
FPGA-based Real-Time Pedestrian Detection
on High-Resolution Images

Michael Hahnle1, Frerk Saxen2, Matthias Hisung1, Ulrich Brunsmann1, Konrad Doll1

1University of Applied Sciences Aschaffenburg, Germany
2Otto-von-Guericke University Magdeburg, Germany

{michael.hahnle, matthias.hisung, ulrich.brunsmann, konrad.doll}@h-ab.de
frerk.saxen@ovgu.de

Abstract

This paper focuses on real-time pedestrian detection on
Field Programmable Gate Arrays (FPGAs) using the His-
tograms of Oriented Gradients (HOG) descriptor in com-
bination with a Support Vector Machine (SVM) for classi-
fication as a basic method. We propose to process image
data at twice the pixel frequency and to normalize blocks
with the L1-Sqrt-norm resulting in an efficient resource uti-
lization. This implementation allows for parallel computa-
tion of different scales. Combined with a time-multiplex ap-
proach we increase multiscale capabilities beyond resource
limitations. We are able to process 64 high resolution im-
ages (1920 × 1080 pixels) per second at 18 scales with a
latency of less than 150μs. 1.79 million HOG descriptors
and their SVM classifications can be calculated per second
and per scale, which outperforms current FPGA implemen-
tations by a factor of 4.

1. INTRODUCTION

1.1. Motivation

A wide field of applications, e.g. surveillance systems,

traffic assistance systems, autonomous robot navigation,

etc., drive enormous research efforts in pedestrian detec-

tion. Satisfactory classification performance and speed is

still not reached. Most systems are based on monocular vi-

sion. More and more applications ask for high resolution

cameras to cover a wide field of view and resolve far distant

objects. We concentrate on infrastructure based traffic assis-

tance systems, which address pedestrian perception aiming

at an improvement of road safety [8, 12] , but the concepts

presented in this paper are applicable to most other applica-

tions, too.

The HOG descriptor together with linear SVM classifi-

cation has shown good performance at a reasonable compu-

tation speed [6, 7]. To detect pedestrians of different size

and different distance, the images are downscaled several

times in practice. Real-time pedestrian detection is still a

challenge especially for high resolution images. Parallel

computing hardware like FPGAs is often used to provide

satisfactory computation speed for real-time performance.

1.2. Related Research

Several pedestrian detection systems which use HOG or

similar descriptors running on an FPGA platform have been

described in literature. Some of them are based on a com-

bined FPGA and Graphical Processing Unit (GPU) plat-

form, e.g. Bauer et al. [1]. A CPU core embedded in an

FPGA is used by Brookshire et al. [3]. Parts of the descrip-

tor are evaluated on the FPGA, the rest of the descriptor and

the classification is done on the CPU core. Most systems are

purely FPGA based: Kadota et al. [10] concentrate on HOG

feature extraction without implementing classification and

propose several methods to simplify operations like e.g. di-

vision and square root. Binary patterned HOG features and

an AdaBoost classifier were presented by Negi et al. [16].

Martelli et al. [14] and Hiromoto and Miyamoto [9] also

use the detection window approach with cells and blocks

but extract different features like covariance matrices or co-

occurrence HOGs. A cell-based pipelining approach to cal-

culate the HOG descriptor and a simultaneous SVM evalu-

ation is described in Mizuno et al. [15].

The maximum resolution of the above systems experi-

mentally demonstrated on real FPGA hardware is 800×600
pixels at 72 fps [15]. The same authors mention that their

system is expandable to HD resolution videos at 30 fps. In

addition, all systems use the original image size, downscal-

ing is not implemented, and they apply the L2-norm, the

L2-Hys-norm,or approximations of them, if at all, for block

normalization.

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.95

623

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.95

623

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.95

623

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.95

629

Figure 1. Calculation steps of the HOG descriptor

1.3. Our Contribution

The main contributions of this paper are: (1) We pro-

cess data at twice the pixel frequency and (2) normalize

HOG blocks with the L1-Sqrt-norm. Both aspects result in

a very efficient resource utilization and high throughput. (3)

The efficient resource utilization allows for several parallel

instantiations of processing pipelines for multiscale pedes-

trian detection. We propose a time-multiplex method result-

ing in the computation of more scalings than allowed by the

resource limits. (4) Experimental results show that the sys-

tem runs with HD resolution images at 64 fps at 18 scales.

1.4. Overview

The paper is organized as follows: In Section 2 we

explain the basics of our HOG and SVM based algorithm.

The hardware architecture and the details of the implemen-

tation are described in Section 3. In Section 4 we present

the experimental results before we summarize the main

conclusions and discuss open issues in Section 5.

2. ALGORITHM

Our method is based on the HOG descriptor followed by

an SVM classification as proposed by Dalal and Triggs [6].

Image based pedestrian detection is performed using a slid-

ing window approach: By sliding a detection window of

constant size (64× 128 pixels) from top left to bottom right

the entire image is analyzed for pedestrians.

The analysis consists of two parts: First, a descriptor is

calculated for each detection window by using the HOG-

algorithm. Afterwards, the descriptors are classified apply-

ing an SVM. In the following sections we describe the de-

tails of both parts putting emphasis on our implementation.

2.1. Histograms of Oriented Gradients Descriptor

Fig. 1 shows the steps necessary for computing the HOG

descriptor. For each pixel (x, y) in the input image I the

two-dimensional gradient G(x, y) = (Gx(x, y), Gy(x, y))
is determined. The gradient magnitude |G(x, y)| and gradi-

Figure 2. Division of the detection window into blocks and cells

ent angle φ(x, y) at position (x, y) are given by

|G(x, y)| =
√
Gx(x, y)2 +Gy(x, y)2, (1)

tan (φ(x, y)) =
Gy(x, y)

Gx(x, y)
. (2)

The detection window is divided into non overlapping

cells (Fig. 2) with a size of 8× 8 pixels. Four neighbouring

cells form a block. The blocks have a horizontal and vertical

overlap of one cell. This results in 7 · 15 = 105 blocks in a

detection window.

For each cell a histogram is generated by defining 9 bins

for the gradient angle and accumulating weighted gradi-

ent magnitudes in each of the bins. Concatenating the his-

tograms of cells contained in a block delivers a block his-

togram with 4 · 9 = 36 elements.

To improve detection quality, the gradient magnitudes at

the boundary area of the blocks are weighted less than the

centered ones. Hence, the gradient magnitudes in a block

|G|Block are multiplied with a 16×16 sized Gaussian matrix

Fg

|G|Gaussian = Fg ◦ |G|Block, (3)

where ◦ denotes the multiplication element by element and

σ = 8 [6].

The weighted magnitudes are added per bin to get the

histogram elements.

For better invariance to illumination and contrast

changes the block histograms v are normalized.

We use the L1-Sqrt-norm

v →
√

v

‖v‖1 + ε
. (4)

This, compared to the L2-norm, avoids squaring the his-

togram elements leading to an efficient implementation (see

Sec. 3.3) without reducing the detection rate significantly

(see Fig. 4 in [6]).

624624624630

Figure 3. System overview with multiple scales and additional FI-

FOs for the time-multiplex extension

Finally, all 105 block histograms are concatenated to get

the 105 · 36 = 3780-dimensional HOG descriptor x.

2.2. Classification with a Support Vector Machine

For classification of the HOG descriptors we are using a

linear SVM, which evaluates

y(x) = wT · x+ b. (5)

The weight vector w and the bias b are determined

during the training phase of the SVM. If y(x) > 0, a

pedestrian is detected, otherwise no pedestrian is detected.

3. IMPLEMENTATION
Our implementation uses a cell based approach similar to

Mizuno et al. [15]: instead of calculating the entire descrip-

tor for all detection windows one after another, we create

all cell and block histograms in a first step. Since a block is

part of 105 detection windows, we avoid multiple histogram

calculations for one block. In a second step the detection

window descriptors are composed of them. This is an es-

sential aspect of our real-time FPGA implementation with

high throughput.

The design is highly modularized to increase the flexi-

bility for configuration and extension. In this chapter we

describe the fundamental modules in detail with respect to

their functionality and implementation.

3.1. System Overview

Fig. 3 shows the complete design including the multi-

scale and time-multiplex extension. Each scale consists of

a scaling module, a HOG module for the calculation of the

descriptors, and an SVM module for classification. The FI-

FOs and the serialization module are introduced to convert

the classification outputs into the desired data format for

further processing.

3.2. Scaling

The input image is downscaled by using bilinear interpo-

lation because several scales significantly improve the de-

tection rate in practice.

3.3. Descriptor Calculation (HOG)

Fig. 4 shows the structure of our HOG descriptor imple-

mentation. The calculation steps are labelled according to

Fig. 1. The details are described below.

3.3.1 Gradient

The Gradient module consists of a row buffer, a shift regis-

ter and two subtractors for parallel calculation of the hori-

zontal, and vertical gradient components Gx and Gy .

Afterwards Gx and Gy are transferred to the core clock

domain via the clock domain crossing module. The core

clock frequency is twice the pixel clock frequency. This fre-

quency doubling results in an enormous resource reduction

for the following modules because one operator can process

two operations.

3.3.2 Gradient Magnitude and Bin Assignment

For calculating the gradient magnitude Gx and Gy are

squared and added. From this sum the square root is ex-

tracted. By serializing the multiplication one multiplier can

be saved.

To avoid a resource expensive division for determining

tan (φ(x, y)), the angle calculation is combined with the

bin assignment [1, 4]. The assignment of a gradient to a bin

can be done by multiplying |Gx| with constant values and

comparing it with |Gy|. E.g., G is assigned to Bin 1 (0◦ -

20◦) if

0 ≤ |Gy|
|Gx| < tan (20◦) . (6)

We multiply with |Gx| and get

tan (0◦) ≤ |Gy| < tan (20◦) · |Gx|. (7)

If this inequality holds, the gradient gets assigned to

Bin 1. To avoid floating point arithmetic in the FPGA im-

plementation, the constants can be approximated by a frac-

tion

tan (20◦) ≈ 4

11
. (8)

Now the inequality can be written using only integer val-

ues:

0 ≤ |Gy| · 11 < |Gx| · 4. (9)

For every bin a similar inequality has to be checked for

the gradient assignment. Again, the doubled core clock

frequency allows for serializing multiplications and results

in half the multipliers.

625625625631

Figure 4. Structure of the HOG implementation

3.3.3 Gaussian Weighting

The Gaussian weighting of the gradient magnitudes within

a block is achieved by multiplying them with precalculated

values of a Gaussian filter matrix saved in a ROM. Because

every cell is part of four overlapping blocks with a different

position within these blocks, each cell is multiplied element

by element with the four 8×8 pixel sized parts Fg1 - Fg4 of

the Gaussian filter matrix

Fg =

[
Fg1 Fg2

Fg3 Fg4

]
, (10)

∀j ∈ {1, 2, 3, 4} : |G|Gaussian,j = Fgj ◦ |G|Cell. (11)

The proposed method results in 4 multiplications per

pixel clock cycle or 2 multiplications per core clock cycle.

3.3.4 Block Histogram Creation

To create a cell histogram, the weighted gradient magni-

tudes are added for each bin. Then four cell histograms are

concatenated to get the final block histogram.

The calculation of the cell histograms is processed over

the whole image width. Three lines of cell histograms are

stored in a RAM module – two for the output of the block

histograms and a third one as current input line where the

input data is is accumulated.

The input decoder (left to the RAM module in Fig. 4

generates the read and write addresses for the RAM module

and controls the memory access. The output decoder (right

to the RAM module in Fig. 4) sequentially reads the four

corresponding cell histograms for each block from the

memory and sends it to the normalization module. It is

also in charge of erasing the memory cells after the cell

histograms have been read.

3.3.5 Normalizing

To obtain the L1-Sqrt-norm (see Eqn. 4), we calculate the

sum of all elements of the four cell histograms ‖v‖1 plus ε

(we choose ε to be the smallest positive value), which takes

36 clock cycles.

Instead of dividing every element by (‖v‖1 + ε), we

multiply each element with the inverse:

v ·
(

1

‖v‖1 + ε

)
. (12)

The computation of the inverse has to be done only once

per block which reduces its resources to approximately a

quarter of a fully pipelined divider and requires another

33 clock cycles. In addition, we need 36 clock cycles to

reinitialize the RAM module with zero values.

Every cell histogram is based on 8 ·8 = 64 pixels, which

corresponds to 64 pixel clock cycles or 128 core clock cy-

cles available for real-time data processing. This means that

we have 128− 36− 33− 36 = 23 core clock cycles left for

multiplying the 36 block histogram elements with the value
1/‖v‖1+ε. We perform two simultaneous memory read ac-

cesses and two multiplications. These operations require

18 clock cycles which satisfies the requirement of less than

or equal 23 clock cycles.

After that the square root is extracted in a pipeline and

the results are stored in an output buffer until the entire

block histogram is normalized and xB is available.

A similar analysis to L2-norm shows that the square root,

which takes 7 clock cycles, has to be extracted before each

element of the histogram can be multiplied by the inverse.

This means that the number of clock cycles left for mul-

tiplying the elements are less than 18 and we would need

more multipliers and more memory accesses making the de-

sign much more complex and resource consuming.

3.4. Classification (SVM)

The SVM evaluates the equation:

y(x) = wT · x+ b. (13)

The weight vector w and the bias b are constant for all eval-

uations. w is stored in a ROM on the FPGA.

Eqn. 13 can be rewritten using the 105 block histograms

626626626632

Dot
Product

Address
Decoder

RAMAddress
of k(j)

Window
completed? + Bias

w

yk(j) yk(j)

wj

xB y(x)

yes

no

Figure 5. Structure of the SVM implementation

xBi belonging to a detection window:

y(x) = wT · x+ b =
105∑
i=1

(
wT

i · xBi

)
+ b, (14)

with

xT =
[
xT
B1 xT

B2 . . . xT
B105

]
, (15)

wT =
[
wT

1 wT
2 . . . wT

105

]
. (16)

To evaluate y(x) for one detection window, we need the

histograms of all blocks belonging to it. To avoid the huge

amount of memory needed for storing all the block his-

tograms until the last block histogram of the detection win-

dow has been processed, we calculate portions wT
i · xBi of

the dot product and store the resulting scalars for each block

as described in detail below:

We consider all detection windows overlapping a block.

In each detection window and in the corresponding descrip-

tor the block histogram xB has a different position j and

gets xB1 to xB105. The part of the vector w corresponding

to position j is wj . The detection window in which xB is

located at position j is denoted as k(j). A dot product has to

be calculated of a block histogram xB and each of the 105

parts of the vector w1 to w105 resulting in contributions to

105 detection windows. These dot products are then added

to the current intermediate total yk(j) of the detection win-

dow k(j):

∀j ∈ {1, . . . , 105} : yk(j) ← yk(j) + wT
j · xB . (17)

An overview of the hardware implementation following

this approach is shown in Fig. 5. It contains the module for

the dot product calculation, an address decoder handling the

RAM accesses, an adder for the intermediate totals, and an

adder for the bias. By checking the sign bit of y(x), the

class correspondence of the specific classification window

can be determined.

The SVM outputs the position of the detection window

in the unscaled input image, the width and height of the

unscaled window and y(x) for each positive pedestrian de-

tection.

3.5. Multiscale Approach

To perform multiscale detection several processing

pipelines are instantiated in parallel. Every scaling mod-

ule is configured to provide a different scale. The positive

detections from the outputs of the SVMs have to be serial-

ized for transmission. A FIFO behind each SVM module

buffers the detection results (Fig. 3). A serializing module

requests detection data from the FIFOs in turn and converts

them into the desired output format, e.g. a byte stream.

3.6. Time-Multiplex Approach

To process about 20 different scalings as usually done

in applications, there either have to be many processing

pipelines in parallel or the image has to be stored and looped

multiple times through one pipeline using different scales.

The first alternative requires a large amount of resources,

which in many cases are not available, the second one con-

flicts with the given real-time requirements. We use a com-

bination of both alternatives and develop it further to meet

the resource and real-time requirements: At an image fre-

quency of 50 fps there are 20ms between two images. Con-

sidering the infrastructure based camera setup, even at a fast

walking speed a pedestrian is moving only a few pixels from

one image to the next. This means: If a pedestrian has been

detected in an image, we can assume that the pedestrian is

detected in the same detection window in the next image.

Based on this we use different scales for detecting pedes-

trians in the next image. All detections of an image can be

finally determined by combining the detections of the cur-

rent and the last image. Experimental and theoretical analy-

sis show that we can combine detections not only from two

images but also from three images.

In our case we use 18 scales. Instead of processing every

image with 18 scales in parallel requiring resources for all

the scales, we process the first image with scales 1− 6, the

second image with scales 7−12, the third image with scales

13−18, the forth image again with scales 1−6 and so forth.

This time-multiplex approach is implemented by re-

configuring the scaling modules after each image. Thus,

multiple scales can be processed with the same pipeline. To

combine all scales for every image, the detection results of

the last images are looped through a FIFO cascade whose

length depends on the number of scalings. The output

data of the single cascade steps are then also sent to the

serializing module for output (Fig. 3).

4. EXPERIMENTAL RESULTS

Our test system consists of a Full-HD camera Prosil-

ica GX19101 triggered to deliver 50 fps with 8 bit

grayscale. The image data are transferred via GigE to an

XpressGen2V5-200 FPGA Board2 with a Xilinx Virtex R©–

5 FPGA (XC5VFX200T). A GigE Vision Core3 receives

1http://www.alliedvisiontec.com/
2http://www.plda.com/
3http://www.s2i.org/

627627627633

Scaling HOG SVM

of registers 1 861 3 642 1 534

of LUTs 1 177 3 924 1 264

of DSP blocks 8 12 37

memory (kBit) 36 936 252

Table 1. Resources for Scaling, HOG, and SVM modules

Design Available Utilization

of registers 42 987 122 880 34 %

of LUTs 38 535 122 880 31 %

of DSP blocks 357 384 92 %

memory (kBit) 7 128 16 416 43 %

Table 2. Resources and load for a Xilinx Virtex R©–5 FPGA

(XC5VFX200T) with 6 scales in parallel and 3 scale sets in time

multiplex

the data and converts it to a pixel stream, which is analyzed

by our pedestrian detection module. The results together

with the input image are transferred by a PCIe Core2 using

DMA to a PC for further processing. Further information

about the system setup and its components can be found in

[8, 11].

4.1. Resources

Table 1 lists the resources for the scaling, HOG and SVM

modules for one processing pipeline at scale 1 (unscaled

Full-HD input image). Table 2 shows the resources and the

resource utilization for the complete design.

Because the DSP blocks are the limiting factor, we tried

to minimize them in all modules. Using the clock frequency

doubling approach the number of DSP blocks was reduced

significantly for the HOG calculation. Especially the nor-

malization needs much less resources because 128 clock

cycles are available instead of only 64, which allows the

highly serialized calculations as described above.

A comparison to other FPGA implementations is

presented in Table 3. Compared to the implementation

from Mizuno et al. [15], which also targets a resolution

of 1920 × 1080 pixels, we use significantly less LUTs,

Registers and DSPs. We need about twice the memory

than Mizuno et al. [15] but this is not the limiting factor

in resource utilization of this system. Although we use

only a small amount of resources, we achieve about

twice the throughput (64 fps). Even if we compare our

system to other implementations targeting 640×480 pixels,

we use less resources in most cases at the highest frame rate.

4.2. Real-Time Capability

The implementation is optimized for a pixel clock fre-

quency of 133MHz and a core clock frequency of 266MHz.

The maximum frequency of the core clock is approximately

10�4 10�3 10�2 10�1
10�3

10�2

10�1

100

FPPW

m
is

s
ra

te

DET (detection error tradeoff)

Lin. R�HOG (Dalal)
FPGA�HOG (Our)

Figure 6. Comparison of the detection rate based on the INRIA

person dataset[5]

270MHz. Hence, the maximum image frequency is 64 fps

at a resolution of 1920 × 1080 pixels (Table 3). This was

experimentally verified using video files transferred to the

FPGA via PCIe. The table shows, that no other implemen-

tation achieves this frequency. At the first scale,

(
1 920

8
− 7

)
·
(
1 080

8
− 15

)
· 64 = 1 789 440 (18)

classification windows are classified per second. We shift

the detection window not pixel by pixel but cell by cell. The

number of detection windows can be calculated by dividing

the image width and height by the cell width 8. Because a

detection window consists of 8×16 cells and no window ex-

ceeds the image boundaries, 7 detection windows in width

and 15 in height have to be subtracted in Eqn. 18. That ex-

ceeds current implementations [2, 13, 15, 16] by more than

a factor of 4.

The latency of the implementation varies depending on

the scale. Hardware simulation shows a latency of about

150μs for the unscaled image. Latencies for all other scales

are shorter because the images are smaller.

4.3. Detection Rate

To evaluate the detection rate, the FPGA implementa-

tion was trained with the INRIA person dataset [5] and

compared to a CPU implementation (original R-HOG [6]

with a linear SVMlight-SVM). The results are shown in

Fig. 6. There is a 6% higher miss rate at 10−3 FPPW than

the R-HOG. Experiments with a Matlab reference model

having the same behavior as the FPGA implementation

show that this is mainly caused by omitting the trilinear in-

terpolation during the histogram creation and the rounding

of the calculations (especially within the normalization).

628628628634

Platform Resolution fps LUTs Registers DSPs Memory (kBit) MHz Windows / sec

[10] Altera Stratix II 640 x 480 30 37 940 66 990 120 no data 127 56 466

[16] Xilinx Virtex-5 320 x 240 62 17 383 2 181 no data 1 327 44 95 480

[15] Altera Cyclone IV 800 x 600 72 34 403 23 247 68 348 76 401 760

Our Xilinx Virtex-5 1920 x 1080 64 5 188 5 176 49 1 188 270 1 789 440

Table 3. Comparison of the resources for different FPGA implementations of one scale (resources of HOG + SVM from Table 1)

5. CONCLUSIONS
In this paper we presented a real-time FPGA implemen-

tation of a pedestrian detection system using a HOG de-

scriptor and an SVM classification. Compared to other

implementations [2, 13, 15, 16] a performance gain in the

number of detection windows per second of more than a fac-

tor of 4 has been reached. Using a core clock twice as fast

as the pixel clock and additional optimization methods, the

resources have been significantly reduced without limiting

the real-time capabilities of the design. Based on the time-

multiplex approach we use 18 scales which are regarded to

be necessary in practical applications.

Future research will concentrate on further optimizations of

hardware resources. Other objectives are quality improve-

ment and the integration of a Non Maxima Suppression into

the FPGA.

6. ACKNOWLEDGEMENT
The support of the Bayerisches Staatsministerium für

Wissenschaft, Forschung und Kunst in the context of the

Forschungsschwerpunkt Intelligente Verkehrssicherheits-
und Informationssysteme at the University of Applied Sci-

ences Aschaffenburg is gratefully acknowledged. This

work partially results from the joint project Ko-PER, which

is part of the project initiative Ko-FAS, and has been funded

by the German Bundesministerium für Wirtschaft und Tech-
nologie (Federal Department of Commerce and Technol-

ogy) under grant number 19S9022B.

References
[1] S. Bauer, U. Brunsmann, and S. Schlotterbeck-Macht.

FPGA Implementation of a HOG-based Pedestrian Recog-

nition System. 42. Workshop der Multiprojekt-Chip-Gruppe
Baden-Württemberg, pages 49–58, July 2009.

[2] S. Bauer, S. Köhler, K. Doll, and U. Brunsmann. FPGA-

GPU Architecture for Kernel SVM Pedestrian Detection.

2010 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition Workshops, pages 61–68, June

2010.

[3] J. Brookshire, J. SteffJorgenensen, and J. Xiao. FPGA-based

Pedestrian Detection, May 2010.

[4] T. P. Cao and G. Deng. Real-Time Vision-Based Stop Sign

Detection System on FPGA. 2008 Digital Image Comput-
ing: Techniques and Applications (DICTA), pages 465–471,

December 2008.

[5] N. Dalal and B. Triggs. INRIA Person Dataset, 2005.

[6] N. Dalal and B. Triggs. Histograms of Oriented Gradients

for Human Detection. 2005 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, pages

886–893, June 2005.

[7] M. Enzweiler and D. M. Gavrila. Monocular Pedestrian De-

tection: Survey and Experiments. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, pages 2179–2195,

December 2009.

[8] M. Goldhammer, E. Strigel, D. Meissner, U. Brunsmann,

K. Doll, and K. Dietmayer. Cooperative Multi Sensor Net-

work for Traffic Safety Applications at Intersections. 15th
International IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 1178–1183, September 2012.

[9] M. Hiromoto and R. Miyamoto. Hardware Architecture for

High-Accuracy Real-Time Pedestrian Detection with Co-

HOG Features. 12th International Conference on Com-
puter Vision Workshops (ICCV Workshops), pages 894–899,

September 2009.

[10] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto,

and Y. Nakamura. Hardware Architecture for HOG Feature

Extraction. Fifth International Conference on Intelligent In-
formation Hiding and Multimedia Signal Processing, pages

1330–1333, Spetember 2009.

[11] J. Kempf, M. Schmitt, S. Bauer, U. Brunsmann, and K. Doll.

Real-Time Processing of High-Resolution Image Streams

using a Flexible FPGA Platform. Proceedings of the Em-
bedded World Conference, February 2012.

[12] Ko-FAS. Forschungsinitiative Ko-FAS, 2012.

[13] K. Lillywhite, D.-J. Lee, and D. Zhang. Real-time Hu-

man Detection Using Histograms of Oriented Gradients on

a GPU. 2009 Workshop on Applications of Computer Vision,

pages 1–6, December 2009.

[14] S. Martelli, D. Tosato, M. Cristani, and V. Murino. FPGA-

Based Pedestrian Detection Using Array of Covariance Fea-

tures. 2011 Fifth ACM/IEEE International Conference on
Distributed Smart Cameras (ICDSC), pages 1–6, August

2011.

[15] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi,

and M. Yoshimoto. Architectural Study of HOG Feature Ex-

traction Processor for Real-Time Object Detection. 2012
IEEE Workshop on Signal Processing Systems, pages 197–

202, October 2012.

[16] K. Negi, K. Dohi, Y. Shibata, and K. Oguri. Deep pipelined

one-chip FPGA implementation of a real-time image-based

human detection algorithm. 2011 International Conference
on Field-Programmable Technology, pages 1–8, December

2011.

629629629635

