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Abstract

Recent work has successfully built the object classifier
for object detection. Most approaches operate with a pre-
defined class and require a model to be trained in advance.
In this paper, we present a system with a novel approach
for multi-vehicle detection and tracking by using a monoc-
ular camera on a moving platform. This approach requires
no camera-intrinsic parameters or camera-motion param-
eters, which enable the system to be successfully imple-
mented without prior training. In our approach, bottom-up
segmentation is applied on the input images to get the su-
perpixels. The scene is parsed into less segmented regions
by merging similar superpixels. Then, the parsing results
are utilized to estimate the road region and detect vehicles
on the road by using the properties of superpixels. Finally,
tracking is achieved and fed back to further guide vehicle
detection in future frames. Experimental results show that
the method demonstrates significant vehicle detecting and
tracking performance without further restrictions and per-
forms effectively in complex environments.

1. Introduction
Detecting and tracking objects are very important topics

for surveillance and monitoring technologies. Nowadays, a

camera on a moving platform is pervasive. More and more

researchers are working on detecting and tracking objects

using moving cameras. The task we address in this paper

is dynamic scene analysis for detecting and tracking multi-

ple vehicles from a moving, camera-equipped platform. We

seek to detect other traffic participants in the environment.

Such capability has obvious applications in car-mounted,

wearable, and hand-held camera systems to ensure people’s

safety.

Recent work has successfully built the object classifier

for object detection. Most approaches operate with a pre-
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defined class and require a model to be trained in advance.

Such work remain trapped in a “closed universe” recog-

nition paradigm, but a much more exciting paradigm of

“open universe” datasets, promises to become dominant in

the very near future [10].

Some approaches of scene analysis from a moving vehi-

cle require multi-viewpoint, multi-category object detection

[6]. Those approaches use 3D depth information as a ref-

erence to analyze the scene. Further, some approaches de-

velop systems to detect and track objects by combining in-

formation from multiple types of sensors, e.g., laser, sonar,

etc. However, multiple cameras and multiple sensors may

not be always available for a moving platform. An approach

to be applied on a monocular camera can enable universal

application. In addition, the scene from a moving vehicle

is changing all the time and has great variety. Thus, off-

line training methods have some limit on those applications.

An analysis method that does not need off-line training pro-

vides a good alternative in case where the trained classifier

fails.

In order to overcome such problems and generate ef-

fective results without the above-mentioned restrictions, we

present a system with a novel approach for multi-vehicle de-

tection and tracking using a monocular camera on a moving

platform without knowing camera-intrinsic parameters or

camera-motion parameters. We propose an analysis method

for detecting and tracking vehicles on the road using super-

pixel properties.

1.1. Related Work

While a great research effort has been dedicated to detec-

tion algorithms using steady cameras, it is difficult to gener-

ally apply existing methods to detect vehicles from videos

captured by a mono camera on a moving platform. Yam-

aguchi et al. [12] propose a road region detection method

by estimating the 3D position of feature points on the road.

The feature points and epipolar lines are utilized to detect

moving objects. This method assumes that there is no mov-

ing obstacle in the initial frame and that the road region

in the initial frame is decided according to the height of
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the camera that is measured when the vehicle is stationery.

However, when these assumptions are violated, the applica-

tion of this method would be restricted due to presence of

moving obstacles in the initial frame or change of camera

height. Kang et al. [4] use multiview geometric constrains

to detect objects. However, the approach is non-causal since

future information is required in this approach. Ess et al.[1]

develop a robust algorithm for detecting and tracking pedes-

trians from a mobile platform. However, this algorithm is

developed for a stereo rig, and the calibration of the stereo

rig is required in order to use depth information in this al-

gorithm. Leibe et al. [6] estimate structure-from-motion

(SfM) and scene geometry with stereo rig. Then, multiple

trained models are used to obtain 3D localization and tra-

jectory. The classifiers used in those methods need to be

trained off-line. One of the main disadvantages of off-line

training method is the need to collect and train data in ad-

vance for a specific application.

Sivaraman and Trivedi [9] presented a comparative study

about on-road vehicle detection. For some object detection

work introduced in [9], active learning is used for object

detection to train good classifiers with less data and to min-

imize human annotation time. In our work, with the same

benefits, we develop an integrated algorithm that does not

require prior training, and the algorithm can be generally

applied to detect and track multiple vehicles.

1.2. Main Contributions

The paper consists of the following main contributions:

1) A novel online system is presented for dynamic scene

analysis on videos acquired from an uncalibrated monoc-

ular camera on a moving platform. The system requires

neither prior training nor multi-camera reference informa-

tion. Thus, it is capable of adapting to a variety of environ-

ments. 2) An efficient method based on superpixel proper-

ties is proposed and demonstrates significant performance

on challenging video sequences. The method reduces anal-

ysis complexity and the challenge of not using pixel-level

analysis does not weaken the effectiveness of detection per-

formance. 3) Not only the bounded boxes of the detected

objects are provided but also the segmentation of the de-

tected objects is generated. 4) An integrated algorithm is

developed for multi-vehicle detection and tracking. The al-

gorithm relaxes the stringent requirement of prior work and

requires no information of camera intrinsic or motion pa-

rameters. The combination of these strengths enables the

system to be generally applied to real-world problems.

1.3. System Overview

In our approach, bottom-up segmentation [2] is applied

on the input images to get the superpixels first. The segmen-

tation results provide regional information and make the

analysis more efficient than pixel-level analysis. The scene

is then parsed into less segmented regions by merging simi-

lar superpixels and the parsing result is used to estimate the

road region. Next, a classification process is performed to

detect the outlier of superpixels on the road region. Super-

pixel outliers and the lines detected in the scene are used to

detect vehicles on the road. Finally, tracking is achieved and

fed back to further guide vehicle detection in future frames.

2. Merging
We want to analyze the video streams based on the con-

tent of the images. Analyzing video streams using super-

pixels is more efficient than the pixel-based analysis. Su-

perpixels that are generated by bottom-up segmentation can

provide spatial information for aggregating pixels that could

belong to a single object and reduce analysis complexity.

Usually, some segmentation methods, like [2, 8], generate

over segmented results. Segmentations that are similar and

belong to the same object are separated by the object’s or

other vehicles’ edges. To achieve efficiency, the segmenta-

tions of the same objects should be merged together. Here,

we propose a method to merge the similar segmentations

that belong to the same vehicle. The likelihood Lg(Si, cj)
is presented to evaluate the similarity between superpixel Si

and the superpixel group cj .

Lg(Si, cj) = ω1Lc(Si, Sj)+ω2Lf (Si, Sj) ∀Si ∈ ξcj , (1)

where Lc(.) is the color likelihood, Lf (.) is the feature like-

lihood, Si is one of the neighbor superpixels of group cj ,

Sj is the initial superpixel in group cj , ξcj is the set of

neighbor superpixels of group cj , and ωi is the weighting.

When computing the likelihood, superpixel Sj is used to

compare with superpixel Si. The merging process for cj is

initiated from the largest superpixel and preformed in de-

scending size order. Simply using an RGB image model

cannot deal with shadow problems. Therefore, the HSV

image model is also used in the color likelihood to help the

merging process. The means and variances of the RGB and

HSV values in superpixels are calculated. The means and

variances are taken as Gaussian random numbers. The log-

arithm of the probability Pc(Si|Sj) is used as the color like-

lihood Lc(Si, Sj). Pc(Si|Sj) is modeled by a normal dis-

tribution. For the feature likelihood Lf (.), the feature used

here is the coefficients of the Walsh-Hadamard (WH) trans-

form, and the size of the WH transform is determined by

the superpixel’s size. The logarithm of the conditional in-

ference probability for the WH feature is used as the feature

likelihood and defined as follows:

−log (PWH(Si|Sj)) =
∑
i

‖fWH(Si)− fWH(Sj)‖1 ,
(2)

where fWH(Si) is the mean of the WH feature in super-

pixel Si and ‖·‖1 is 1-norm. The popular histogram of the
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oriented gradients (HOG) feature is not utilized to compare

the similarity of superpixels for merging because the road

region does not have rich texture. The merging process is

recursive. After every round of merging, the new neigh-

bors of cj will be inspected until no more merging can be

done. Since superpixels are bounded by edges, the super-

pixels are expanded for multiple pixels by morphological

operation in order to find similar neighbors. When the like-

lihood Lg(Si, cj) is high, we merge the superpixel Si into

group cj . After this process, the similar neighboring super-

pixels are merged together.

Fig. 1(a) shows the segmentation results of superpix-

els. As one can see, the segmentation results are over seg-

mented. After the merging process, better segmentation re-

sults are obtained and are shown in Fig. 1(b).

(a) (b)

Figure 1. Superpixel grouping (a) before grouping, (b) after group-

ing

3. Classification
In this section, the grouping results and the lines detected

in the image are utilized to detect the road region. After the

grouping process, the groups on the bottom of the field of

view (FOV) are taken as the candidate of road region with

the assumption that the camera is facing forward in the car.

The lines around the boundary of superpixels that are close

to the bottom FOV are detected by using dilate/erode mor-

phological operations. The line detection module is based

on the approach in [11], which is more reliable than using

the normal Hough transform detection method. In Fig. 2(a),

red lines show the lines around the boundary of superpixels

that are close to the bottom FOV. If lines around the super-

pixel boundary are detected, the intersections are calculated

and the mode of the density is taken as the horizon of the

FOV (as shown in Fig. 2(b)). If the mode is outside the FOV

or no lines are found, the boundary of the superpixel groups

near the bottom FOV is used to calculate the intersections

and the mode is used as the horizon.

Next, we are able to identify the road region by using the

horizon position and the extreme values of the superpixel

boundary group near the bottom FOV. After the road region

is defined, the superpixels on the road region are examined

and classified as inliers or outliers of the road with the fol-

lowing classification likelihood L(.).

L(Si, Rk) = maxj{LRGB(Si, Sj)}, ∀Sj ∈ Rk, (3)

where Si is the ith superpixel in the detected road region,

Rk is the superpixel group near the bottom FOV, L(Si, Rk)
is the likelihood value for Si and Rk, and LRGB(Si, Sj)
is the likelihood value computed by summing the absolute

difference of the RGB mean and variance of Si and Sj .

Rk contains multiple superpixels that are grouped together

using Eq. 1. With the highest computed LRGB(Si, Sj),
L(Si, Rk) is used to find the superpixel Sj in Rk that

matches best with superpixel Si on the road region. Then,

the chroma-luminance (CL) relation of Si and Sj is applied

to classify superpixel Si as a outlier or inlier of the road.

Si and Sj are CL-similar iff ,max

⎛
⎜⎜⎜⎜⎜⎜⎝

|R̄i − R̄j |
|Ḡ− Ḡj |
|B̄ − B̄j |

|σR,i − σR,j |
|σG,i − σG,j |
|σB,i − σB,j |

⎞
⎟⎟⎟⎟⎟⎟⎠
≤ ε

(4)

The CL-similar relation defines the required CL affinity be-

tween same-region superpixels. The CL threshold, ε, con-

strains the region member superpixel equivalence.

(a) (b)

Figure 2. Horizon detection (a) lines around the boundary of super-

pixels that are close to the bottom FOV, (b) density of intersections

4. Detection
This section presents the method to detect vehicles on

the road region. With the information of the horizon and

superpixels on the bottom of the FOV, the road region can

be defined. Given the observations Z, the probability of

the hypothesis h with vehicle positions and sizes can be ex-

pressed as follows:

p(h|Z) = p(h|R, l) (5)

= p(h|Si, ψ) (6)

= p(h|So, ζ) (7)

where R is the detected road region, l is the set of lines de-

tected on the image, Si is the superpixels on the road region,
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ψ is the set of lines on the road region, So are the superpix-

els that are outliers of the road, and ζ is the grouped lines.

As shown in Eq. 7, computing the probability h given Z
is equal to computing the probability of h given the road

region R and detected lines l. Also, computing p(h|Z) is

equal to computing the probability of h given the superpix-

els Si and lines ψ on the road. In our system, we compute

the probability of h given the superpixels that are outliers So

and grouped lines ζ. The length and dispersion of the lines

in ζ provide information of the vehicle size and position.

Next, for every hypothesis h, we compute the probability of

the outlier ratio by using the validation potential. The fol-

lowing sections describe the method to group lines and the

computation of the validation potential.

4.1. Line Grouping

We use the detected lines to provide cues for detecting

vehicles on the road. If a scene is classified geometrically,

like [3], we make the reasonable assumption that each seg-

mented region is belong to either the vertical or horizontal

category. Road region is classified in the horizontal class

and detected vehicles, like cars, on the road are classified

in the vertical class. Since cars are symmetric, the de-

tected lines that belong to a car have the same angle and

the centroid of each detected line is on the same vertical

y-axis. That means the centroids have the same x position

but different y positions. Therefore, the lines with the cen-

troid at a similar horizontal x position are grouped and the

regions of grouped lines are considered as possible vehi-

cles on the road. In addition, the length and dispersion of

the grouped horizontal lines provide information about the

bounded boxes of the vehicles.

An agglomerative hierarchical clustering algorithm is

used for grouping lines with the following constraints:

θk − θk′ < thθ (8)

dcen,x < thcen,x, (9)

where θk is the angle of the detected line k, and dcen,x is the

distance between the x positions of line k and line k′’ cen-

troids. By clustering, the lines that are close to each other

and that have similar horizontal x positions can be grouped

together. The width and the height of each possible vehi-

cle are decided by the maximum line length and maximum

line dispersion in each grouping region respectively. We

validate the accuracy of the vehicle detection results in the

following section.

4.2. Validation

The detected outliers of superpixels are used to validate

the detected line groups and reduce false detections. A val-

idation potential Φ(.) is designed to measure the accuracy

of the hypothesis h. The validation potential is expressed in

terms of the ratio of outliers inside the line group ζj :

Φ(hj |So, ζj) =
∑
i

nSoi
,ζj

ϑζj
, (10)

nSoi
,ζj is the pixel number of the superpixel outliers Soi

inside the area of ζj . ϑζj is the overall pixel numbers in

the area of line group ζj . We sum up the pixel numbers of

outliers in the bounded box of line group ζj , and divide it

by the overall pixel numbers ϑζj . The ratio provides the

information of the accuracy of the hypothesis h.

Fig. 3(a) shows the detection result. The vehicle’s seg-

mentation can be obtained using the superpixel outliers in

the bounded box and shown in Fig. 3(b).

(a) (b)

Figure 3. Detection (a) detected vehicle, (b) vehicle segmentation.

5. Tracking
The tracking system is developed by recursive Bayesian

estimation and implemented by the Markov Chain Monte

Carlo (MCMC) technique [5, 7]. The state of the target

and its observation at time t are denoted as xi,t and zt re-

spectively. Zt = {z1, . . . , zt} represents the overall obser-

vations from time 1 to t. The posterior probability of xi,t
given observation Zt at time t can be derived as

p(xi,t|Zt) = α · p(zt|xi,t) ·∫
p(xt|xi,t−1) · p(xi,t−1|Zt−1)dxi,t−1. (11)

Eq. 11 is a recursive form of Bayesian estimation using

prior probability p(xi,t−1|Zt−1) to estimate posterior prob-

ability p(xi,t|Zt). The estimation also needs observation

model p(zt|xi,t), which is a measurement of zt given xi,t.
The state transition model p(xi,t|xi,t−1) is used as a mo-

tion model to predict current state xi,t given previous state

xi,t−1. This formula is valuable in the visual tracking area

and has been used in a lot of work.

For computational efficiency, the MCMC sampling step

is used to replace the sequential importance sampling (SIS)

step on recursive Bayesian estimation. A set of unweighted

samples {xki,t−1}Nk=1 generated by MCMC sampling is used

for an approximation of p(xi,t−1|Zt−1) ≈ {xki,t−1}Nk=1.
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The Metropolis-Hastings (MH) algorithm is used to gener-

ate an unweighted sample set {xki,t}Nk=1 with posterior dis-

tribution p(xi,t|Zt).

In the MH algorithm, a proposed move x′ is generated

by the proposal distribution q(x′, x). The move is accepted

with an acceptance ratio α where

α = min

{
1,
π(x′)q(x′, x)
π(x)q(x, x′)

}
. (12)

If rejected, the move x′ is discarded and x remains un-

changed. In this way, the distribution of the samples gen-

erated by MCMC will approximate the desired distribu-

tion π. In this paper, the desired distribution is defined

as π(x) = p(zt|xi,t)
∑N

k=1 p(xi,t|xki,t−1). The transition

model p(xi,t|xi,t−1) is modeled by a Gaussian distribution,

p(xi,t|xi,t−1) ∼ N(xi,t−1,Σ1), where Σ1 is the variance.

Our observation likelihood p(zt|xi,t) is designed by us-

ing only superpixel information. Observation likelihood

p(zt|xi,t) is defined as

p(zt|xi,t) =
∑
h

βh(rSh,t,xi,t
− r̂Sh,t,xi,t

)−
∑
k

rSk,t,xi,t
(13)

rSh,t,xi,t
= nSh,t,xi,t

/nSh,t
(14)

r̂Sh,t,xi,t
= (nSh,t

− nSh,t,xi,t
)/nSh,t

(15)

rSk,t,xi,t
= nSk,t,xi,t

/nSk,t
(16)

where βh is the weighting assigned to superpixel Sh,t. Sh,t

is a superpixel that is CL-similar with one of the superpixels

Sq,t−1 belongs to the vehicle xi,t−1 in the previous frame.

Sk,t is a superpixel that is not CL-similar with any super-

pixels belonging to the vehicle xi,t−1 in the previous frame.

nSh,t,xi,t
is the number of pixels that are in the area of xi,t

and belonging to superpixels Sh,t. nSh,t
is the total num-

ber of pixels belonging to superpixels Sh,t. nSk,t,xi,t is the

number of pixels that are in the area of xi,t and belonging

to superpixels Sk,t . rSh,t,xi,t
is the percentage of the super-

pixel Sh,t covered by the area of state xi,t. r̂Sh,t,xi,t
is the

percentage of the superpixel Sh,t not covered by the area of

state xi,t. rSk,t,xi,t is the percentage of Sk,t covered by the

area of state xi,t.

When there are more superpixels in the area xi,t that are

CL-similar with the superpixels belonging to the vehicle in

the previous frame, the value of the first summation gets

larger. On the other hand, p(zt|xi,t) is penalized by the

leaking ratio r̂Sh,xi,t . And, the weighting βh is the area

of superpixel Sq,t−1 divided by the overall area of the ve-

hicle in the previous frame. That means the weighting is

proportional to the size of superpixel Sq,t−1. The second

summation means that the value of p(zt|xi,t) is penalized

by the pixel number of the outlier in the area of xi,t.

6. Experiments
We test the proposed algorithm on a variety of real-world

videos. The video streams were captured by a camera in a

forward-moving car and the camera was held by a human

hand. In Fig. 4, 5 and 6, the video streams are captured

around the urban area. The car speed is about 10∼35 MPH.

The videos are recorded at a frame rate of 30Hz and the res-

olution of 640x480 pixels. Because the road is uneven and

the human hand is unstable, the captured video streams have

a lot of sudden irregular movements. The relative move-

ments between vehicles and the camera are complex and

change rapidly. In Fig. 7, the video streams are captured on

the highway with lower resolution of 384x288 pixels.

For the tracking system, 100 particles are used, and the

length of the thinning interval is five (N = 100, M = 5).

We model the proposal distribution q(x, x′) by a Gaussian

distribution. All variances are set to be proportional to the

vehicle size.

Fig. 4 and 5 show the multi-vehicle detection and track-

ing results of experiment 1 and 2. The detection results are

shown in the top row, and the tracking results are shown

in the bottom row. Both video streams were taken near the

intersection, and there are road marks in the scenes. The fig-

ures in the top row show that the proposed method is able

to perform significant detection performance regardless of

the vehicles are moving forward or toward the camera. Fig.

5(a)(b)(c) show that our system can still successfully detect

the vehicles even when the vehicles become smaller. Fig.

4(d)(e)(f) show the frames of tracking after the detection

task. The trackers follow detected vehicles quite well after

the detection task is terminated. Fig. 5(d)(e)(f) show the

frames of tracking in the middle of the detection task. They

present robust tracking performance with only small biases

in vehicle position and size. In the middle of detection, the

tracking can be associated with detected vehicles and en-

hance the detection power and robustness of the system.

The results of experiment 3 are shown in Fig. 6. The sce-

nario is challenging since vehicles are very cluttered. The

vehicle at the right side of the road is a parked car and the

middle car is partially occluded by both cars at its right side

and left side. The top row of Fig. 6 shows that our system

is fairly robust to deal with these tough cases. The bottom

row shows the tracking result. As one can see in Fig. 6(e)(f),

only two cars are tracked since there are only two detected

cars in Fig. 6(d). Once the incoming car is detected, a new

tracker would be initiated.

Fig. 7 shows another example of robust detection. Ex-

periment 4 is performed on a challenging video stream cap-

tured in a car at speed over 60 mph on the highway with a

lower resolution than the previous experiments As one can

see, the camera was not facing directly forward but face a

little toward the left side of the car. Our system can still es-

timate the road region and accurately detect the vehicles on
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(a) (b) (c)

(d) (e) (f)

Figure 4. Experiment 1 Detection: (a) frame 83, (b) frame 104, (c) frame 226; Tracking: (d) frame 272, (e) frame 278, (f) frame 305.

(a) (b) (c)

(d) (e) (f)

Figure 5. Experiment 2 Detection: (a) frame 16, (b) frame 94, (c) frame 115; Tracking: (d) frame 9, (e) frame 31, (f) frame 51.

the road.

7. Conclusions and Discussion
In this paper, we proposed a novel method to effectively

detect vehicles on the road from videos captured by a cam-

era on a moving platform. The vehicles can be detected

without using any camera intrinsic and motion parameters.

Experiment results show the proposed method has signifi-

cant detecting and tracking performance. There is no need

to impose initial assumptions or to apply future frame in-

formation in the detecting algorithm. And, the online anal-

ysis method can adapt to various environments. Thus, the

proposed method could be generally applied to detect and

track vehicles with irregular camera movement and in com-

plex environment. Future research is aimed at extending our

algorithm for auto video segmentation.
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(d) (e) (f)
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