
 
 

 
Abstract 

 
Public adoption of camera-equipped mobile phones has 

given the average observer of an event the ability to cap-
ture their perspective and upload the video for online 
viewing (e.g. YouTube).  When traditional wide-area sur-
veillance systems fail to capture an area or time of inter-
est, crowd-sourced videos can provide the information 
needed for event reconstruction.  This paper presents the 
first end-to-end method for automatic cross-camera track-
ing from crowd-sourced mobile video data.  Our 
processing (1) sorts videos into overlapping space-time 
groups, (2) finds the inter-camera relationships from ob-
jects within each view, and (3) provides an end user with 
multiple stabilized views of tracked objects.  We demon-
strate the system’s effectiveness on a real dataset collected 
from YouTube. 
 
 

1. Introduction 
Recent advancements in wide-area surveillance devices 

(e.g., surveillance camera networks, aerial sensor arrays) 
have provided the video data sources required to track 
single or multiple objects across large spatial and temporal 
extents.  Many techniques for object tracking [1,2] and 
inferring inter-camera relationships [3] from stationary 
sensor networks have been developed to exploit these sys-
tems; however, utilization of these techniques to survey a 
particular object or event requires that the camera system 
be deployed in the area and at the time of interest, which 
in turn requires a-priori knowledge of the event. 

Wide adoption of camera-equipped mobile phones has 
given average observers the ability to record an event from 
their perspective and upload the recording for public con-
sumption (e.g., YouTube).  Observers of highly unique, 
exciting, or unusual events now can—and frequently do—
capture their own perspectives using mobile cameras.  
When such events occur, the coverage in approximate 
space-time vicinity of the event becomes large enough to 
group overlapping videos, identify correspondences be-
tween views, calibrate inter-camera relationships, and 

temporally align the videos.  With these relationships 
known, cross-camera object tracking can be performed 
over larger space-time volumes than those captured by a 
single camera. 

This paper introduces the first end-to-end system to al-
low monitoring and tracking within a wide area utilizing 
only publicly available, user generated video (Figure 1).  
We demonstrate the effectiveness of the system using a 
real dataset collected from YouTube. 

1.1. Challenges 
Crowd-sourced videos of public events exhibit a num-

ber of characteristics that reduce the effectiveness of tradi-
tional methods for discovering and exploiting inter-camera 
relationships, such as [4].  In particular, geometric event 
coverage can be sparse with very wide viewpoint diversity 
and frequent occlusion; videos can contain substantial 
capture artifacts (motion blur, jitter, compression); and 
extracted visual keypoints tend to favor dominant portions 
of the scene (background) which often do not overlap 
across camera fields of view (Figure 2).  
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 Figure 1. Processing overview, progressing from a broad 
video search (1) to sorted videos (2), then establishing inter-
camera relationships (3) to stabilized cross-camera cueing (4). 
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Figure 2: Traditional camera alignment methods (left) assume a 
large overlap region and many commonly-observed keypoints 
(white asterisks) on an object of interest (blue box).  Crowd-
sourced event camera views (right) typically have much smaller 
foreground overlap regions (blue) with most keypoints detected 
on non-overlapping background regions (gray).  

 
Despite these challenges, crowd-sourced public event 

videos do provide additional information (many frames 
per camera, synchronized audio streams), additional con-
straints (minimum translational movement) and strong 
priors (textual video descriptions, inter-frame motion) that 
can drastically reduce the search space.   

1.2. Related Work 
 While a number of methods have been developed for 
cross-camera tracking and automatic calibration of multi-
sensor networks [5,6], very few techniques are applicable 
to opportunistic, crowd-sourced data sets gathered from a 
heterogeneous collection of sensors, from different view-
points, and possibly containing unrelated content, such as 
would be returned by a YouTube query. 
 Image and video categorization techniques (e.g., [7]) 
are able to group images into broad, pre-learned catego-
ries, but lack the spatial and temporal structure and speci-
ficity to associate data from particular events. Sivic et al 
[8] demonstrated a system for detecting visually similar 
objects from video in a query-retrieval system; more re-
cent work in large-scale structure-from-motion (e.g., [4]) 
and visual SLAM (e.g., [9]) applies similar techniques—
namely SIFT coupled with high-performance descriptor 
indexing and weak geometric constraints—to achieve ex-
cellent performance in recognizing and clustering visually 
similar locales. All such techniques rely on substantial 
overlap of visual content. 

Camera network calibration has been explored in a va-
riety of contexts using a variety of methods, including 
explicit calibration targets visible to multiple sensors [10], 
local motion feature correlation [11], long-term observa-
tion of trajectory shapes and track co-occurrences [3], and 
centralized or distributed feature-based bundle adjustment 
[4,12]. Although in some cases cameras are allowed to 
pan, tilt, and zoom, all such techniques are designed to 
operate within a stationary sensor network installation; 
they benefit from fixed camera positions, large spatial 
overlap, known temporal synchronization, and long-term 

observation. Calibration of moving camera networks has 
also been explored in the context of motion capture and 
visual effects; some techniques rely on explicit calibration 
targets placed in the scene [13,14], precluding crowd-
sourced scenarios, while more recent systems are marker-
less [15] but require substantial single-camera motion and 
visual overlap across cameras. 
Cross-camera tracking systems have also been widely ex-
plored, again mainly for stationary networks [16]. Shah 
[17,18] and others have even extended multi-camera to the 
case of no spatial overlap, but still rely on known time 
synchronization and work best with isolated movers in 
uncluttered scenes. 

1.3. Contributions 
In this paper we introduce the first end-to-end method 

for ingesting a large unsorted collection of videos (e.g., 
from a search result) to produce tracks of objects from 
multiple views.  We accomplish this by (1) sorting videos 
into groups that were captured in the same approximate 
region and time, (2) finding spatial and temporal inter-
camera relationships using audio streams, visual scene 
appearance, and common object detections across views, 
and (3) creating and fusing a stabilized track window from 
multiple viewpoints. 

2. System Overview 
Our approach to cross-camera tracking can be formu-

lated as the optimization of a single cost function that at-
tempts to account for all features across all views.  To 
solve for the ideal alignment, we decouple the problem 
into three distinct and independent steps: camera grouping, 
spatial-temporal alignment, and establishing inter-camera 
relationships. 

Textual web-based video queries for particular events 
invariably result in a mixture of both relevant (space-time 
overlapping) clips and irrelevant (non-correlated outlier) 
clips.  For more spatially and/or temporally distributed 
events, videos may form a number of locally overlapping 
but mutually distinct sub-groups, as well as outliers. The 
first step in our pipeline determines these general clip 
groupings in order to perform alignment and fusion only 
across relevant camera sets. 

Once video clusters have been established, inter-camera 
relationships within each cluster must be estimated. Figure 
2 illustrates a common viewing scenario in which visual 
background scene similarity cannot be used to determine a 
geometric relationship between cameras, despite those 
cameras observing common foreground content. There-
fore, we also utilize ensemble tracking data from object 
detectors (e.g., pedestrians), which provides sets of salient 
features within and across views.  Track correlation, inter-
frame homographies, and temporal alignment provide the 
means to determine inter-camera relationships across the 
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time-period and field-of-view of overlap. 
Lastly, with inter-camera spatial-temporal alignment in 

place, single-object tracks can be correlated across views.  
For instance, a user may be interested in maintaining view 
of a particular object over a long period of time, but within 
any single camera this object may leave the field of view, 
become occluded, or have low resolution coverage at any 
point during the event.  Using the inter-camera relation-
ships at each frame, we show that the subject can be iden-
tified and segmented from multiple views given the cur-
rent state of the camera network. 

2.1. Camera Network Assumptions 
We make several assumptions about crowd-sourced 

event coverage, based on empirical observations, that re-
duce problem complexity. First, we assume that moving 
objects (e.g., performers, presenters, and other subjects of 
attention) are visible from multiple camera viewpoints. 
Presumably, the very existence of these videos is predi-
cated upon this assumption: multiple observers wish to 
capture the event of interest. Correlated cross-camera mo-
tion tracks form the basis of our geometric alignment 
technique and allow post-coverage of subjects from mul-
tiple angles. 

Second, we assume that a relatively distinctive audible 
signal is present in overlapping videos, which is typically 
the case for concerts, speeches, plays and other staged 
events. This audio assists in grouping clips and determin-
ing their temporal alignment. We do not, however, require 
that this common source always dominate the audio 
stream—our methods are robust to typical disturbances 
such as sound dropouts, sensor-local speech, crowd  noise, 
and muffled microphones. 

Third, we assume that each camera source is restricted 
(roughly) to pan-tilt-zoom motions. In many mobile vid-
eos the camera operator remains largely stationary, simply 
rotating and zooming the camera to follow objects of in-
terest and capture the event. This allows the intra-camera 
image motion to be well-described by projective homo-
graphies. 

Finally, we assume that all tracked individuals move on 
an approximately planar surface, which allows inter-
camera homographies to be estimated between views that 
account for most moving objects in the scene. This as-
sumption is minimally restrictive, since most event action 
occurs over locally flat surfaces (e.g., man-made environ-
ments). 

2.2. Alignment Problem formulation 
Given camera pair {��, ��} we wish to estimate the 

pair’s global temporal offset ����		 and spatial alignment 
homography 
��. Knowing that the camera’s viewpoint 
relationships will have areas of mutual support (ms) for 

audio features (�� ) and object tracks (� ) we can formu-
late an alignment cost function: 

 ���
� ������

����������
�� �  !�"���� ���� ����		� �#$%&'()���*

+ �  !"��� ��� ����		� ����� �#$%&'()���* , ����������������������������������)-* 
 
where the audio feature alignment score is 
 !�"���� ���� ����		� �# � .���)�* / ���)� + ����		*.�������������������)0*                   
 
and the track object alignment score is 
 !"��� ��� ����		� ����� �# � .��)�* / ������)� + ����		*.����)1* 
 

To solve equation (1), we decouple the alignment prob-
lem into isolated steps.  The first step is temporal align-
ment and spatial grouping of the cameras to find areas of 
mutual support.  After temporal alignment and grouping, 
pedestrians are detected within each viewpoint, tracked, 
and matched across cameras.  The corresponding track 
states (positions and velocities) provide the final con-
straints needed to determine ���  with a relative projective 
offset at each time t. 

Once ���  are known for all camera pairs, any particular 
subject tracked in one camera can be simultaneously ob-
served within all overlapping views via reprojection, pro-
viding users with multiple perspectives of the subject. 

3. Camera Grouping and Temporal Align-
ment 

When conducting a text based query for an event on a 
public video website (e.g. YouTube), a wide variety of 
results are typically returned.  Results may fall outside of 
the user’s specified space-time region (outliers) or may 
make up clusters of sub-events within the queried region.  
Because the results of a web query do not typically all 
have overlapping space-time FOVs, we first group cam-
eras that potentially overlap our reference camera using 
visual and audible features.  We also use audio features to 
determine temporal alignment between views. 

3.1. Audio Feature Matching 
Each video clip is accompanied by an audio track that 

can be decoded to a raw PCM sample stream. The trans-
port wrapper encodes timestamps and rates, so that both 
the audio sampling frequency and timing relative to the 
video stream are accurately known. Temporal alignment 
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among multiple clips can thus be reduced to the estimation 
of a single parameter—namely, the time offset ��		—for 
each clip. Furthermore, knowledge of the recorded video 
rate and timestamps allow this time offset to be easily re-
lated to a particular video frame (i.e., with more useful 
units of frames rather than seconds). 

To estimate ��		 between two particular clips, we first 
note that videos observing the same event (e.g., speech, 
performance, parade) are likely to share audio content. 
Therefore, if temporally localized audio features can be 
extracted and associated across clips, each such associa-
tion forms a single constraint on the time offset. Ambient 
noise, varying sound intensity levels, and differing “fore-
ground” audio content across clips all preclude application 
of cross-correlation or similarly simplistic stream-to-
stream alignment methods such as those used in [10]; we 
instead operate in the time-frequency domain, computing 
features derived from the short-time Fourier transform. 

An audio feature consists of a real-valued magnitude-
only spectrogram S(ω,t) centered at a particular instant and 
computed over a fixed set of overlapping time windows.  
Here, ω and t are discrete indices representing frequency 
and time window center, respectively.  Thus, feature 
S(ω,t) can be thought of as a temporally local slice of the 
entire audio waveform’s spectrogram. A feature Si from 
one clip is applied as a template against the entire spectro-
gram Sj from another clip to compute the best time offset 
toff according to 

 ����		 � 2345267 ���89):*;<�):� � + =*;<�):� �*
>%

����)?* 
 

akin to normalized cross-correlation, where 
 ;<):� �* � @;):� �* / A%):*BCD%):*�����������������������������������)E*                               
 
and μt and σt denote the mean and standard deviation of S, 
with respect to time. Each frequency band is weighted by 
W, the inverse total energy in that band over the entire 
clip, so that “non-informative” frequencies have smaller 
influence on the correlation score. The correlation function 
(4) can be computed very efficiently in the frequency do-
main as the inverse of a product of fast Fourier transforms. 
 A set of local time offsets is thus estimated across all 
clip pairs, with each offset casting a vote for the most like-
ly global time offset for a particular pair.  A beneficial side 
effect of the correlation functions is evaluation of the de-
gree of audible similarity in the form of an overall pair-
wise link score qij = am as au, with terms denoting absolute 
correlation magnitude, local sharpness, and global unique-
ness of each peak. We form a weighted undirected asso-
ciation graph whose nodes represent the clips and whose 
edge weights are derived from qij. 

3.2. Spatial Camera Matching 
Because we wish to apply cross-video tracking and as-

sociation only over those clips that view common content, 
we associate clips with one another according to their vis-
ual appearance. To determine visual similarity, we extract 
SIFT keypoints and descriptors [19] from a set of repre-
sentative frames, efficiently match keypoint sets across 
frames using approximate nearest-neighbor search, and 
apply weak geometric constraints in the form of the fun-
damental matrix to arrive at a set of spatially consistent 
keypoint matches. We then form a second weighted undi-
rected association graph whose nodes represent the clips 
and whose edge weights are determined according to the 
degree of visual similarity between clips. 

Similarity in appearance is a sufficient but not a neces-
sary condition for strong spatial and temporal association. 
In many cases, multiple cameras may be co-located or 
view the same foreground scene, but from such different 
perspectives that there is no direct visual similarity—
particularly on the background (Figure 3 and Figure 4). 
We therefore simultaneously incorporate both audible and 
visual cues by fusing edge weights of the two association 
graphs described above. Candidate associations are then 
considered if either their appearance or audio content is 
strongly correlated, and rejected outright if neither condi-
tion is met. 

 

 
Figure 3. Above shows screenshots of our testing dataset (videos 
1-34) and their respective spatial groupings. 
 

 
Figure 4. Above (left) is the confusion matrix of overlapping 
spatial matching among each of the videos (darker is better).  
The dashed boxes show the truthed groupings.  Above (right) 
shows the audio match of each video to our reference video (18).  
Note that while some visual matching occurs among each spatial 
overlapping group, audio matching provides a strong indicator of 
spatial-temporal overlap and allows us to find 3 overlapping 
videos. 
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4. Camera Alignment 
After removing outlier clips outside the space-time 

window of interest, inter-camera geometric relationships 
must be determined among the remaining overlapping 
views.  As previously discussed, failure of keypoint 
matching in view-disparate scenarios requires the use of 
tracks to align cameras.  In crowd-sourced event videos, 
pedestrians (e.g. performers, actors, presenters) within the 
scene are typically the focus of the crowd’s attention and 
are visible within each of the cameras in the network.  

4.1. Pedestrian Detection 
Finding objects that are visible within the overlap re-

gion of pairs of cameras using traditional motion-based 
detection/tracking techniques is difficult in crowd-sourced 
video data for several reasons.  In most videos near-field 
objects (other event observers) typically occlude the view 
of the camera for brief periods of time.  These near-field 
objects are indistinguishable from potential moving tracks 
in a motion detection image.  In addition, the videos often 
suffer from jitter and rolling shudder effects that further 
prohibit effective use of motion information.  For these 
reasons we utilized still image pedestrian detection tech-
niques that are more robust against these effects.  

 

 
Figure 5. Three different viewpoints of a single time instant de-
picting single-frame pedestrian detections (left column) and pe-
destrian tracks projected back into a reference frame using 
frame-to-frame registration (right column).  

  
In this work we applied [20] to locate persons of inter-

est within the overlap area. Modern algorithms such as this 
produce robust detections of isolated individuals even in 
cluttered environments; however, the presence of crowds 
in typical event scenes still causes occasional spurious 
detections. To filter these, we enforce temporal consisten-
cy of the detector over time, by stitching detections from 
individual frames into tracks and removing tracks that fail 
to meet a minimum length criterion.  We used a simple 
gating algorithm, based on a constant velocity and size 

assumption, to connect detections over time. Our assump-
tion of purely projective (pan-tilt-zoom) image motions 
allows utilization of image registration to estimate geome-
tric frame-to-frame relationships in the form of plane pro-
jective homographies; this assists consistent tracking via 
stabilization of detections with respect to a common refer-
ence frame. 

In addition to filtration, connecting individual detec-
tions into tracks also serves to aid in pedestrian matching 
across views.  Figure 5 shows an individual frame of pe-
destrian detections as well as tracks projected back into 
the same frame. 

4.2. Projective Alignment 
Each pair of views can now be aligned using the pede-

strian tracks established in each individual view. In [3], 
views were aligned across a stationary camera network 
using a minimum number of track correspondences to 
constrain a particular camera pair.  We extend this algo-
rithm to the moving camera case by incorporating the 
frame-to-reference registration computed previously: 

 !"��� ��� ����		� ���� ��FG	� ��FG	# � .��FG	)�*�� / �����FG	)� + ����		*��.��������������������������������)H*                   
 
Without any a-priori knowledge of track correspon-

dences, an exhaustive search over all possible track pairs 
is required to establish the projective relationships be-
tween cameras. To reduce the exponential time require-
ments of such a search, we incorporate features derived 
from each track to produce track match likelihoods across 
views and rank potential match candidates. Using track 
motion information of each pedestrian track within each 
camera we calculated the correlation of the targets.  The 
motion of each object was normalized and compared with 
other temporally overlapping tracks. Figure 6 shows a 
sample confusion matrix of motion correlations between 
views; by ranking the highest likelihood assignments be-
tween pedestrian tracks within each view, we greatly re-
duce the number of correspondence tests required to find 
an acceptable alignment.  
 

 
Figure 6. Confusion matrix for two pairs of views based on cor-
related motion over time.  True matches are indicated by green 
dashed borders. 
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5. Cross-Camera Tracking 
Inter-camera spatial-temporal alignment and intra-

camera stabilization homographies allow projection of 
image locations from any frame (within the planar region) 
into any of the other cameras’ viewpoints. These relation-
ships may be used, for example, to provide a user with all 
additional views of a particular subject that are available at 
any given time (see Figure 7).   

Within camera I� the user nominates a subject of inter-
est at location (x,y).  At the nomination timestamp, paral-
lel views can be computed at I� using: 

 I�"J�� K�# � ��FG	)�*LM�����FG	"� + ����		#I�)J�� K�*������)N* 
 

where ��FG	 is the projective transform from the current 
frame to the reference frame within a camera and ��� is 
the projective transform from the nominated camera to the 
additional viewpoint.   

In this work we utilized the Multiple Instance Learning 
(MIL) tracker [1] to maintain appearance matching of the 
subject over time.  We modified the MIL tracker to sup-
port repositioning of track locations using inter-frame reg-
istration, so that only relative object motion need be con-
sidered.  We did not utilize pedestrian detection informa-
tion from the camera alignment stage, because a user may 
wish to track non-pedestrian subjects or people that were 
filtered out by temporal consistency constraints. 

 

  
Figure 7. Three simultaneous views of a selected subject. The 
subject is tracked in Camera B using the MIL tracker (center), 
and the track box is projected into two other views (left and 
right). 

6. System Performance 
We tested our system on a dataset collected from You-

Tube that comprised 34 clips from a popular public music 
festival obtained as the result of a keyword search. The 
videos span many different stages and performance groups 
over several days.  We evaluated the performance of each 
step in the grouping and alignment process, and demon-
strated efficacy of alignment by automatically providing 
multiple views of a user-selected subject over time. 

6.1. Camera Grouping and Audio Alignment 
 After selecting a subject from one of the 34 videos 

(Camera B) in our dataset, we utilized the combination of 
visual and auditory features to find two additional clips 
with overlapping space-time regions (Cameras A and C).  
All three videos were collected at 30fps from handheld 
devices (most likely mobile smartphones) and contain 
large amounts of rotational motion and jitter. Cameras A 
and B captured at 720p resolution, while camera C cap-
tured at 1080p.    

Using the audio-based registration techniques discussed 
previously, we were also able to temporally align the three 
overlapping videos.  Table 1 reports the time offsets with 
respect to Camera A as well as errors in offsets as com-
pared with manually generated ground truth; the maxi-
mum error between any pair of videos was 1/10th of a 
second, part of which may be due to sound propagation 
delays between disparate observers.  

Camera Truth Offset 
(frms|sec.) 

Computed 
Offset 
(frms|sec.) 

Error 
(frms|sec.) 

A 0|0 0|0 N/A 
B -1481|49.37 -1483|49.43 2|0.06 
C -288|9.6 -291|9.7 3|0.1 

Table 1. True temporal offsets and our automatically computed 
offsets for each camera.  All errors were within 100ms of ground 
truth. 

6.2. Projective Alignment and Cross-Camera 
Tracking 

Pixel-level registration accuracy is desirable for provid-
ing accurate cross-camera views of an object being tracked 
within the initialization camera.  During the alignment 
process pedestrian detectors are used to find and track 
individuals for correlation (Figure 8).  

 The average image-relative reprojection error of se-
lected object centroids after projective alignment is shown 
in Table 2.  Though the alignment solution produces errors 
on the order of tens of pixels, it is important to note that 
(1) the average pedestrian size within each view is approx-
imately 75x200 pixels; (2) the images are HD-resolution 
(1280x720 or 1920x1080); (3) the stage surface is viewed 
from an inherently unstable slant geometry, and (4) the 
pedestrian detection algorithm produces centroids that are 
strongly affected by partial occlusion and motion blur.   
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Target Avg. Dist. 
B-A 

Avg. Dist. 
B-C 

Avg. Target 
Size in B 

Subject 1 15.5px 93.2px 108x283 px 
Subject 2 35.9px 57.7px 51x127 px 
Subject 3 78.7px 73.21px 89x174 px 
Table 2. For three subjects, the average association errors (in 
pixels) of automatic pedestrian tracks used to align the cameras.   
 
 To evaluate the reprojection accuracy of targets over 
time, we truthed two individuals in all three cameras over 
1200 frames and plotted the errors (see Figure 9).  The 
results show that errors for both targets over the common 
region did not ever exceed 200 pixels from Camera B to 
Camera A.  Both targets were less accurately reprojected 
from Camera B to Camera C; average errors were approx-
imately 200px and 300px for subjects 1 and 2, respective-
ly.  Oscillations of errors can be seen and are correlated 
with movement around the stage by the performers.  The 
reprojection errors do not drift over time from the key-
frame used for cross-camera alignment.   
 

 
 

 
Figure 9. The error with respect to ground truth (in pixels) across 
two views for object 1 (top) and object 2 (bottom).  Zero values 
are used when objects leave the camera FOV. 

 
In addition to using truth target data to test reprojection 

error, we implemented and ran a modified version of the 
MIL tracker, capable of position updates from an external-
ly supplied homography, on the test dataset (Figure 10).  
The error of the tracker wrt truth remains under 200 pixels 
during the 1000 frames tested and all reprojected viewing 
windows remained under 200 pixels of error with respect 
to truth in each camera.  Because of the discrepancy in 
viewing angles, errors within one view do not necessarily 
cause an error in the reprojected view. 
 

 
Figure 10. MIL tracker error for camera B vs. truth, along with 
reprojection errors of the tracks’ positions in two other views. 

 

7. Conclusion 
In this paper we presented a method to correlate spatial-

ly and temporally overlapping videos collected opportu-
nistically from multiple observers of an event, find the 
projective geometric relationship among overlapping 
viewpoints, and provide an end user with multiple views 
of a subject under track (Figure 11).  We have demonstrat-
ed the system’s effectiveness on a real dataset collected 
from YouTube, and reported results for the accuracy of 
visual grouping, temporal alignment, cross-camera repro-
jection and tracking.  Future enhancements to this work 
include solving for spatial overlap, temporal overlap, au-
dio alignment and geometric configuration within a single 
framework; extending from pair-wise association to global 
network optimization; and using track correlations to more 
precisely estimate temporal alignment. 

 
 

Figure 8. A plane drawn in Camera A (left) of our test sequence is reprojected accurately in Camera B (center) and Cam-
era C (right). 
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Figure 11. Above are four frames from three overlapping cameras within our testing dataset.  The target’s location is being tracked in 
Camera B and two additional viewpoints (Cameras A and C) are found to contain the target.  During this 1000 frame test sequence 
the target remains in view within each stabilized window.  
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