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Abstract

There is a growing demand in automated public safety
systems for detecting unauthorized vehicle parking, intru-
sions, un-intended baggage, etc. Object detection and
recognition significantly impact these applications. Object
detection and recognition are challenging problems in this
context, since the purpose of the surveillance videos is to
capture a wide landscape of the scene; resulting in small,
low-resolution and occluded images for objects. In this pa-
per, we present an experimental study on geometric and ap-
pearance features (∈ R≈25000) for outdoor video surveil-
lance systems. We also studied the classification perfor-
mance under two dimensionality reduction techniques (i.e.
PCA and Entropy-Based feature Selection). As a result, we
built an experimental framework for an object classification
system for surveillance videos with different configurations.

1. Introduction
Object classification is an important building block of

surveillance systems that signficantly impacts reliability of
its applications (e.g. the public safety application and video
indexing/tagging , video semantic search). Outdoor en-
vironments are more challenging for object classification,
due to the following reasons:(1) uncontrollable environment
conditions (e.g. fog, rain, lighting and haze) (2) incomplete
appearance details of moving objects due to occlusions, (3)
large distance between the camera and the moving objects,
(4) very low images resolution, since the moving object
occupies a small area (≈ 50 squared pixels) in the video
frames. Figure 1 shows an instance run of our experimental
framework on a surveillance video to illustrate the afore-
mentioned problems. For these reasons, state-of-the-art ap-
proaches (e.g. [8]) for object detection and recognition do
not perform well in outdoor surveillance systems.

This paper presents an experimental study that com-
pares different alternatives for the components of the object
recognition pipeline. As shown in the block diagram in Fig-
ure 2, the object classification process has different phases:

Figure 1. An instance run of our Framework

Object detection, Feature extraction, Dimensionality reduc-
tion, and Classification. The feature extraction phase is a
crucial step in object classification. Therefore, investigat-
ing different types of features and combining them is one
of the important aspects of this study. We implemented two
types of features: appearance features and geometric fea-
tures. Due to the curse of dimensionality and redundancy
of the features, dimensionality reduction is used for improv-
ing the classification accuracy and reducing the time com-
plexity of the overall process. We have implemented two
alternatives of the dimensionality reduction: feature trans-
form and feature selection. Then we evaluated the classifi-
cation performance based on two classifiers (SVM and Ad-
aBoost). Another important evaluation metric is the time
performance. This is crucial in realtime systems and in case
this object recognition module is followed by further pro-
cessing such as activity recognition.

The contribution of this paper is summarized as follows:
Building object detection and recognition testbed with high
recognition accuracy in surveillance videos. Comparing the
recognition accuracy using appearance features (e.g HOG
[4]) and geometric features. Comparing the performance of
different dimensionality reduction techniques. Comparing
the difference in performance between SVM and AdaBoost
classification algorithms in this context.

The rest of this paper is organized as follows. Section 2
presents the related work and the existing literature for ob-
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ject recognition and classification. In section 3, we present
our experimental framework. In section 4, we show the
experimental results and discussion. Finally, section 5
presents the conclusion and the future work.

2. Related Work
This section presents the related work of object classi-

fication in both still images and videos. One of the moti-
vations behind this work is to study the combination of ap-
pearance image features and contour-based/geometric fea-
tures in video surveillance systems.

2.1. Object Classification in still Image
There have been various methods used for object clas-

sification in still images. Methods for object classification
typically extract features by applying interest point detec-
tors on images. The survey by Schmid et al. [17] evalu-
ated the repeatability rate and information content of vari-
ous interest-point detectors. They also compared contour-
based, intensity-based and parametric model-based meth-
ods. The conclusion was that the Harris point detector [18]
and its multi-scale variation perform the best in two as-
pects: the repeatability and the information content. Matas
et al. [19] proposed detection algorithm using maximally
stable extremal regions (MSER), integrated with the SIFT
descriptor in [20] as a key point detector. The difference of
Gaussian (DoG) has been widely used as a keypoint detec-
tor with SIFT. The experiments in [20] show that the such
interest points are detected no matter if it belongs to ob-
jects or noisy background. Some other methods for scene
categorization [22] used a regular grid on images to extract
features from rectangle patches. In this systems, salient re-
gions are detected in the image. However, Some of them
lie on the background or cluttered. The successful usage of
these points after detection highly depends on descriptors
and classification.

2.2. Object Classification in Videos
Object classification in videos has been majorly ad-

dressed with silhouette features, namely shape-based clas-
sification. This type of classification is commonly used
for surveillance systems, generally, or action recognition
specially. Dedeoğlu, Yiğithan et al presented an approach
in [10] that is able to classify objects as human, human
group, and vehicle; based on a silhouette template database.
Distance function is measured between the query silhou-
ette to be classified and the database. Jianpeng Zhou et al
presented a human classification algorithm based on code-
book learning named DSCL (distortion sensitive competi-
tive learning) [11] as a part of a human tracking system.
Similar methods have been used to categorize and clas-
sify postures of the same object[12], where posture of a
human is classified using Support Vector Machine (SVM)
with affine invariant Fourier descriptor. The descriptor is

Figure 2. Experimental Framework

built on the human contour that corresponds to the posture.
The same idea was used to determine posture of hand or
sign language alphabet (e.g. [13, 14]). Another direction
that uses various motion features is the work by Yehezkel
and Boaz [15]. Some of the geometric features used in this
study follow from this work.

3. Proposed Framework
In this section, we present the different phases of the pro-

posed testbed, illustrated in Figure 2. Briefly, the moving
objects are detected and segmented from the input video
through a motion detection module. Afterwards, informa-
tion of the object detection (e.g. bounding boxes, contour
of extracted objects, current frame, and binary frame) is re-
layed to a feature extraction module that extracts the ob-
jects’ features (geometric and appearance features). The
third step is the dimensionality reduction phase that pro-
duces new feature vector X ′; this phase is optional. Finally,
object classification phase learns object categories or clas-
sifies the objects depending on the mode of the framework
(Learning or Classification). Each of the following subsec-
tions details the framework components.

3.1. Object Detection and Background Subtraction
In surveillance systems, the main goal is to detect mo-

tion and monitor activities. Therefore, the first step in any
surveillance video processing is to segment moving ob-
jects. We can categorize segmentation algorithms into back-
ground subtraction (e.g. citeElgammal2002), dense motion
segmentation (e.g. [24]), video segmentation (e.g. [26]), and
specific object detector (e.g. [25]). For stationary camera,
as in surveillance system, the background subtraction is
the most effective approach (high accuracy and low false
alarm). In this framework, we adopt a background subtrac-
tion approach [23] for detecting moving objects and seg-
menting them out. This approach uses non-parametric Ker-
nel Density Estimation (KDE) for building the background
model. Based on this model, each pixel is classified inde-
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pendently into background or foreground. The result of this
process is a bunch of connected foreground areas. These
foreground areas are further segmented into color homoge-
neous subareas (Blobs). The color distribution and geome-
try for these blobs is used for tracking.

3.2. Feature Extraction

As aforementioned, one main task of this work is to
study the effectiveness of several feature descriptors and
compare the performance of different machine learning al-
gorithms on the extracted features. This stages takes as in-
put the detected foreground regions. Then the surround-
ing contours and oriented bounding boxes are computed for
each region through the eigen vectors of the point set. The
remaining of this subsection describes the features utilized
in our study.

HOG Features

Histogram of Oriented Gradients (HOG) [4] is a widely
used feature descriptor in computer vision for the purpose
of object detection and classification. This technique builds
histogram of discrete values of gradient orientations in lo-
calized portions of the detected object.

Luminance Symmetry

In [15], Luminance Symmetry feature was proposed to mea-
sure the brightness symmetry of an object. In our study, we
computed the Luminance Symmetry around the axis using
the oriented bounding box as follows

Lsym =
1

C

2

w

√√√√√
h∑

i=1

(

w/2∑
j=1

I(i, j).B(i, j)−
w∑

j=w/2+1

I(i, j).B(i, j))2

(1)

where I is the intensity image, B is the mask image (i.e.
B(i, j) = 1 if location (i, j) is a foreground pixel), h and w
are the size of the oriented bounding box of the object seg-
mented from Background subtraction, and C is the maximal
luminance level. Asymmetric objects (e.g. clutter, body
organ, bikes) will have smaller luminance symmetry com-
pared to symmetric objects (e.g. cars, humans).

Central Moments

Hu moments [5] are well known scale, translation and ro-
tation, invariant moments. We extracted the seven Hu mo-
ments on the ADI object’s image, where ADI object’s im-
age is the absolute difference image after background sub-
traction (before thresholding), constrained to the oriented
bounding box of the object.

ART Moments

Angular radial transform (ART) is an image descriptor
adopted in MPEG7 [6]. It is advantageous in capturing both
connected and unconnected regions in a compact way. We
extracted ART descriptors with the standard configuration
nAngle = 12, nRadius = 6 which gives in total 6∗12−1=
72 features.

Cumulants

Following [15], three textural properties were computed on
the object after applying the foreground mask on it: (1)
Mean value (E

[
X]) of the intensity , (2) Standard deviation

( E
[
(X − μ)2]) of the intensity histogram, (3) Skewness

(
E
[
(X−μ)3]

E
[
(X−μ)2

]
)3/2

) of the intensity histogram. It was shown

in [15] that the mean is mostly low for clutter compared
to objects like bags (most bags have high contrast with the
background), while the standard deviation is high for clutter
(because intensity is often non-homogeneous) and low for
bags (because intensity is homogenous). The skewness is
negative for bags and positive for the remaining classes in
VIRAT dataset.

Horizontal and Vertical Projection

Horizontal HPi,+ (or vertical V P+,j) projection is a his-
togram in which each bin, corresponds to the sum of
the pixels in row i (or column j), where HPi,+ =∑

i B
′
(i, j),V P+,j =

∑
j B

′
(i, j). This feature captures

histogram variation, which can discriminate between many
objects with low resolution.

Morphological Features

Similar to [15], we extract four morphological features, as
follows: (1) Anthropometry (Ath = H

P ), which is a stable

ratio for human body. (2) Compactness (Cmpct = Ar
P 2 ),

which measures complexity of the shape, (3) Aspect ratio
(AR = W

H ) , (4) Solidity (SD = Ar
ArCH

), which measures
the portion of concave parts in the shapes. Where H,W
are the width and height of the bounding box of the object
respectively, P is the perimeter of the object’s contour, Ar
is the contour area of the object, and ArCH is area of the
convex Hull containing the object.

3.3. Dimensionality Reduction
Dimensionality reduction techniques are used for in-

creasing the robustness of data analysis. There are two
main categories for dimensionality reduction: feature trans-
form (supervised/unsupervised) and feature selection. In
feature selection techniques, the dimensions of the new low-
dimensional space is a subset of the dimensions of the orig-
inal high-dimensional space, while in feature transform, the
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dimensions of the new space is a linearly or nonlinearly
transformation of the dimensions of the original space. In
our framework, we use PCA, as an unsupervised feature
transform method, for projecting the points in the high-
dimensional feature space into a low-dimensional space.
We used Entropy Based Discretization (EBD) [16, 15] as
a feature selection method.We compared the results of three
different configurations: feature transform, feature selec-
tion and the original extracted features.

3.4. Extracting Training Samples
For training purposes, we extracted the features de-

scribed in Section 3.2 from VIRAT dataset [1, 2]. We
automatically chose frames for five classes {Human, Car,
Vehicle, Object, Bicycle}. The class “Vehicle” is any mov-
ing vehicle other than cars, such as van and truck, while
the class “Object” is anything man can carry like boxes and
backpacks. We aim to extract training samples, such that
the classes are fairly balanced and to increase the features
extraction accuracy. For doing that we impose four con-
straints to select suitable frames from the dataset videos for
training. The four constrains were imposed during training,
while only the first three are imposed on the test videos.

1. Detection Percentage: (Dp > 30%) Detection per-
centage of an object in a specific frame is the per-
centage ratio between the contour area (C) of the ob-
ject (resulting from background subtraction) and the
bounding box area (BB)of the detected object (Dpi =

100 ∗ Careai

BBareai
).

2. Overlapping Percentage: (OP < 10%) Overlap-
ping percentage of an object is defined as follows.

OPi = 100 ∗
∑

i �=j ∩(BBi,BBj)area

BBiarea
, where BBk is the

bounding box of object segment k in the current frame
and ∩(BBi, BBj)area is the area of intersection be-
tween bounding box i and bounding box j.

3. Motion Constraints: We only obtain training samples
from objects whenever the distance that the object has
moved is greater than a threshold th. (th is 5 pixels in
this framework)

4. Object Instance Constraint: This constraint is ap-
plied while extracting the data for learning phase only
to ensure the inclusion of various objects in training.
Extracted training samples for a given object instance
is limited to at most 10 feature vectors.

3.5. Object Classification
For training, we have a list of pairs {(xi, yi)}Ni=1 where

xi ∈ �d is the feature vector, and yi ∈ {1, 2, ...,K} is the
sample label. Let X = [x1, x2, ..., xN ]t is N×d matrix and
Y = [y1, y2, ..., yN ]t is N dimensional column vector. For
classifying test feature vector, we used two different clas-
sification techniques SVM and AdaBoost, and we compare
their results. We used C-SVM for multi-object classification

[7]. AdaBoost [3, 9] technique is based on combining the
results of many weak classifiers to get a single more power-
ful classifier. In our case, we used AdaBoost of stump (one-
level binary tree). We trained one stump for every class
k ∈ {1, 2, ...,K}.

4. Experiments and Results
This section presents the experimental results of our

study. We evaluated on surveillance videos from VIRAT [1]
dataset. We performed the following object classification
experiments: (1) Appearance-based classification based on
HOG features, (2) PCA based SVM classification, (3) Fea-
ture selection based SVM classification, (4) Feature selec-
tion based AdaBoost classification. HOG features only
were used in the first experiment to study appearance fea-
tures, while the full set of features were used in the remain-
ing three experiments.

4.1. Appearance Features (HOG)

In this experiment, we used the selection constraints1,
detailed in subsection 3.4 on VIRAT dataset [1] for building
an image dataset with positive and negative examples for
each object. Figure 3 shows samples of generated dataset
for training. We used the settings in Table 1 for multi-
object classification using HOG features. We used C-SVM
with five-fold cross-validation using 80% − 20% training-
test split. 71.4% accuracy was achieved.

Win Size block size cell size,strid Bin Size

Human 64 x 128 16 × 16 8 × 8 9
Car 104 x 56 16 × 16 8 × 8 18

Vehicle 120 x 80 16 × 16 8 × 8 18
Bike 104 x 64 16 × 16 8 × 8 9

Object 64 x 64 16 × 16 8 × 8 18
Table 1. HOG Settings

Figure 3. Example of extracted training images

4.2. PCA based SVM Classification

In this experiment, we project the full set of features
into a 30-Dimensional principal subspace. The dataset
was split into two subsets (80% training and validation,

1sample extracted image frames, https://www.dropbox.com/sh/
hiv9xu4tm365rjg/rd9MGhKN-k/HOGtrainingIm
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Figure 4. PCA based SVM (80% training percentage)

20% testing). Figure 4 shows 5-fold cross-validation us-
ing C-SVM with different values of C = 10e, where
e ∈ {−4,−2,−1, 0, 1, 2, 3, 4}. Figure 4 shows that the
best value C = 103, which is used to test on the remaining
20% of the data resulting in test accuracy of 89.9%. How-
ever, there is computational drawback of using PCA. Since
the original full length 25, 000-D feature vector has to be
computed, then projected to the principal low-dimensional
subspace. Both tasks are computationally intensive which
might violate the real time requirements of surveillance sys-
tems.

4.3. Feature Selection based SVM Classification
The objective of feature selection is three-fold:(1) im-

proving the prediction performance of the predictors, (2)
providing faster and more cost-effective predictors, and (3)
providing a better understanding of the underlying process
that generated the data. We performed an entropy based
discretization approach on the features. An observation for
the computed entropy is that appearance features have little
entropy and hence we performed the following experiment
in which we have to compute only 142 features out of more
than 25, 000 features. Table 2 shows 5-fold cross valida-
tion of C-SVM performance on (90% − 10% split). The
best recognition rate is (92.3%) in the test data and it was
achieved by setting C = 100. We computed also the recog-
nition accuracy at lower training percentage (e.g 80%−20%
split, 60% − 40% split). The recorded test accuracy are
91.5% and 87.5% for 80%− 20% and 60%− 40%, respec-
tively as illustrated in Table 3.

C 60%− 40% 80%− 20% 90%− 10%

0.0001 89.840 92.748 93.010
0.01 89.361 92.125 92.890
0.1 89.297 92.176 92.610
1 89.616 92.046 92.860
10 89.435 92.129 92.907
100 89.552 92.129 92.907
1000 89.552 92.129 92.907
10000 89.552 92.129 92.907

Table 2. Feature Selection based SVM: Validation Accuracy %

Split Test Accuracy %

60%− 40% 87.5
80%− 20% 91.5
90%− 10% 92.3

Table 3. Feature Selection based SVM: Test Accuracy %

4.4. Feature Selection based AdaBoost Classifica-
tion

As mentioned in Section 3.5, we have trained AdaBoost
of stumps. We used 5-fold cross-validation for training the
classifier. Table 4 shows the results for different values of
weight trim rate ρ ∈ 0.1, 0.3, 0.5, 0.7, 0.9, 0.95, 1.0. All
rows except the last one shows the average validation error
for the five folds. The last row shows the test accuracy for
different category.

ρ Human Car Vehicle Objects Bicycle
(3942) (4197) (286) (1188) (108)

0.10 59.433 43.191 02.933 53.066 01.098
0.30 15.175 27.780 02.933 53.066 01.098
0.50 15.175 27.780 02.933 53.066 60.375
0.70 66.784 69.095 61.597 87.788 99.298
0.90 99.331 99.623 100.00 87.788 100.00
0.95 99.228 99.452 100.00 87.788 100.00
1.00 99.125 97.805 100.00 99.794 99.863

T. Acc 98.998 99.512 100.00 99.794 100.00

Table 4. AdaBoost: Cross-Validation Accuracy (%) against ρ, and

Test Accuracy(T.Acc %)

From Table 4, we can notice many points. Choosing
ρ ∈ [0.90, 0.95] works good with almost all classes. Re-
call, ρ is percentage of samples that are used in training the
next stage’s weak classifier. So this finding means that the
algorithm tends to keep almost all sample for learning the
upcoming weak classifier.

We also get the following findings: first as we increase
number of weak classifiers as we get better results. Table
5 shows affect of changing the weak classifiers count for
the training and test accuracy for every category. However,
this significantly increases the processing time. Therefore,
choosing the number of weak classifier to be close to the
dimensionality of the features vector (W ≈ K) gives good
enough results.

W Human Car Vehicle Objects Bicycle
(3942) (4197) (286) (1188) (108)

25 95.868 95.251 99.606 99.743 99.966
100 98.473 98.371 100.00 99.794 100.00
150 98.988 99.040 100.00 99.794 100.00
200 99.331 99.452 100.00 99.7941 100.00
250 99.571 99.777 100.00 99.794 100.00
300 99.880 99.897 100.00 99.794 100.00

T. Acc 99.589 99.872 100.00 99.794 100.00

Table 5. AdaBoost: Cross-Validation Accuracy (%) against W ,

and Test Accuracy (T.Acc %)

786786786792



On the other hand, in Table 5, we can see that for the bal-
anced classes1 (Human and Car), we need large number of
stumps. Though, for unbalanced classes (Vehicle, Objects
and Bicycle), small number of stumps is enough for getting
the maximum accuracy.

For multi-label classification. We combined the results
of all binary classifiers for producing the multi-label classi-
fier, we get a final accuracy=95.0782%.

4.5. Discussion
Table 6 summarizes the performance of the four exper-

iments on the 80% − 20% training-test split. One conclu-
sion from the experiments is that appearance based features
(HOG in our case) did not perform well in our context. The
intuition behind that is the low resolution of the detected
object as apparent in Figure 3. Another important conclu-
sion is that geometric features performs significantly better
in surveillance systems.

HOG-SVM PCA-SVM FSel-SVM FSel-Adaboost

71.4% 89.9% 91.5% 95.08%
Table 6. Comparison on 80%−20% trainig-test split (FSel denotes

feature selection)

5. Conclusion and future work
Due to the small size and low resolution of the objects

in Surveillance Systems, the experiments shows that using
appearance features like HOG features is less discrimina-
tive for recognizing object classes. Yet, If it is combined
with geometric features, this leads to high recognition ac-
curacy. We extracted many geometric features (e.g. lumi-
nance symmetry, central moments, ART moments) in ad-
dition to the HOG features for each class setting. After
applying the feature selection, this combination of features
is proved empirically to be effective for object recognition.
Entropy based feature selection outputs very small dimen-
sions in HOG (<10 out of 25,000). This indicates the that
geometric features are more dominant in surveillance set-
tings. Finally, SVM and AdaBoost classification techniques
performed well for recognizing objects. Yet, AdaBoost per-
formed better than SVM. Feature selection has computa-
tional advantage in the recognition time, as only the selected
features have to be computed. In contrast, if PCA is used,
all the features have to be computed. As a future work, we
plan to apply similar study in more challenging surveillance
datasets.
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