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Abstract

Training vision-based pedestrian detectors using syn-
thetic datasets (virtual world) is a useful technique to col-
lect automatically the training examples with their pixel-
wise ground truth. However, as it is often the case, these
detectors must operate in real-world images, experiencing a
significant drop of their performance. In fact, this effect also
occurs among different real-world datasets, i.e. detectors’
accuracy drops when the training data (source domain) and
the application scenario (target domain) have inherent dif-
ferences. Therefore, in order to avoid this problem, it is
required to adapt the detector trained with synthetic data
to operate in the real-world scenario. In this paper, we pro-
pose a domain adaptation approach based on boosting LDA
exemplar classifiers from both virtual and real worlds. We
evaluate our proposal on multiple real-world pedestrian de-
tection datasets. The results show that our method can ef-
ficiently adapt the exemplar classifiers from virtual to real
world, avoiding drops in average precision over the 15%.

1. Introduction

Training a pedestrian detector with synthetic data avoids
the need of expensive and tedious manual annotations,
keeping decent performance as presented in [9]. This work,
tested on a popular automotive dataset from Daimler A.G.,
suggests that the use of synthetic data for the pedestrian
detection task is a research line worth to explore. Simi-
lar work has also been reported in [11]. However, as it
also happens in real-world datasets, the classifiers’ accuracy
can drop significantly when the training dataset (source do-
main) and the application scenario (target domain) have in-
herent differences [13, 16]. A clear example of this appears
when different cameras are used or the most common ob-
jects’ poses and/or views are substantially different. In the
case of classifiers trained with synthetic data (i.e. on vir-

tual worlds), the drop of performance is presumably due
to an appearance difference between virtual- and real-world
datasets. Nevertheless, there are sufficient commonalities
between these datasets that make possible the application
of domain adaptation techniques. Therefore, a classifier
trained with virtual-world images that must operate with
real-world ones, needs to be adapted, which drives us to the
realm of domain adaptation as a paradigm to solve tasks
like the reuse of ground truth information.

Domain adaptation is an emerging topic in computer vi-
sion [12], which has been recently applied for the object
detection problem [10, 13, 15, 14]. The objective of the
domain adaptation techniques is to face up the task of de-
ploying models that has been built from some fixed source
domain, across a different target domain, i.e. in our case vir-
tual and real worlds respectively. These different domains
should have similarities that are normally measured at fea-
ture space. However, the feature distributions of different
domain samples may differ tremendously in terms of sta-
tistical properties (such as mean and intra-class variance),
what makes the domain adaptation task a very challenging
one.

Previous work focus on transforming the high dimen-
sional low-level feature space [10, 15], capturing comple-
mentary examples from the target domain through a human
oracle (active learning) [14], or just considering them as
unlabeled examples collected following a self-training idea
[15]. Our proposal also applies the strategy of collecting ap-
propriate examples, but in contrast to [14, 15], in our case it
is given more relevance to those examples of the source do-
main that are more similar to the ones in the target domain.
Motivated by the discriminative exemplar classifier [8], we
model the example’s similarity based on individual exem-
plar classifiers. Therefore, the exemplar classifiers trained
with the source domain examples that are similar to the tar-
get domain ones, are expected to be discriminative in the
target domain. We aim at supplementing the power of these
source exemplar classifiers with few target domain labeled
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examples. The questions we confront with are: (1) how to
find out the appropriate source domain exemplar classifiers;
(2) how to maximize the discriminativity of such classifiers.
The boosting-based transfer learning turns out to be suited
for our case, e.g. the TrAdaBoost [2] can tune the source
classifiers towards the target domain by assigning greater
importance to the target examples during the boosting. We
propose to use the exemplar classifiers as base learners in
the boosting framework, then the learning algorithm selects
and combines these base classifiers into a strong classifier
that will operate in the target domain. Particularly, we use
the recent proposed discriminative decorrelation model to
train LDA exemplar classifiers [7]. The LDA classifier can
obtain equivalent or even better performance than the SVM
classifier while being much faster for training. This prop-
erty is essential for the boosting-based method since a large
number of base learners are involved during the training.
We evaluate our proposal on multiple real-world pedestrian
detection datasets. The results show that our method can
efficiently adapt the exemplar classifiers from virtual to real
world, avoiding drops in average precision over the 15%.

The rest of the paper is organized as follows. Section
2 describes the LDA exemplar classifier. In section 3 we
explain the boosting algorithm for the domain adaptation
task. Section 4 evaluates the performance of the proposed
method for pedestrian detection and present corresponding
results. Finally, section 5 draws the main conclusions and
future research lines.

2. LDA Exemplar Classifier

For domain adaptation, we aim at finding the examples
from the source domain that are most similar to the target
domain ones. These similar examples are then used to train
a discriminative classifier in the target domain. In this pa-
per, we do not measure such similarity directly from the
low-level feature space (e.g. maximum mean discrepancy
in the reproducing kernel Hilbert space). Instead of that, we
assume that the exemplar classifiers corresponding to the
source domain examples, similar to the target domain ones,
are expected to obtain relatively higher classification accu-
racy in the target domain. Therefore, we focus our attention
of the training process of the exemplar classifiers.

Particularly, we use the recent proposed discrimination
decorrelation LDA model [7] to train exemplar classifiers,
referred to as the LDA exemplar classifier. The main idea
of the LDA method in [7] is to estimate a covariance matrix
which captures the statistic properties of nature images. The
covariance matrix is then used to remove the natural corre-
lations between foreground and background HOG features,
which is called whitening HOG.

The Linear Discriminative Analysis (LDA) is a general
model that assumes the classes have a common covariance
matrix Σ𝑘 = Σ, ∀𝑘. Given a dataset with features 𝑥 ∈ 𝑋

and class labels 𝑦 ∈ {0, 1}, suppose we model class density
as multivariate Gaussian for binary classification,

𝑃𝑟 (𝑦 = 1∣𝑥)
𝑃𝑟 (𝑦 = 0∣𝑥) = log

𝑓𝑦=1(𝑥)

𝑓𝑦=0(𝑥)
+ log

𝜋1

𝜋0

= log
𝜋1

𝜋0
− 1

2
(𝜇1 + 𝜇0)

𝑇
Σ−1 (𝜇1 − 𝜇0)

+𝑥𝑇Σ−1 (𝜇1 − 𝜇0) ,
(1)

where 𝜇1, 𝜇0 are the vectors with the means of the posi-
tive and negative examples respectively, and 𝜋1, 𝜋0 are the
class priors. The LDA classification is equivalent to a linear
weight 𝑤 = Σ−1 (𝜇1 − 𝜇0). For the HOG-based rigid tem-
plate classifier with 𝑁 cells in the window, Σ is a 𝑁𝑑×𝑁𝑑
matrix, where 𝑑 is the number of bins used to quantize the
gradient direction. In [7], it is proposed a simple proce-
dure to learn Σ and 𝜇0 (corresponding to the background)
once, and reuse them for every window size and object
class, thus only average positive features are needed to com-
pute the final linear classifier. It has been demonstrated
that the LDA classifier can provide similar accuracy to the
SVM one, while being much faster for training. In particu-
lar, when training large amount of exemplar classifiers, the
LDA method needs just a couple of minutes once the co-
variance matrix has been built, since the main computation
is just for computing the mean of the positive features. In-
stead, the alternative methods (e.g. exemplar SVM [8]) may
take several days to train these exemplar classifiers.

In this paper, we use the LDA method to train pedestrian
exemplar classifiers with virtual-world images. Following
[9], we use a video-game to generate a virtual world from
which we extract the pedestrian examples. The final exem-
plar classifiers are computed by simply dot product using

ℎ𝑘 = Σ−1 (𝑥𝑘 − 𝜇0) , 𝑘 ∈ 1, 2, ...𝐾, (2)

where 𝑥𝑘 is the HOG feature of the 𝑘-th example and 𝐾 is
the number of the exemplar classifiers. We use 𝐾 = 1267
in our experiments.

3. Boosting Exemplar Classifiers for Domain
Adaptation

We aim at adapting a pedestrian detector trained in a
source virtual world to operate in a target real world. The
difficulties of the domain adaptation are mainly due to the
distribution disparity of the data from both worlds. To un-
derstand the relation between the virtual- and the real-world
data, we extract HOG features from virtual- and real-world
positive examples and apply Principal Component Analysis
(PCA) on these features. Figure 1 shows a low-dimension
representation of the two different data distributions. Given
few real-world target examples, the straightforward way to
train an adaptive classifier is the mix training, i.e. combine
all the examples from both domains and retrain. However,
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Figure 1. Low dimension distribution of the virtual- and the real-
world positive examples.

the model trained from mixed data could be still source-
domain-oriented. Instead, the boosting-based domain trans-
fer learning can boost the classifier in the target domain.
One example is the TrAdaBoost [2], which prioritizes the
misclassified target examples and tunes the classifier to-
wards the target domain data distribution.

In this paper, we use the virtual world exemplar clas-
sifiers as base learners and boost them towards high per-
formance in the target real world. Based on TrAdaBoost,
a recent study [1] presents a further refined algorithm that
integrates a dynamic cost to solve the problem of early con-
vergence to the source examples. In order to boost our ex-
emplar classifiers we employ such a proposal, referred to as
D-TrAdaBoost.

Following the terminology of prior literature, we denote
the source domain by𝒟𝑆𝑟𝑐 and the target domain by 𝒟𝑇𝑎𝑟.
Given 𝑁 source examples and 𝑀 target examples, where
𝑁 >> 𝑀 , our method proceeds as explained in Algo-
rithm 1. In 3.2 of Algorithm 1, the exemplar classifiers
are applied to the training examples and the classification
errors are computed. In each iteration, the exemplar clas-
sifier with highest accuracy is selected. According to the
classification error of each exemplar classifier, the weight
of the corresponding example is assigned, i.e. the worse an
exemplar classifier performs, higher is the weight assigned
to the corresponding example. Note that the source exam-
ples and the target examples are treated differently (see 3.6
in Algorithm 1). The classification error on target exam-
ples will receive more penalty and this way the classifier is
tuned towards a higher performance in the target domain.
The D-TrAdaBoost [1] incorporates a dynamic cost 𝐶𝑡 (3.5
in Algorithm 1) to avoid fast convergence in the source do-
main, which could further boost the classifiers towards the
target domain.

Algorithm 1 Boosting-based domain adaptation with ex-
emplar classifiers

Require Source domain training set:
𝒟𝑆𝑟𝑐 = {(𝑥𝑖, 𝑦𝑖)}, 𝑖 ∈ (1, 𝑁)
Target domain training set:
𝒟𝑇𝑎𝑟 = {(𝑥𝑖, 𝑦𝑖)}, 𝑖 ∈ (𝑁 + 1, 𝑁 +𝑀)
Maximum number of iterations: 𝑇
Exemplar classifiers: ℎ𝑘, 𝑘 ∈ (1,𝐾)
Output Target classifier: 𝐻 =

∑
𝑘 𝛼

𝑇𝑎𝑟
𝑘 ℎ𝑘

Procedure
1: Initialize the weight of each example 𝑤𝑖 =

1

𝑁 +𝑀

2: Set 𝛼𝑆𝑟𝑐 =
1

2
ln (1 +

√
2 ln

𝑁

𝑇
)

3: for 𝑡 = 1→ 𝑇
3.1: Normalize the weight vector:

𝑤𝑖 =
𝑤𝑖∑𝑁+𝑀

𝑗=1 𝑤𝑗

3.2: Find the candidate exemplar classifier ℎ𝑡 that mini-
mizes the error for the weighted examples.
3.3: Compute the error on the target examples:

𝑒𝑡 =
∑𝑁+𝑀

𝑗=𝑁+1

𝑤𝑗 [𝑦𝑗 ∕= ℎ𝑡(𝑥𝑗)]∑𝑁+𝑀
𝑘=1 𝑤𝑘

3.4: Set 𝛼𝑇𝑎𝑟
𝑡 =

1

2
ln (

1− 𝑒𝑡
𝑒𝑡

), 𝑒𝑡 <
1

2
3.5: Set 𝐶𝑡 = 2(1− 𝑒𝑡)
3.6: Update weights:
𝑤𝑖 = 𝐶𝑡𝑤𝑖𝑒

−𝛼𝑆𝑟𝑐[𝑦𝑖 ∕=ℎ𝑡(𝑥𝑖)], where 𝑥𝑖 ∈ 𝒟𝑆𝑟𝑐

𝑤𝑗 = 𝑤𝑗𝑒
−𝛼𝑇𝑎𝑟

𝑡 [𝑦𝑗 ∕=ℎ𝑡(𝑥𝑗)], where 𝑥𝑗 ∈ 𝒟𝑇𝑎𝑟

4: endfor

4. Experiments

In this section, we first evaluate our approach on mul-
tiple real-world pedestrian datasets. Then, we compare in
terms of performance, our method to a classifier retrained
using only target domain data or a mix of source and tar-
get domain data. Finally, different boosting algorithms are
compared and analyzed.
We use INRIA [3] and ETH [17] as real-world datasets and
all the experiments are evaluated using the Caltech evalua-
tion framework [4].

4.1. Datasets

4.1.1 Virtual-world Pedestrian Dataset

The virtual-world dataset of [9] was created using the video
game Half-Life 2. We follow the same idea to create virtual-
world training examples. Our virtual world contains realis-
tic virtual cities under different illumination conditions and
with six different object classes, namely road, tree, building,
vehicle, traffic sign and pedestrian. The dynamic objects
(i.e. pedestrian and vehicles) are placed following physical
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laws. We obtained images containing pedestrians with dif-
ferent poses and backgrounds as well as their correspond-
ing pixel-wise ground truth. The image resolution for this
dataset is 640 × 480 pixels. Figure 2 shows an example of
the virtual-world data: image, pedestrians and their corre-
sponding ground truth. We use the virtual-world pedestrian

Figure 2. Virtual-world dataset. Pedestrian examples, pixel-wise
ground truth and visualization of the respective LDA exemplar
classifier model.

dataset as our source domain. In particular, we used in our
experiments 1267 examples from this dataset, for which we
had computed the HOG features with a canonical window
size of 13× 6. Furthermore, we used the same background
statistic 𝜇0 and Σ as in [7] for training the LDA exemplar
classifiers.

4.1.2 Real-world Pedestrian Benchmarks

The considered real-world datasets include INRIA [3] and
ETH [17]. The ETH dataset was recorded at a resolution of
640× 480 pixels, using a stereo pair mounted on a children
stroller. For our particular experiments, only the left images
of each image-sequence are used. The ETH dataset contains
three sub-sequences, representing three different scenarios,
which are denoted as ETH00, ETH01 and ETH02.

4.2. Evaluation

For all the experiments, we use the unified evaluation
framework of [4]. We assess detectors’ performance using
per-image evaluation and plot curves depicting the trade-off
between miss rate and the number of false positives per
image (FPPI) in logarithmic scale. This is computed by
averaging miss rate at nine FPPI rates evenly spaced in
log-space in the range from 10−2 to 100. We sample
the labeled target data five times and report the average
performances. We compare the following classifiers:
SRC: LDA classifier trained with only source examples.
TAR: LDA classifier trained with only selected target
examples.
MIX: LDA classifier trained with source and the selected
target examples.
ADP: Adaptive classifier trained with source and selected

target examples by D-TrAdaBoost.

4.3. Results

4.3.1 Adaptation to INRIA dataset

In the first experiment, we use INRIA pedestrian dataset as
target domain. We randomly sample 400 positive examples
and 1000 negative images from INRIA training set. The
source classifier is trained as mentioned in 4.1.1. Figure 3
(a) depicts the performances on INRIA testing set, using
the original HOG-SVM detector [3] (“TAR-FULL-SVM”),
which is trained with INRIA full training dataset, and the
detectors formulated in 4.2. Our source detector “SRC”
has similar performance to “TAR-FULL-SVM”, while the
adapted detector obtains around 7 points of gain, showing
the effectiveness of the adaptation technique. The classifier
trained with only a few target examples (“TAR”) turns out
to have the worst performance due to over-fitting problems.
Finally, the “MIX” detector obtains 41.12%, which is still 4
points worse than the proposed adaptation method.

4.3.2 Adaptation to ETH dataset

In the second experiment, we use the three sub-sequences
of ETH dataset as different target domains, considering that
the three sub-sequences are taken from different scenarios.
We use the same setting as before, i.e. we use the same
source detector trained with virtual-world data and 400 ran-
dom positives and 1000 negative images from the target do-
main. As depicted in Figure 3 (b)-(d), the proposed adap-
tation method obtains again large gains compared to the
source classifier and outperforms other training methods.

As can be seen in [4], many detectors are trained with
INRIA training set and then tested in other datasets with-
out considering domain adaptation. For the sake of com-
pleteness and to evaluate the consequences of doing so,
we also include experiments where our “ADP-INRIA” is
tested in ETH dataset. Interestingly, the adapted detector
“ADP-INRIA” does not work well for ETH data, while the
adapted detectors using specific target domain data (ADP
in Figure 3), show substantially better performances. This
demonstrates the importance of applying the domain adap-
tation techniques from the source domain to the specific
target domain instead of applying them to intermediate do-
mains.

4.4. Evaluation of the boosting algorithms

In this section, we compare different boosting algo-
rithms to investigate their performance on the pedestrian
detection task. We evaluate AdaBoost [6], TrAdaBoost [2]
and D-TrAdaBoost [1] on INRIA and ETH datasets. Ta-
ble 4.4 shows the final results obtained with these boost-
ing algorithms on the mentioned datasets. TrAdaBoost and
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Figure 3. (a) results on INRIA testing set. “TAR-FULL-SVM” represents the original HOG-SVM detector [3] which is trained with INRIA
full training dataset. (b)-(d) results on three subsets of ETH dataset. “ADP-INRIA” refers to the adapted detector trained with a few
examples from INRIA dataset as target domain.

Dataset AdaBoost TrAdaBoost D-TrAdaBoost
INRIA 39.5 37.6 37.7
ETH00 63.5 63.3 64.3
ETH01 69.4 68.7 68.2
ETH02 66.6 53.1 51.6

Table 1. Comparison of boosting algorithms’ performances. (Av-
erage miss rate %)

D-TrAdaBoost generally outperform AdaBoost, since the
classifiers are tuned towards the target dataset. For bet-
ter understanding of the changes in the classifier weight
with respect to the boosting algorithms, we visualize the
weights of the base classifiers in the final model, which
is adapted to INRIA dataset. Figure 4 shows the weights
of the exemplar classifiers after the boosting process. The
TrAdaBoost and D-TrAdaBoost learning algorithms assign
greater weights to the target exemplar classifiers, which in-
dicates that these classifiers are tuned towards the target do-
main, while the AdaBoost classifiers seem to be still source-
domain-oriented.

5. Conclusions

Training vision-based pedestrian detectors using virtual-
world data is a useful technique for saving expensive man-
ual labeling. However, when the training dataset (source
domain) and the application scenario (target domain) have
inherent differences as is often the case, the performance
of such a detector can drop significantly. In this paper, we
propose a method to reduce the performance drop from the
virtual to the real world by boosting LDA exemplar classi-
fiers. This method shows promising results for the cross-
domain detection problem, requiring only few labeled ex-
amples from the target domain. Overall, our proposal is a
promising way to reuse cheap-to-obtain and precise ground
truth information. In our future work, we will further con-
sider the adaptation to the more challenging unlabeled real
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(a) AdaBoost relevance.
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(c) D-TrAdaBoost relevance.

Figure 4. Boosting algorithms’ relevance. The blue and red stems
are the weights of the source and target exemplar classifiers re-
spectively. Note that the flipped training examples are added, so
the source and the exemplar classifiers are 1267 × 2 and 400 × 2
respectively.

world scenarios, probably using the state-of-the-art part-
based model [5].
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Figure 5. Comparison of detections in the target datasets. The detections are taken at FPPI = 0.1. Top: output of the source domain detector.
Bottom: output of the adapted detectors. The images in each column are from INRIA, ETH00, ETH01 and ETH02 datasets respectively.
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