Figure 8. Advanced imaging sensors used by the
military often have a dynamic range that far exceeds that
of displays used to present these images to human
observers. The Contrast Normalization method can be
used for compressing the overall dynamic range of such
images while enhancing the visibility of salient pattern
information. The method operates in a multiresolution
Laplacian pyramid (or wavelet) domain. It has the effect
of adjusting the contrast of individual features within the
image in order to optimize their visibility. As such it
differs from methods commonly used today, such as
window and scale or histogram normalization, which
operate directly on pixel intensity values without regard
for image pattern structure.

Contrast normalization is motivated by the observation
that there is an optimal contrast for the visibility of
features in an image. When contrast is significantly below
this optimum, features become difficult to see, or can be
masked by nearby higher contrast features. Contrast
normalization seeks to adjust the contrast of features in a
source image towards the optimal. Features that are below
optimal are increased in contrast. Features that are above
the optimal are decreased in contrast.

4. Results
The three applications described in section 3 were

implemented on two Xilinx Zynq platforms: the Xilinx
ZC702 evaluation board (Figure 9) that has the 7020-1
part, and a custom board that has the 7045-1 board. The
applications running on the ZC702 board were
monochrome because of the limited resources available.
Using the 7045 larger FPGA part, we were able to run
both Stabilization and Contrast Normalization
simultaneously at 60Hz as well as numerous other image
manipulation functions.

The ZC702 FPGA video processing clock rate was

100MHz at the slow speed grade. That system used a
single bank of DDR3-1066 shared between the video
acceleration hardware modules and the ARM processor.
The 7045 video processing clock rate was 142MHz using
the slow speed grade part. The 7045 system used a dual
memory configuration, a DDR3-1066 for the ARM
processor and a DDR3-1600 for the hardware acceleration
modules allowing much higher performance. The ARM
processor was running at 800MHz on both platforms.

TABLE 1: APPLICATION IMAGE RESOLUTION AND FRAME RATE

The applications implemented used a variety of

hardware acceleration modules from the Acadia Vision IP
portfolio plus the service based framework running Linux
on the ARM. It also included a camera input and an HDMI
display output. Table 1 describes the image resolution and
frame rate of various applications.

Platform Application Image Resolution Frame Rate
ZC702 STAB 640 x 480 30
ZC702 MTI 1280 x 1024 15
ZC702 CN 1280 x 1024 30
7045 STAB + CN 1280 x 1024 60

Figure 9 ZC702 Evaluation Board

Figure 8 Contrast Normalization Example

596596596602

Table 2 shows the resource utilization required to run
the different applications. Note that the resources for each
application are highly dependent on the desired
performance, frame rate and video resolution. The STAB
resources are also highly dependent on the type of camera
movement and distortion correction.

TABLE 2: RESOURCE UTILIZATION

APP ARM FFs LUTS DSP BRAM
STAB <25% 25K-33K 20K-32K 80-140 50-140
MTI <35% 11K-13K 10K-12K 30-45 15-30
CN < 5% 25K-32K 22K-27K 40-50 40-90

The STAB application can be configured to use from

38% to 60% of the LUTs, and from 19% to 50% of the
BRAM of the Xilinx 7020 Zynq FPGA. The range of
utilization values represents the configurability of the
hardware accelerator to meet the different requirements of
the application (e.g. type of motion, resolution, etc.). The
MTI relies mostly on the ARM, using from 19% to 22% of
the LUTs. The CN application uses very little ARM
processing, relying mostly on the hardware acceleration; it
uses from 41% to 51% of LUTs on the 7020 FPGA. All
three applications could be combined to run
simultaneously at maximum performance on the larger
7045 FPGA, and would use up to 60% of its ARM, 32%
of its LUTs and 23% of its BRAM, thus leaving
significant resources available for other applications. The
resource utilization is much lower for lower resolution
cameras or translation/scale only stabilization.

The framework developed for this heterogeneous
system is adaptable to the unique requirements of the
desired system. A smaller FPGA can be used when a low
power, low cost, single application is required. The
framework allows the service-based software to take
advantage of the hardware acceleration blocks available
and perform the rest of the processing in the ARM. As
performance requirements increase, more hardware
acceleration can be added to the FPGA fabric, thus
offloading the ARM processor. The framework also
allows multiple applications to run simultaneously, taking
advantage of the parallel nature of the hardware/software
architecture. In the case of high resolution high frame rate
processing (e.g. 1080p60 HDTV), the framework can be
adapted for a dual external memory structure by
populating the FPGA and the service-based firmware with
the appropriate modules.

5. Conclusion
This paper presented an adaptable computer vision

framework for heterogeneous FPGA architectures
consisting of hardware-based Vision IP modules and a
service-based software architecture running on Linux. The
hardware processing component is built from a library of
various hardware modules interconnected by a

configurable crosspoint switch and a DMA engine that
sends and receives synchronized video to and from
memory. The software piece run on the ARM processor
core and is composed of device drivers and vision
services, which are stitched together to form vision
applications.

We described three applications built under this
framework: stabilization, moving target indication, and
contrast normalization. They were implemented on a low
power, low cost, high-performance platform that clearly
demonstrated the adaptability of the framework. This
framework, however, is not limited only to these three
applications in computer vision. We plan to develop many
more applications running on heterogeneous FPGAs
including from stereo vision, high dynamic range, feature
tracking, object recognition, visual navigation, and
augmented reality among many others.

References
[1] P.J. Burt and E. H. Adelson. The Laplacian pyramid as a

compact image code. Trans. Comm., 31(3):532-540, 1983.
[2] A.Lopez-Lagunas, S. Chai, “Streaming Data Movement for

Real-Time Image Analysis,” Journal of Signal Processing
Systems, vol. 62, no. 1, pp.29-42

[3] G. van der Wal, “Technical Overview of the Sarnoff Acadia
II Vision Processor,” SPIE Defense, Security, and Sensing
Conference, Subconference 7710: Multisensor, Multisource
Information Fusion: Arch., Algs, & Apps, Orlando, April
2010, Proc. SPIE 7710, (2010).

[4] G. van der Wal, et. al., “Acadia II: A Heterogeneous Many-
Core SoC for Multi-Resolution Embedded Vision
Processing Systems. Workshop on SoC Architecture,
Accelerators & Workloads, San Antonio, Texas, Feb 2011.

[5] Dagan, Erez, et al. "Forward collision warning with a single
camera." Intelligent Vehicles Symposium, 2004 IEEE. IEEE,
2004.

[6] Isakova, Nilufar, S. Basak, and A. C. Sonmez. "FPGA
design and implementation of a real-time stereo vision
system." Innovations in Intelligent Systems and
Applications (INISTA), 2012 Intl Symp on. IEEE, 2012.

[7] Gultekin, Gokhan Koray, and Afsar Saranli. "An FPGA
Based High Performance Optical Flow Hardware Design
for Computer Vision Applications." Microprocessors and
Microsystems (2013).

[8] Brousseau, Braiden, and Jonathan Rose. "An energy-
efficient, fast FPGA hardware architecture for OpenCV-
Compatible object detection." Field-Programmable
Technology (FPT), 2012 Intl Conf on. IEEE, 2012.

[9] Benkrid, Khaled, Danny Crookes, and Abdsamad Benkrid.
"Towards a general framework for FPGA based image
processing using hardware skeletons." Parallel Computing
28.7 (2002): 1141-1154.

[10] Lim, Yoong Kang, Lindsay Kleeman, and Tom Drummond.
"Algorithmic methodologies for FPGA-based vision."
Machine Vision and Applications (2012): 1-15.

[11] Xilinx, Inc., “Zynq-7000 Extensible Processing Platform,”
http://www.xilinx.com/zynq

597597597603

