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Abstract

We propose a fully unsupervised method for abnormal

activity detection in crowded scenes. Neither normal nor

abnormal training examples are needed before detection.

By observing that in crowded scenes, normal activities are

the behaviors performed by the majority of people and ab-

normalities are behaviors that occur rarely and are different

from most others, we propose to use a scan statistic method

to solve the problem. It scans a video with windows of vari-

able shape and size. The abnormality of each window is

measured by a likelihood ratio test statistic, which com-

pares two hypotheses about whether or not the character-

istics of the observations inside and outside the window are

different. A semiparametric density ratio method is used to

model the observations, which is applicable to a wide vari-

ety of data. To reduce the search complexity of the sliding

window based scanning, a fast two-round scanning algo-

rithm is proposed. We successfully applied our algorithm

to detect activities that are anomalous in different ways,

achieving performance competitive to other state-of-the-art

methods which requiring supervision.

1. Introduction

Identifying abnormal activities in densely crowded

scenes has been attracting increasing attention in the com-

puter vision community. This problem plays an important

role in many applications such as crowd surveillance, public

place monitoring, security control, etc. The main paradigm

in this field is to assume the availability of a set of normal

examples before detection, which define what normal activ-

ities look like. Abnormality of a new observation is then

measured either by its similarity with the given examples or

by its compatibility with the model derived from the exam-

ples.

The requirement of normal activity being defined before-

hand may complicate the deployment of the approaches in

real applications. For example, an important characteristics

(a) (b) (c)

Figure 1. Examples of abnormal activities in crowded scenes. (a)

Global abnormal activity of crowd panic. (b) Local abnormal ac-

tivity where a man enters through the exit gate in a subway station.

(c) Local abnormal activity in a highly dynamic scene where a man

steps out while the crowd is dancing.

of normal and abnormal activities in practice is their rel-

ativity. Abnormal activities in one situation may become

normal in others. Fig. 1(b) shows a scene in a subway sta-

tion. The gate is used as an exit gate and people entering

it are regarded as abnormal. However, at other times the

same gate may be changed to an entrance gate and people

entering it becomes normal while people exiting through it

becomes abnormal. To apply detection approaches based

on the above paradigm, one must know in advance whether

the gate is serving as an entrance or an exit gate at a specific

time, so that the correct normal activity model can be used.

To reduce the requirement for external examples of

normal activity, some recent work assumes that a certain

duration in the beginning of a video contains only nor-

mal behaviors, which are used to train the normal activity

model [12, 5, 22]. However, these methods cannot be ap-

plied when the normal behaviors keep changing over time

so that the behaviors in the beginning of a video cannot be

used to infer what is normal in the remainder of the video.

They are also not applicable when the abnormal behaviors

appear right after the video begins. The flash mob video

shown in Fig. 1(c) is such an example. The normal behav-

ior, which is the dancing of the crowd, changes quickly.

And the abnormal behavior of a man stepping out of the

crowd happens near the beginning of the video.

To address the above limitations of previous approaches,

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.115

761

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.115

761

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.115

761

2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops

978-0-7695-4990-3/13 $26.00 © 2013 IEEE

DOI 10.1109/CVPRW.2013.115

767



we propose a fully unsupervised solution for the problem,

which requires neither normal nor abnormal examples be-

ing provided beforehand. In crowded scenes, normal activ-

ities are the behaviors performed by the majority of people

and abnormal activities are behaviors that occur rarely and

are different from most others in the scene. We therefore

propose to use a scan statistic method to solve the problem.

The main idea is to scan the video using a large number of

windows with variable shape and size. For each window,

two hypotheses about whether or not the characteristics of

the observations inside the window is different from those

outside it are compared. A likelihood ratio test statistic,

which is based on a semiparametric density ratio model, is

computed for the comparison and used as a measure of the

window’s abnormality.

Besides the waiver of the requirement for normal activity

examples, the novelty and advantages of the scan statistic

method also lie in the following aspects. First, as a quite

general detection framework, it can be used to detect dif-

ferent kinds of abnormal events, including: global abnor-

mal activities, where the whole crowd is involved in the

abnormal event in which their behaviors are different from

those at most other times in the video (Fig. 1(a)); local ab-

normal activities, where the behaviors of a small group of

people are different from those of most others in the video

(Fig. 1(b)). It can also be applied to videos in which the nor-

mal behaviors are highly dynamic as in the flash mob exam-

ple(Fig. 1(c)). Second, in previous scanning window based

approaches [5, 22], the shape and size of the local windows

are usually fixed and the abnormalities are measured inde-

pendent of each other. In our scan statistic method, win-

dows with variable shapes and sizes are used so that an ab-

normal event can be captured in a single window instead

of being divided up, which allows its statistical characteris-

tics to be measured more accurately. Third, a semiparamet-

ric density ratio method [11] is used to model the observa-

tions inside and outside a scanning window. This reduces

the requirement for assuming a specific parametric prob-

ability model and makes it directly applicable to different

types of observations. Forth, to reduce the computational

complexity of exhaustive search, we present a fast scanning

algorithm for the semiparametric scan statistic method. It

dramatically reduces the number of regions being examined

while still maintaining good accuracy.

Scan statistics are a powerful method for cluster detec-

tion. They have applications in many fields, such as epi-

demiology, criminology, genetics, mining, astronomy, etc.

However, their usage for solving computer vision prob-

lems has not been exploited before. In this paper, we il-

lustrate its application for abnormal activity detection in

crowded scenes. Experiments on both benchmark datasets

and videos “in the wild” validate the effectiveness of the

method.

2. Related Work

Various approaches have been proposed for anomaly de-

tection, for both crowded and non-crowded scenes. They

can be broadly categorized according to whether or not ex-

amples of normal and abnormal activities are needed before

detection. The first type of work treats the task as a binary

classification problem. To train the classifier, not only nor-

mal but also abnormal activities are needed. For example,

in [16, 6], both activities were used to train a support vector

machine (SVM) for abnormal activity recognition.

Considering the rich patterns of irregular behaviors, the

second type of work finds abnormalities without knowing

what they are beforehand. Although not requiring abnor-

mal examples, training data are still needed to define what

normal activities look like. Note that since abnormal exam-

ples are not used during training, some approaches of this

type have been claimed to be unsupervised [4, 22, 21, 2].

According to how normal examples are used, the methods

can be further divided into two sub-categories. The first

one contains data-driven methods. They directly compare

new observations with a set of normal examples. The ob-

servations whose similarity scores are low [4, 2] or which

cannot be composed well by the known examples [3] are

regarded as abnormal. In the second sub-category, normal

examples are used to build explicit models for normal ac-

tivities. An anomaly is declared when the new observation

cannot be explained well by the model. Kim and Grau-

man [12] used Mixture of Probabilistic PCA to model nor-

mal local activity patterns. In [17, 8], Latent Dirichlet Al-

location (LDA) was used to discover latent topics in normal

activities. With the recent popularity of sparse coding, nor-

mal basis sets are also learned from normal activities, over

which sparse reconstruction costs are computed for new ob-

servations [22, 5].

Our work belongs to the third type where neither nor-

mal nor abnormal examples are required before detection.

Several such approaches have been presented, mainly for

non-crowded scenes [23, 3, 19, 10]. The main idea of both

[23] and [3] is to use the input video itself to build the

reference database and compare each event with all other

events observed. However, for crowded scenes, performing

such pairwise comparison is time-consuming. Our method

collectively models the whole crowd’s behaviors, which is

more appropriate and efficient for crowded scenes. Al-

though in [10] Ito et al. also used the density ratio esti-

mation technique, their method cannot locate the spatial-

temporal regions of local abnormal events.

Among recent work that focuses on crowded scenes,

much effort has been devoted to design descriptive fea-

tures to characterize crowded scenes, such as social force

model [17], chaotic invariants of particle trajectories [20]

and mixture of dynamic textures [15]. Instead of design-

ing a new video representation, we propose a new detec-
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tion framework which can be combined with different rep-

resentations. We show that competitive performance can be

achieved even only using optical flow as the descriptors.

3. Anomaly Detection with Scan Statistics

3.1. The Scan Statistic Method

To discover spatial-temporal regions in which activities

are abnormal, we scan the video with a three-dimensional

sliding window. Both the shape and size of the window

are variable so that abnormal activities that occupy irregular

regions in the video can be identified and localized.

For a region S defined by a window, we measure whether

the observations in it is anomalous. Specifically, letting the

video be our whole study region and x be the set of obser-

vations in it, we define two hypotheses about x. The null

hypothesis H0 assumes no anomaly exists in x, i.e. the un-

derlying characteristics of the observations throughout the

whole study region are the same. The alternative hypothesis

H1(S) assumes that the characteristics of observations in-

side and outside S are different. These two hypotheses can

be compared by computing the likelihood ratio test statistic:

λ(S) =
Pr(x|H1(S))

Pr(x|H0)
(1)

where Pr(x|Hi) is the likelihood function of observing x

under hypothesis Hi, i = 0, 1.

The likelihood ratio test is a measure of the strength of

H1. The larger this number is, the more likely H1 is true

and the greater the discrepancy between distributions of the

observations inside and outside S. Therefore we can use

λ(S) as a measure of the abnormality of the region.

3.2. Semiparametric Density Ratio Model

To compute the likelihood ratio test statistic in Eq.(1) for

each region, an appropriate probability model must be pos-

tulated for Pr(x|Hi). Instead of assuming a specific para-

metric probability model as in Kulldorff’s method [13], we

follow Kedem and Wen [11] and use a semiparametric den-

sity ratio method to compute the likelihood for the observa-

tions under different hypotheses.

3.2.1 The Density Ratio Model

A certain scanning window separates the whole study re-

gion into two parts. This results in two sample sets,

x1 = (x11, x12, . . . , x1n1
)T ∼ f(x) (2)

x2 = (x21, x22, . . . , x2n2
)T ∼ g(x)

where x1 contains the observations inside the window with

sample size n1, and x2 represents the observations outside

the window with sample size n2. f(x) and g(x) are their

corresponding probability density functions. Taking g(x)
as the reference density, we assume that the ratio between

f(x) and g(x) has an exponential form

f(x)

g(x)
= exp(α + βT

h(x)) (3)

Here h(x) is a predefined function of x which may take a

form as x, x2, log(x), or any combination of them such as

(x, x2)T or (x, log(x))T . α is a scalar, β could be a scalar

or vector depending on h(x).
It is obvious that β = 0 implies α = 0 and therefore

we have f(x) ≡ g(x), which means the samples inside and

outside the scanning window come from a common distri-

bution. Therefore, the null hypothesis of no anomaly in the

study region can be represented as H0 : β = 0.

Let n = n1 + n2, t = (t1, t2, . . . , tn)T =
(x11, . . . , x1n1

, x21, . . . , x2n2
)T denotes the combined

sample set, and let pi = dG(ti) = Pr(X = ti), where

G(x) is the corresponding cumulative distribution function

of g(x). The semiparametric likelihood of the samples can

be represented as

L(α,β, G) =
n∏

i=1

pi

n1∏

j=1

exp(α + βT
h(x1j)) (4)

The likelihood ratio score in Eq.(1) are then computed by

estimating this likelihood with and without the assumption

of f(x) ≡ g(x).

3.2.2 Parameter Estimation

We can follow the profiling procedure discussed in [18, 7]

to estimate pi, i = 1, . . . , n and (α, β). It first fixes (α, β)
and maximize L in Eq.(4) with respect to pi, i = 1, . . . , n
subject to constraints

∑
pi = 1 and

∑
pi[ω(ti) − 1] = 0,

where ω(x) = exp(α+βT
h(x)) and the constraints reflect

the fact that dG(x) and ω(x)dG(x) are both distribution

functions. By employing the Lagrange multiplier method,

we are able to represent pi in terms of α and β. It then sub-

stitutes pi back into the log-likelihood � = log L(α,β, G).
By setting ∂�/∂α = 0, we have that the maximum value of

L is attained at pi = n−1

2
[1 + ρω(ti)]

−1, where ρ = n1

n2

.

Therefore, ignoring a constant, the log-likelihood as a func-

tion of α, β only is

�(α,β) = −

n∑

i=1

log[1 + ρ exp(α + βT
h(ti))] (5)

+

n1∑

j=1

[α + βT
h(x1j)]

α and β are then estimated by maximizing this log-

likelihood through a Newton’s method.
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3.2.3 Computing the Likelihood Ratio Test Statistic

Let α̂, β̂ be the maximum likelihood estimates of α and β;

then �(α̂, β̂) corresponds to the log-likelihood of observing

the samples without the assumption of f(x) ≡ g(x), i.e. un-

der the alternative hypothesis H1(S). �(0,0) corresponds

to the log-likelihood under the null hypothesis H0 : β = 0.

The likelihood ratio test statistic λ(S) in Eq.(1) is twice the

difference in these log-likelihoods:

λ(S) ≡− 2[�(0,0) − �(α̂, β̂)] (6)

= − 2

n∑

i=1

log[1 + ρ exp(α̂ + β̂
T
h(ti))]

+ 2

n1∑

j=1

[α̂ + β̂
T
h(x1j)] + 2n log(1 + ρ)

This semiparametric density ratio method has two major

advantages. First, the parameters α, β and the distributions

are estimated from the combined data t, not just from sam-

ples either inside or outside the scanning window. When

the window size is small, estimating the two distributions

separately will be unreliable since the number of samples

inside the window is too small. Second, the method does

not require assumptions about the specific parametric prob-

ability model of the data. Although we still have to chose

the form of h(x), it is not specific for different distributions.

For example, it is easy to derive that for both Bernoulli and

Poisson distributions, we have h(x) = x. Therefore, the

same method can be directly applied to problems with quite

different data distributions.

4. A Fast Scanning Algorithm

One major challenge of the scan statistic method is the

large number of regions that need to be scanned. Due to

the highly dynamic nature of human motion, the abnor-

mal activities usually occupy irregular regions in the three-

dimensional space. This requires the scanning window to

cover regions with a large variety of shapes and sizes. More-

over, there are usually multiple anomalies in the video. This

makes fast detection methods that only search for the most

anomalous region inapplicable. In this section, we pro-

pose an efficient search scheme for the semiparametric scan

statistic method.

4.1. Motion Representation

We use optical flow as a low-level measure of motion in

videos. The optical flow field for each frame is estimated

using the method in [14]. We then build a bag of words

representation for the flow field. We define a dense grid of

rectangular cells on the image. In each cell we extract a

local patch of optical flow. The flow patch is then quan-

tized to a flow word. Therefore, the samples for the scan

statistic method take the values of ti = 1, . . . ,K, where

K is the size of the code book. Then, the motion in a

spatial-temporal region is represented by the histogram of

flow words.

The histogram representation simplifies the computa-

tion of the log-likelihood �(α,β) in Eq.(5). Let b =
(b1, b2, . . . , bK)T be the histogram for a spatial-temporal

region, where bk, k = 1, . . . ,K is the number of flow

patches that are quantized to the kth word in the region.

Letting b
w = (bw

1
, bw

2
, . . . , bw

K)T be the histogram of the

whole study region, Eq.(5) can be rewritten as

�(α,β) = −
K∑

k=1

bw
k log[1 + ρ exp(α + βT

h(k))] (7)

+
K∑

k=1

bk[α + βT
h(k)]

h(k) can be pre-computed here instead of computing it

for each sample separately as in Eq.(5). We set h(x) =
(x, log(x))T in the experiments. The simplification of the

log-likelihood in Eq.(7) makes the estimation of α, β for

each region very efficient. The computation of the likeli-

hood ratio test statistic in Eq.(6) is simplified similarly.

4.2. A Two-round Scanning Algorithm

Since an irregularly shaped spatial-temporal region can

be approximated by a union of a set of equally sized

cuboids, instead of searching exhaustively with windows of

variable shape and size, we first scan the video with a fixed-

sized three-dimensional rectangular window. Note that by

using the integral image trick, the flow word histogram for

any cuboid in the video can be obtained very efficiently.

According to the definition of the likelihood ratio test, re-

gions that contain abnormal activities should always have

larger λ(S) than those that only contain normal activities.

However, due to the complexity of human motion, some re-

gions may have large λ(S) and look anomalous although

they are part of the normal activity. We therefore run a sec-

ond round of scan which not only reduces these false alarms

but also helps to identify the true scope of the irregularly

shaped anomalous regions.

Among the detections of the first round of scan, false

anomalous regions are usually isolated. On the other hand,

true anomalous regions are detected in groups. They con-

stitute larger anomalous regions. Therefore, after the first

round of search, we take regions whose λ(S) are larger than

a threshold T and build a graph over them. If two regions

are adjacent to each other, an edge is added between them.

Then we find the connected components in this graph. Since

different T results in different graphs and so different con-

nected components, we use multiple thresholds to explore

different possibilities for connecting the regions. Specifi-

cally, let λ̂ be the largest λ(S) in the first round of scan,
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Figure 2. Examples of detected abnormal activities in the UMN dataset.

{Ti = qiλ̂|qi = 0.1, 0.2, . . . , 0.9} are used in experiments.

Finally we compute the likelihood ratio test λ(S) for the

connected components. In true anomalous areas, λ(S) of

these new formed regions are larger than those of the re-

gions that constitute them.

This is a greedy algorithm for scanning the video. The

first round of scan provides initial estimation of the prob-

abilities that any local spatial-temporal region in the video

contains abnormal activities. In the second round of scan, a

set of most probable candidates are examined. For a video

divided into an m×n×t grid, both rounds scan O(mnt) re-

gions. The exhaustive search scheme that uses a window of

variable shape and size needs to search O(m2n2t2) regions

even only considering regions of cubic shape. The above

greedy algorithm not only examines far fewer regions, but

also detects regions with irregular shapes.

5. Experimental Results

In this section, we show the performance of the scan

statistic method on three benchmark datasets and several

videos “in the wild” that are downloaded from the web.

These datasets show examples of different kinds of global

and local abnormal activities.

5.1. UMN Dataset

The UMN dataset [9] includes 11 video sequences of

three different scenes of crowded escape events. Each video

begins with normal behavior where people walk around,

followed by a sudden abnormal panic. Some examples of

the abnormal behaviors are shown in Fig. 2. Since the

whole crowd is involved in the abnormal activities, we use

this dataset to evaluate the performance for global abnormal

event detection.

Sine we only need to detect in which frames the activities

are anomalous, we fix the spatial size of the scanning win-

dow to cover the whole image. To quantitatively compare

the performance of our algorithm with other state-of-the-

art methods, we take a window’s score λ(S) as the score

for the frame in the middle of the window. Here we only

need to run the first round of scan with fixed sized win-

dow. The window length is set to 20 frames. We then draw

ROC curve for this frame-level measurement. Table 1 com-

pares the corresponding average AUC with other methods.

Our scan statistic method achieved very competitive perfor-

Method Area under ROC

Chaotic invariants [20] 0.99

Social force [17] 0.96

Optical flow [17] 0.84

Nearest neighbor [5] 0.93

Sparse Reconstruction [5] 0.995/0.975/0.964

(Scene1/Scene2/Scene3)

Scan statistic 0.991/0.951/0.99

(Scene1/Scene2/Scene3)

Table 1. The comparison of our semiparametric scan statistic

method with other methods on the UMN dataset.

mance. Note that all other methods require examples of nor-

mal activities being provided, which are used either to train

their models or as references for comparison. Our method

does not have this requirement. No training or initialization

are involved. The result demonstrates the effectiveness of

the scan statistic method for global abnormal events detec-

tion in videos.

5.2. UCSD Anomaly Detection Dataset

The UCSD anomaly dataset contains two subsets, Ped1

and Ped2, each corresponding to a different scene. The first

scene contains groups of people walking towards and away

from the camera. The second scene contains pedestrian

movement parallel to the camera plane. Abnormal events

mainly include non pedestrian entities, such as people rid-

ing bicycles, skaters, carts, and anomalous pedestrian mo-

tion patterns. It provides training sets (34 clips for Ped1 and

16 clips for Ped2), which contain only normal activities, for

learning of normal models. Frame level ground truth, which

indicates whether an anomaly is present in a frame, are pro-

vided for the testing sets (36 clips for Ped1 and 12 clips for

Ped2). For a subset of the testing sets, pixel level ground

truth masks are provided.

Due to the unsupervised nature of our method, we do not

use the training sets but directly detect abnormal activities

in the two testing sets. We only use several normal frames to

partially calibrate the perspective distortion of the scene in

Ped1 due to the use of optical flow as the low-level represen-

tation. For the first round of scan, the window size is fixed to

15 × 10 pixels in space and 3 frames in time. We compare

our method with sparse reconstruction [5], mixture of dy-

namic textures (MDT) [15], social force (SF) [17], mixture
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Figure 3. Comparison of anomaly detection results on UCSD dataset. (a) ROCs for Ped1 dataset using frame-level ground truth. (b) ROCs

for Ped2 dataset using frame-level ground truth. (c) ROCs for a subset of Ped1 dataset using pixel-level ground truth. A frame is considered

detected correctly only if at least 40% of the truly anomalous pixels are detected.

(a) Ped1

(b) Ped2

Figure 4. Examples of abnormal activities detected in UCSD

anomaly detection dataset.

of optical flow (MPPCA) [12] and the optical flow moni-

toring method [1]. Note that except ours, all other methods

have used the training sets to learn the normalcy models.

We show the ROC curves in Fig. 3. We can see that

without any training, our scan statistic method has achieved

remarkable results. On Ped1, although its performance is

a little inferior to the sparse reconstruction method when

using frame level ground truth, its localization accuracy is

much higher than it as shown in Fig. 3(c). On Ped2 we

outperform all other methods. After computing the optical

flow and obtaining the cumulative flow word histograms for

the videos, the scan statistic method takes about 0.2 second

per frame on a standard Pentium machine with 3GHz CPU

and 4GB RAM. Other states-of-the-art methods are much

slower, e.g. the MDT method takes 25 secs per frame[15]

during detection. Some examples of detections are shown

in Fig. 4.

5.3. Subway Surveillance Dataset

The subway surveillance videos are provided by Adam et

al. [1]. There are two videos in the dataset. One video mon-

itors the entrance gate, which is 1 hour 36 minutes long with

144,249 frames in total. The other watches the exit gate and

is 43 minutes long with 64,900 frames. We follow the same

definition of abnormal activities used in [12]. Specifically,

the following abnormal activities are defined: (a) Wrong di-

rection (WD): people exit through the entrance gate or enter

through the exit gate; (b) No payment (NP): people enter

the entrance gate without payment; (c) Loitering (LT): peo-

ple loiter at the station; (d) Irregular interactions between

persons (II); (e) Misc.: e.g. a person suddenly stops walk-

ing, or runs fast. The entrance gate video includes all these

abnormal events and the exit gate video only includes the

wrong direction, loitering and misc. events.

In this experiment, we use histogram of optical flow

(HoF) to represent the local optical flow patch. The HoF

features are then quantized to flow words. The spatial size

of the window is fixed to 40×90 pixels and the length is set

to 40 frames during the first round of scan. We then com-

pare the detected merged regions with the ground truth. The

quantitative comparison of the result with other methods is

shown in Table 2. We can see that our algorithm achieved

similar performance to other state-of-the-art methods. Un-

like our method, both of the other two methods use video

clips containing normal activities in the first few minutes of

the video to train their models. Our method starts detection

without training so that we do not need to know whether

the gate is for entrance or exit beforehand. This is mined

directly from the testing videos.

Our method missed half of the no payment events. This

may due to the fact that the gate is located far from the cam-

era and people turn their back towards the camera during

paying. Additionally, some no payment actions are too sub-

tle to be recognized. We show some examples of the de-

tected abnormal activities in Fig. 5 and Fig. 6. The detected

regions are composed of several overlapping sub-windows

of fixed size. The composed windows show good coverage

of the abnormal events.
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Method Wrong direction No pay Loitering Irregular inter. Misc. Total FA

Ground truth 26/9 13/- 14/3 4/- 9/7 66/19 0/0

ST-MRF [12] 24/9 8/- 13/3 4/- 8/7 57/19 6/3

Sparse coding [22] 25/9 9/- 14/3 4/- 8/7 60/19 5/2

Scan statistic 26/9 6/- 14/3 4/- 8/7 58/19 6/2

Table 2. Comparison of abnormal activity detection results on subway surveillance data. FA stands for false alarm. The first number in the

slash (/) denotes the entrance gate result. The second is for the exit gate result.

(a) WD (b) WD (c) NP (d) NP

(e) LT (f) II (g) MISC (h) FA

Figure 5. Example of abnormal activities detected in subway en-

trance video. WD: wrong direction; NP: no payment; LT: loiter-

ing; II: irregular interactions; MISC: misc.; FA: false alarm. False

alarms are marked with green windows.

(a) WD (b) WD (c) WD (d) LT

(e) MISC (f) MISC (g) MISC (h) FA

Figure 6. Example of abnormal activities detected in subway exit

video. WD: wrong direction; LT: loitering; MISC: misc.; FA: false

alarm. False alarms are marked with green windows.

5.4. Web Videos

The above experiments have demonstrated the effective-

ness of our method on benchmark datasets. In this section,

we apply our method to videos downloaded from the web

which are taken in less controlled environments. In many

web videos, the activities of the whole crowd keep chang-

ing and are unpredictable. In this case, the approaches that

require normal examples for model training before actual

detection become inapplicable. Our scan statistic method

can still handle these videos. We first divide the videos into

small clips. Then we detect abnormal activities in each clip

independently.

Sample frames of the detected abnormal activities for

three videos are shown in Fig. 7. In the first video, a man

walks in the opposite direction to that of all other people.

We correctly detect this man throughout the whole video.

When the man is not in the scene, no abnormality occurs, so

no alarm is raised. The second video is from a flash mob ac-

tivity in which a group of people assemble and dance on the

street. During the dancing, a man in a blue T-shirt suddenly

steps out, dances in front of others and then goes back. We

detect this man in most of the frames during his abnormal

movement. A false alarm happens when his back is turned

to the camera so the movement of his arms and legs are oc-

cluded. The third video displays crowd panic. Most people

run in the scene. However, several people remain standing,

then fall down. Our algorithm successfully detects these

people in the video.

These results illustrate that the proposed method works

well for real world videos in which crowd activities are

complex. By using the criteria that abnormality happens

when the behavior is different from the majority of oth-

ers, we successfully detect abnormal activities in crowded

scenes without any training.

6. Conclusion

In this work, we propose to use a semiparametric scan

statistic method for abnormal activity detection in crowded

scenes. Unlike many previous methods which need nor-

mal activity examples available beforehand for model train-

ing, our method is fully unsupervised and therefore more

applicable in practice. A likelihood ratio test statistic is

used as abnormality measurement for observations inside

a scanning window. By using a semiparametric method to

model the observations, it can be directly applied to analyze

a broad variety of data. We have also proposed a fast scan-

ning algorithm to improve the efficiency of the algorithm.

Experimental results on four different datasets demonstrate

the effectiveness of the proposed algorithm.

Scan statistics have become a popular method for cluster

detection in many fields. However, their application to vi-

sion problems has not been exploited. In this work, we have

illustrated its utility for abnormal crowd activity detection.

It would also be interesting to use scan statistics to solve
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(a) Crowd walk with a man walking in opposite direction.

(b) Crowd dance with a man stepping out.

(c) Crowd panic with several people falling down.

Figure 7. Abnormal activity detection result on three videos from the web. Red boxes on video frames represent detected abnormal

activities. False alarms are marked with green boxes. Full videos are shown in the supplementary material.

other computer vision problems, such as abnormal object

detection and texture analysis.
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