
 

 Abstract 
 

This paper describes an architecture framework using 
heterogeneous hardware accelerators for embedded vision 
applications. This approach leverages the recent single-
chip heterogeneous FPGAs that combine powerful 
multicore processors with extensive programmable gate 
array fabric on the same die. We present a framework 
using an extensive library of pipelined real time vision 
hardware accelerators and a service-based software 
architecture. This field-proven system design approach 
provides embedded vision developers with a powerful 
software abstraction layer for rapidly and efficiently 
integrating any of hardware accelerators for applications 
such as image stabilization, moving target indication, 
contrast normalization enhancement, and others. The 
framework allows the service-based software to take 
advantage of the hardware acceleration blocks available 
and perform the remainder of the processing in software. 
As performance requirements increase, more hardware 
acceleration can be added to the FPGA fabric, thus 
offloading the main processor.  

1. Introduction 
It has been long recognized within the embedded vision 

community that heterogeneous computing systems present 
the best solution to address the processing needs for 
applications powered by computer vision algorithms. 
There is a considerable level of data and pipeline 
parallelism at the pixel and feature level, combined with 
task level parallelism at the object classification level [2]. 
Companies have provided dedicated ASICs [5], as well as 
FPGA based processing [9][10] to solve a range of vision 
problems, including real-time stereo processing [6], 
optical flow computation[7], and object detection [8]. The 
challenge for heterogeneous processors, and in general, 
multicore solutions, is the difficulty in programming the 
separate cores or accelerators to best match the algorithm 
flow, to meet memory requirements, and to choreograph 
the movement of data with computation, in order to meet 
the desired efficiency for an embedded vision system.  

This paper introduces a new embedded vision services 
framework that incorporates a number of dedicated 

hardware acceleration modules along with a service-based 
software architecture. The framework takes full advantage 
of new reconfigurable SoCs (System-on-Chip) with 
hardened processor cores and reconfigurable fabric. Our 
framework is highly adaptable, enabling existing hardware 
modules to be upgraded, with a “plug-and-play” capability 
in the provided software architecture. We have 
successfully implemented this framework on a Xilinx 
Zynq® FPGA [11], running our software on its dual ARM 
A9 processors and our dedicated hardware on its logic 
fabric.  

1.1. Heterogeneous Hardware Accelerators  
In this paper, we present a portfolio of specialized 

hardware accelerators, each implementing a particular 
computer vision function. These modules are optimized 
building blocks connected together by the user application 
at run time, thus forming a processing network for one or 
more video streams (as multiple parallel networks may 
also be formed). A video DMA engine with a built-in 
synchronization mechanism reads and writes multiple 
streams of data to external memory, while special purpose 
modules interface with multiple cameras and output 
displays. 

The hardware accelerators are derived from the 
Acadia® Real Time Vision processor [3,4], which 
includes modules such as a three channel image fusion, 
local area-based image contrast normalization, image 
warpers for alignment, image stabilization, object 
detection for panning cameras, and generation of live 
video mosaics. The hardware accelerators operate on a 
multi-resolution or pyramid representation of the image of 
different resolutions generated by smoothing and 
subsampling of the image using wavelet basis functions 
[1]. At the lower resolution, textural information has been 
removed from the image such that analysis can be 
performed on coarse salient features of the object being 
analyzed. Processing at different resolution scales reduces 
processing workload and enhances the robustness of many 
algorithms, by analyzing coarse data first at low 
resolution, and then refining the analysis at higher 
resolutions. This minimizes the search space and localized 
correlation errors if analysis were performed only at high 
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resolution. 

1.2. Software Framework 
The hardware accelerators are managed via constructs 

called video devices, each of which implements a specific 
defined function. All video devices use the same 
programming interface for status and control; additional 
interfaces may be added for device specific functions. 

Video devices can be connected to create more complex 
functions, referred to as a video network. Typically one 
video device in the network is designated to signal the 
software when its video network completes its function. 
Video networks are typically established at initialization; 
their acceleration is based upon three simple interactions 
with the software: 
• The Starting of the video network 
• The Waiting for the video network to complete 
• The Delivering of the result (e.g. a processed image) to 

another video network or software function for further 
processing 

As programming video devices directly can be rather 
cumbersome, we developed a Vision Service Framework 
to shield the device programming details from the 
applications developer via vision services, a set of C++ 
classes. Existing Vision Services classes include many 
commonly used imaging functions such as stabilization 
and target tracking. Developers may also add their own 
Vision Services based upon standard templates.  

2. Framework Overview 

2.1. Vision IP Hardware Architecture 
The hardware component of the adaptable computer 

vision framework consists of a collection of video devices 
interconnected via a crosspoint switch (Figure 1). VDMA 
devices read and write video frames from/to external 
memory into video streams, while VIN devices interface 
with external cameras and can accept multiple video 
formats. VOUT devices interface with external display 
devices such as HDMI/DVI. Core processing modules 
(VIP) connect to a comprehensive crosspoint switch, 
allowing the creation of multi-device networks and 
multiple networks running in parallel. This level of 
parallelism thus enables complex high performance 
computer vision algorithms with very low latencies. 

One key feature of this architecture is the unified 
memory, which allows vision acceleration devices to share 
memory with the ARM® processor core. This is achieved 
by using the High-Performance port of the Xilinx Zynq 
Processor System to share its memory with the 
programmable logic component of the FPGA. This shared 
memory structure enables high-level vision algorithms that 
are better executed by the ARM than by the logic fabric, 

but which need the results of previous calculations 
performed by the hardware acceleration. 

2.2. Vision Service Framework 
The Vision Service Framework is a middleware that 

encapsulates the complexity of programming hardware 
devices, provides common functionalities, allows custom 
implementations, and implements a steady application 
programming interface. It is developed using the following 
priorities: 
• Rapid development of accelerated applications 
• Secure reusability, portability, and expandability 
• Flexible customization 

Figure 2 shows its functional block diagram. 
The Vision Service Framework currently supports up to 

128 video devices. Each instantiated video device 
occupies a slot of thirty-two 32-bit addressable registers. 
Each video device is specified using a text file to describe 
which FPGA slots have instantiated devices and of what 
type. Video device drivers are created accordingly for all 
specified video devices. 

 
Video device drivers are implemented as C++ classes 

deriving from the base class VideoDevice. This is an 
abstract class defining the common API functions that all 
video device drivers must implement. Figure 3 shows the 

Figure 2 Vision Service Framework 

Figure 1: Vision IP Hardware Architecture
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class hierarchy of some existing device drivers. 
Except to support new video devices, the video device 

driver code is rarely changed. If Linux is used, a kernel 
module is needed to create device nodes for available 
video devices.  

 

2.3. Vision Service Implementation 
A vision service is a C++ class that implements a 

defined image-process function. Depending on its 
function, a vision service may use video devices for 
acceleration. Most built-in vision services are accelerated. 
A fundamental difference between a video device and a 
vision service is that the I/O of a video device is image 
pixels on the wire and the I/O of a vision service is an 
image buffer in memory. 

The main objective of a vision service is to provide 
reusable building blocks for rapid development of image 
applications. Vision services are parameterized to support 
different requirements. For example, without changing 
code, a vision service can support different image sizes 
and formats by setting its parameters properly. Parameters 
may be set via XML configuration files at initialization or 
API functions at run-time. 

As shown in Figure 4, all vision services are derived 
from the BaseService and must implement the common set 
of API functions defined therein. A vision service can 
enclose other vision services. For example the StabService 
in Figure 4 is only a container class providing 
Stabilization interfaces;  the actual work is done by 
PryService (generates image pyramids), MeService 
(estimate motion), and WarpService (warps image). In a 
tracker application, the same PyrService  and MeService 
may be contained under a TrackService. Custom services 
such as the XyzService can be added to address special 
needs. 

Most image applications use significant memory to 
store images. Utility functions are provided to create pools 
of image buffers at initialization. All available devices are 
initially kept in the video device pool. Utility functions are 
provided for vision services to obtain and release video 
devices. For applications that have dedicated video 
devices for all functions, vision services can be set to keep 
the obtained video devices for the entire time. Some 
applications share video devices between functions. In this 

case vision services can be set to obtain and release device 
when needed. 

 

2.4. Application Development 
Theoretically writing an application with Embedded 

Vision Service Framework is like building Legos R : one 
first decides what to build, then one chooses the 
appropriate building blocks (vision services), and finally, 
one puts them together. We use the MyApplication 
example in Figure 5 to describe some key characteristics 
of the Vision Service Framework. 
 

 
• What to build: 

MyApplication has two video inputs, A and B. The 
output of A is rendered to the left half of the display; and 
the output of B is on the right. At any given time, one of 
the channels should stabilize the video. 
• Choose the building blocks: 

For each channel, choose a VinService to receive and 
correct input frames and a VoutService to render output to 
designated display area. Only one instance of StabService 
is used for the channel requiring stabilization. 
• Put them together: 

Write MyApplication to setup the video path A as 
(1,2,3) to show pass through A; and the video path B as 
(6,7,8,9) to show stabilized B. Upon user’s request, 
reconstruct at run-time the video path A as (1,4,5,3)  to 
show stabilized A; and the video path B as (6,10,9) to 
show pass through B. 

Using Embedded Vision Service Framework, 
MyApplication achieved the following: 
• Rapid Development: VinService, VoutService, and 

StabService are included in the framework. The only 

Figure 4 Built-in Vision Services 

Figure 5 MyApplication Example 

Figure 3 Video Device Driver Hierarchy 
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new code is MyApplication. 
• Deterministic low latency: each channel has its own 

dedicated video devices running independently. 
Latency is low and constant. 

• Reusability: all vision services may be reused in other 
applications. 

• Expandability: additional functions may be added in the 
pipeline by inserting new vision services to individual 
video path. 

2.5. Achieving Low Latency in Linux 
Since video device networks run independently, the key 

to minimizing latency in a pipelined processing 
architecture is to start each video network as soon as its 
input is ready. Recall that since the I/O of a video device 
is pixels, the input to the next video network can be ready 
before current video network completes. With careful 
timing design, a video network can be programmed to 
generate an interrupt after a certain number of lines are 
processed instead of after the last line is processed. In 
either case, the sooner the software that starts next video 
network gets started, the shorter the latency will be. 

Linux divides run-time environment into user and 
kernel spaces. Video device drivers shown in Figure 3 are 
in the user space. A kernel module is required for Linux to 
create device nodes, handle device interrupts, and wakeup 
waiting threads as shown in Figure 6. 

 
When an interrupt occurs, Linux suspends current 

running process and gives control to the ISR (Interrupt 
Service Routine), then the pending kernel threads, and at 
last the pending user threads. 

Vision services run in the user space. The delay 
between an interrupt occurs and the waiting vision service 
gets executed varies upon CPU utilization and application 
complexity. For applications with stringent latency, the 
kernel module provides hooks for vision services to install 
functions to execute in the scope of IRQ and/or kernel 
threads. 

3. Applications 
We briefly describe several computer vision 

applications that have been ported to the framework.  Each 
application is a real time, low latency computer vision 
process of a relatively complex nature. 

3.1. Video Stabilization (STAB) 
Video stabilization is one of the fundamental 

preprocessing steps in image processing. It is used to align 
successive video frames captured from a moving or 
shaking platform, or to match two or more images of the 
same scene taken at different times, from different 
viewpoints, and/or from different sensors. This process is 
based on the registration, or alignment, of matching pixels 
between video frames. The SRI patented pyramid-based 
video registration application provides highly accurate 
video registration and stabilization; its algorithm consists 
of pyramid generation, image correlation and motion 
estimation. The result of the frame-to-frame motion is 
used in a warping function to render the display. Figure 7 
shows an example for pre and post image stabilization. 

 
The video frames to be stabilized are fed into the 

registration process. The pyramid generation consists of 
multi-scale multi-level Laplacian images. Each Laplacian 
image contains contrast features of the scaled original 
image. The correlation and motion estimation block 
computes the motion or 2-D displacement between the 
incoming frame I(t) and a reference frame from an earlier 
time I(t-�t).  The motion estimation algorithm estimates 
the motion successively over a dozen iterations, each time 
yielding a more precise answer, until the registration of the 
pixels reaches the accuracy of up to a tenth of a pixel.   

Many different applications beyond basic stabilization 
are enabled through the use of image registration.  Once 
frames are aligned to a fraction of a pixel, they can be 
further manipulated to support other vision plug-ins, 
including video enhancement, mosaic construction, video 
fusion, change and motion detection, image compression, 
and 3D depth mapping from stereo imagery. 

3.2. Moving Target Indication (MTI) 
The detection of moving objects from a fixed camera is 

performed by simple arithmetic operations and filtering of 
the video image. The simplest method for detecting 
independently moving objects is to subtract one frame 
from a previous frame. The observed change indicates 
where the objects have moved in the scene. However, due 
to factors such as noise and changes in lighting, some 
filtering is required to extract only the movers and avoid 
spurious detections. The algorithm implemented for the 

Figure 7 Stabilization Example 

Figure 6 Linux Kernel Module
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pyramid-based MTI application uses a Laplacian 
representation for the images and computes change 
between the adjacent frames. 

The change image is binarized by setting a threshold on 
the difference term at each pixel, which is computed in a 
5x5 window at each pixel in a Laplacian image. This 
binary image is a convenient representation for the  
“blob tracker.” Once independently moving objects have 
been detected in the scene, they can be tracked over time. 

Blob tracking, so named because it uses input images 
that have binary change mask (blobs), is done as follows:  
• Compute the change detection between the adjacent 

frames. 
• Perform connected components analysis on the detected 

change regions. 
• Extract blobs from the connect components. 
• Merge blobs to remove spurious blobs belonging to a 

single moving object.  
Additionally a tripwire detection feature, allows the 

user to define an arbitrarily positioned “tripwire” across 
the camera field of view.  Whenever a tracked object 
crosses or intersects with the tripwire an alarm event is 
triggered.   

3.3. Contrast Normalization (CN) 
The Contrast Normalization application provides 

dramatic dynamic rage enhancement of video images as 
shown in Figure 8.  Advanced imaging sensors used by the 
military often have a dynamic range that far exceeds that 
of displays used to present these images to human 
observers. The Contrast Normalization method can be 
used for compressing the overall dynamic range of such 
images while enhancing the visibility of salient pattern 
information. The method operates in a multiresolution 
Laplacian pyramid (or wavelet) domain. It has the effect 
of adjusting the contrast of individual features within the 
image in order to optimize their visibility. As such it 
differs from methods commonly used today, such as 
window and scale or histogram normalization, which 
operate directly on pixel intensity values without regard 
for image pattern structure.  

Contrast normalization is motivated by the observation 
that there is an optimal contrast for the visibility of 
features in an image. When contrast is significantly below 
this optimum, features become difficult to see, or can be 
masked by nearby higher contrast features.  Contrast 
normalization seeks to adjust the contrast of features in a 
source image towards the optimal. Features that are below 
optimal are increased in contrast. Features that are above 
the optimal are decreased in contrast.  

 

4. Results 
The three applications described in section 3 were 

implemented on two Xilinx Zynq platforms: the Xilinx 
ZC702 evaluation board (Figure 9) that has the 7020-1 
part, and a custom board that has the 7045-1 board. The 
applications running on the ZC702 board were 
monochrome because of the limited resources available. 
Using the 7045 larger FPGA part, we were able to run 
both Stabilization and Contrast Normalization 
simultaneously at 60Hz as well as numerous other image 
manipulation functions. 

 
The ZC702 FPGA video processing clock rate was 

100MHz at the slow speed grade. That system used a 
single bank of DDR3-1066 shared between the video 
acceleration hardware modules and the ARM processor. 
The 7045 video processing clock rate was 142MHz using 
the slow speed grade part. The 7045 system used a dual 
memory configuration, a DDR3-1066 for the ARM 
processor and a DDR3-1600 for the hardware acceleration 
modules allowing much higher performance. The ARM 
processor was running at 800MHz on both platforms. 

 
TABLE 1: APPLICATION IMAGE RESOLUTION AND FRAME RATE 

 
The applications implemented used a variety of 

hardware acceleration modules from the Acadia Vision IP 
portfolio plus the service based framework running Linux 
on the ARM. It also included a camera input and an HDMI 
display output. Table 1 describes the image resolution and 
frame rate of various applications. 

Platform Application Image Resolution Frame Rate 
ZC702 STAB 640 x 480 30 
ZC702 MTI 1280 x 1024 15 
ZC702 CN 1280 x 1024 30 
7045 STAB + CN 1280 x 1024 60 

Figure 9 ZC702 Evaluation Board 

Figure 8 Contrast Normalization Example 
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Table 2 shows the resource utilization required to run 
the different applications. Note that the resources for each 
application are highly dependent on the desired 
performance, frame rate and video resolution. The STAB 
resources are also highly dependent on the type of camera 
movement and distortion correction. 

 
TABLE 2: RESOURCE UTILIZATION 

APP ARM FFs LUTS DSP BRAM 
STAB <25% 25K-33K 20K-32K 80-140 50-140 
MTI <35% 11K-13K 10K-12K 30-45 15-30 
CN < 5% 25K-32K 22K-27K 40-50 40-90 

 
The STAB application can be configured to use from 

38% to 60% of the LUTs, and from 19% to 50% of the 
BRAM of the Xilinx 7020 Zynq FPGA. The range of 
utilization values represents the configurability of the 
hardware accelerator to meet the different requirements of 
the application (e.g. type of motion, resolution, etc.). The 
MTI relies mostly on the ARM, using from 19% to 22% of 
the LUTs. The CN application uses very little ARM 
processing, relying mostly on the hardware acceleration; it 
uses from 41% to 51% of LUTs on the 7020 FPGA. All 
three applications could be combined to run 
simultaneously at maximum performance on the larger 
7045 FPGA, and would use up to 60% of its ARM, 32% 
of its LUTs and 23% of its BRAM, thus leaving 
significant resources available for other applications. The 
resource utilization is much lower for lower resolution 
cameras or translation/scale only stabilization. 

The framework developed for this heterogeneous 
system is adaptable to the unique requirements of the 
desired system. A smaller FPGA can be used when a low 
power, low cost, single application is required. The 
framework allows the service-based software to take 
advantage of the hardware acceleration blocks available 
and perform the rest of the processing in the ARM. As 
performance requirements increase, more hardware 
acceleration can be added to the FPGA fabric, thus 
offloading the ARM processor. The framework also 
allows multiple applications to run simultaneously, taking 
advantage of the parallel nature of the hardware/software 
architecture. In the case of high resolution high frame rate 
processing (e.g. 1080p60 HDTV), the framework can be 
adapted for a dual external memory structure by 
populating the FPGA and the service-based firmware with 
the appropriate modules. 

5. Conclusion 
This paper presented an adaptable computer vision 

framework for heterogeneous FPGA architectures 
consisting of hardware-based Vision IP modules and a 
service-based software architecture running on Linux. The 
hardware processing component is built from a library of 
various hardware modules interconnected by a 

configurable crosspoint switch and a DMA engine that 
sends and receives synchronized video to and from 
memory. The software piece run on the ARM processor  
core and is composed of device drivers and vision 
services, which are stitched together to form vision 
applications. 

We described three applications built under this 
framework: stabilization, moving target indication, and 
contrast normalization. They were implemented on a low 
power, low cost, high-performance platform that clearly 
demonstrated the adaptability of the framework. This 
framework, however, is not limited only to these three 
applications in computer vision. We plan to develop many 
more applications running on heterogeneous FPGAs 
including from stereo vision, high dynamic range, feature 
tracking, object recognition, visual navigation, and 
augmented reality among many others. 
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