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Abstract

This paper addresses the problem of finding correspond-
ing image patches in multi-camera video streams by means
of an unsupervised learning method. We determine patch-
to-patch correspondence relations (’correspondence pri-
ors’) merely using information from a temporal change de-
tection. Correspondence priors are essential for geometric
multi-camera calibration, but are useful also for further vi-
sion tasks such as object tracking and recognition. Since
any change detection method with reasonably performance
can be applied, our method can be used as an encapsulated
processing module and be integrated into existing systems
without major structural changes. The only assumption that
is made is that relative orientation of pairs of cameras may
be arbitrary, but fixed, and that the observed scene shows
visual activity. Experimental results show the applicability
of the presented approach in real world scenarios where the
camera views show large differences in orientation and po-
sition. Furthermore we show that a classic spatial matching
pipeline, e.g., based on SIFT will typically fail to determine
correspondences in these kinds of scenarios.

1. Introduction

The analysis of multi-camera surveillance data requires

techniques very different from both conventional small-

baseline stereo as well as from multi-view scene reconstruc-

tion. In realistic surveillance scenarios typically no restric-

tions are imposed on the camera orientation and position,

often the viewing directions of the cameras are directly op-

posite in order to observe objects from different sides.

While the geometric calibration of such a system might

be possible, e.g., based on calibration objects or fiducial

markers, all manual and supervised approaches to calibra-

tion will be exhausting and expensive.

With the ever-growing number and size of camera net-

works, there is need for automated calibration methods in

order to install and run large systems efficiently.

In recent years, methods were developed which deter-

mine correspondences not from spatial patterns, but from

an analysis of temporal processes in video streams. But

also there are two (although different) fundamental prob-

lem scenarios that cause a failure in a temporal analysis:

a) significant depth differences between corresponding pix-

els and b) occlusion of objects in one of the views (e.g. with

directly opposing viewing directions). The implied assump-

tion is that the cameras are placed very high above ground

level, such that the height of moving objects and their as-

sociated displacement of corresponding points along the

epipolar lines remain relatively low. However, many typical

surveillance setups (especially indoor scenes) cannot meet

these requirements.

We present a method to determine image-region corre-

spondences for arbitrary multi-camera setups, which we de-

note as ’correspondence priors’. Those priors encode cor-

respondences on a sub image level by matching a subset

of pixels in one view with subsets in other views. The

key idea behind our method is to significantly reduce the

amount of possible correspondences rather than to achieve

(sub-)pixel precision. Then, approaches to match pixel cor-

respondences can exclude an enormous amount of potential

corresponding pixels.

We focus on camera setups where a conventional spatial

feature matching pipeline will typically fail do determine

correspondences, e.g., where the cameras have a large base-

line, and significantly differ in scale and orientation. Our

approach determines corresponding regions, based on the

temporal information of binary change masks. In contrast

to other methods using change detection as an essential as-

pect to determine correspondences [19, 6, 20] we aggregate

evidence for correspondence over time which is then sta-

tistically analyzed. Most notably, no binary time series are

matched like e.g. in [6], stabilizing our method w.r.t. falsely

labeled pixels (e.g. holes in the change mask, camera noise,

or jitter).

Our method can be summarized as follows: For (auto-

matically) selected pixels (=seed pixels) in a reference view

corresponding cells in a second view are determined based
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on the repeated detection of simultaneous change events

among the camera views. With every seed pixel and cell a

change probability is associated which is accumulated over

time. Correspondences are then extracted from these accu-

mulators based on graph theory. The only assumption that is

made is that relative orientation of pairs of cameras may be

arbitrary, but fixed, and that the observed scene shows visual

activity. While our approach will yield pixel-to-cell corre-

spondence priors, these priors can serve as a precursor to

pixel accurate correspondences by massively reducing the

search space.

Since any change detection method with reasonably per-

formance can be applied, our method can be used as an en-

capsulated processing module and be integrated into exist-

ing systems without major structural changes.

2. Related Work
The estimation of correspondences among a set of cam-

eras is a central task in multi-camera calibration. How-

ever, simplifications of the correspondence problem, e.g.,

that the orientation, position and physical parameters (fo-

cal length, gain and offset) between two views do not differ

significantly (e.g. in classic stereo matching [16]) is usually

not met in surveillance setups. Although correspondences

can be extracted manually, such work is time-consuming

and expensive. Svoboda et al. [18] estimate correspon-

dences semi-manually by tracking a point light source (laser

pointer) within the different views. With increasing network

size or when pan-tilt-zoom cameras are used, this method

becomes unfeasible. Up to now, the typical approach to

correspondence estimation is based on the spatial feature

matching pipeline where descriptors are generated within

each view, and matched across views ([12, 11, 15]). How-

ever, matching based on spatial features descriptors fails if

the orientations or positions of the cameras are too differ-

ent (strong deviations from affinity, etc.). Therefore, other

methods for automatically identifying correspondences are

of high interest particularly for the analysis of wide area

multi-camera surveillance setups.

Sinha et al. [17] present a method for automated cali-

bration of multiple cameras by means of dynamic silhou-

ettes. Their approach exploits a correspondence constraint

between frontier points on the silhouette and epipolar tan-

gents. Lee et al. [10] match object trajectories to estimate

a global ground plane for the camera network. Wang et al.
[21] follow a similar approach and analyze activities in un-

calibrated camera networks. Makris et al. [13] match trajec-

tories in order to connect non-overlapping viewpoints over

entry and exit zones. However, matching of trajectories is

error prone in cluttered scenes.

In [22] Wexler et al. present an appearance based method

to estimate the epipolar geometry from multiple image pairs

and assume that the scene depth varies smoothly across the

images. While being methodologically related to our ap-

proach, we do not require the scene depth to vary smoothly

and do not rely on appearance which can dramatically

change within wide-baseline setups.

There are several approaches to correspondence estima-

tion based on the analysis of change masks. Szlavik et al.
[19] estimate so called co-motion statistics in overlapping

views to determine point correspondences. Their approach

can deal with changes in lighting conditions and different

camera positions. Van den Hengel et al. [20] determine non-

overlapping views within large camera networks by identi-

fying camera pairs where the respective change masks are

not compatible. Ermis et al. [6] build on a binary time se-

ries (changed/not changed) per pixel and determine point-

correspondences via matching those time series. In [7],

these time series analyzed in order to detect abnormal be-

havior, or rather to match behavior in multi-camera scenes.

However, the authors point out the necessity that the cam-

eras have to be placed with sufficient height above the ob-

served scene a requirement typically not met especially in

indoor setups. Furthermore the authors post no information

concerning the total number of processed frames.

Conrad et al. [4] analyze the temporal gray value pat-

tern in selected pixels (seed pixels) to determine pixel cor-

respondences. If there is a significant change of the gray

value pattern in a seed pixel, their method looks for similar

changes in the other view(s), and it is explicitly only ’rare

events’ that are considered in this analysis. These measure-

ments can be performed and accumulated for many pairs

of frames. For each seed pixel, a spatial distribution of

correspondence candidates is determined which reflects the

potential variability of correspondences due to depth varia-

tions. For this method to function well, the area of interest

must exhibit significant object movement, and a substantial

number of frames (in the order of 1,000 – 10,000 and more)

have to be processed to determine the sought distributions.

The novel method which we present here is inspired by

[20, 6, 4, 19, 22] and combines particular aspects thereof.

Much like [20], we treat views on a coarse scale (cells);

however we do not search cues that exclude cell correspon-

dence, but ones which support it by coincidence. Binary-

valued states of change are determined by exploiting a

change detection (similarly to [20, 6]) and coincidences ac-

cumulated (as in [4, 19, 22]) for every cell in each time

step. The innovation is in the application of sub image scale

(image-patches) and an adaptive update and filtering algo-

rithm.

3. Approach
We begin with choosing a set of seed pixels �yk, k =

1, ..,K in the reference view (= view V1) for which corre-

sponding cells in a second view are to be estimated. Pix-

els which are located in the vicinity of a seed pixel get
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Figure 1. Example of the computation of the change probability

and the activation of cells. Left pair: The change mask (propagat-

ing car) sets the domain of integration of the Gaussian PDF. Right

pair: The number of pixels labeled as changed determine the state

of change of each cell. Changed cells are not filled with color.

associated with a weight which corresponds to a normal-

ized Gaussian kernel centered on the seed pixel. The other

views V2, . . . ,VN are divided into equal rectangular cells

of dimensions a × b pixels. The cell size parameters a, b
are chosen to be proportional to the expected average size

of typical moving objects, say 10-20% of it. The kernel

p(�x, �yk) around a seed pixel at position �yk is described by

p(�x,�yk) =

1

2π · |C| 12 · exp

(
−1

2
(�x− �yk)

TC−1(�x− �yk)

)
, (1)

with

C :=

(
max[a2, b2] 0

0 max[a2, b2]

)
. (2)

The max[·] setting ensures circular kernels. For each new

time step, a temporal change detection1 is computed for all

views that are analyzed.

Event detection in the reference view V1: The binary

change mask for frame t is multiplied pixel-wise with the

normalized Gaussian kernel of each seed pixel �yk, and the

result, being in the interval [0, 1], is denoted as the change

probability φt(�yk) in the following. If this change prob-

ability is larger than an empirical threshold γ1 = 0.2, an

event has been detected and the seed pixel �yk is considered

as ’changed’.

Activation of cells In the other views V2 . . .VN , a cell

with total pixel count NC is considered as ’changed’, if

more than NC ·γ2 pixels (γ2 = 0.2) in this cell are changed

in the change mask. We denote this process as the ’activa-

tion of cells’. This way, a new binary-valued change mask

Zt which is structured according to the given cell raster is

determined. It encodes the changes of cells for two subse-

quent frames. The computation of the change probability

and the activation of cells is illustrated in Fig. 1.

Accumulators for views V2 . . .VN : If an event is de-

tected in the reference view and if this image region is vis-

ible in another view Vi, then at least one cell is expected

to change in view Vi as well. However, in most cases,

there will be multiple cells in the reference view V1 which

1We employ the statistical model-based method proposed by [2] for

reasons of stability. Other state-of-the-art methods can be applied as well.

’fire’, and there will also be multiple cells in each other view

V2 . . .VN which fire simultaneously. In the spirit of [4], we

denote such co-occurrences of events as ’temporal coinci-

dences’. For each pair of one seed pixel in view V1 and one

other view Vi, a two-dimensional accumulator array Ai
k,t

is allocated which has as many elements as there are cells

in view Vi. While temporal coincidences will also occur

between non-corresponding image regions, these false cor-

respondences will not manifest themselves within the accu-

mulator as they do not occur in a systematic way as is the

case for the true correspondence.

3.1. Accumulator update rule

The accumulation of temporal coincidences be-

tween measured events in the reference view V1 and

changed/activated cells in the other views Vi is of central

importance. For each cell cpq , an accumulator element

(apq)
i
k,t is provided in which temporal coincidences

between events in a seed pixel region (reference view) and

changed cells (view 2) are detected and accumulated. This

update rule is be based on a) the change probability φt(�yk)
and b) the context of the accumulator in the previous time

step.

For every time step the change probability φt(�yk) is

computed as described before. To exclude objects too far

from the selected seed pixel, a modified change probability

is obtained by introducing a lower limit,

φ̃t(�yi) =

{
φt(�yi), if φt(�yi) > γ1

0, else
. (3)

The decision threshold γ1 is an empirical value and does

not influence the functionality of the process. However,

the computational complexity can be reduced, as in the

case of φ̃t(�yi) = 0 other views do not have to be checked

for which cells have changed. To consider the context of

the accumulator, a spatial and time-dependent learning rate

Ωi
k,t = (ωpq)

i
k,t is introduced. The learning rate should

prefer cells in which or in whose neighborhood many coin-

cidences have been observed. Therefore the accumulator is

convolved with a kernel H according to:

Ãi

k,t = Ai
k,t ∗H, (4)

with

H =

⎛
⎝ 0.05 0.15 0.05

0.15 0.2 0.15
0.05 0.15 0.05

⎞
⎠ . (5)

Rescaling the elements of Ãi

k,t to the interval (0, 1], the

spatial-temporal learning rate Ωk,t is defined as:

Ωi
k,t = (ωpq)

i
k,t :=

(ãpq)
i
k,t + 1

max[Ãi

k,t] + 1
, (6)
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where max[Ãi

k,t] denotes the maximal value of the accu-

mulator for the time step t. To ensure that no cell has the

learning rate value of zero, every accumulator element is

increased by one. With the resulting definitions, the update

rule of the accumulator is given by

Ai
k,t = Ai

k,t−1 + φ̃t(�yk) · Zt ◦Ωi
k,t−1. (7)

The ◦-operator is the Hadamard product (element-wise mul-

tiplication of two matrices). Eq. 7 describes the update rule

for one seed pixel. Thus, for every correspondence a unique

accumulator is updated. Only the change mask Zt is con-

stant w.r.t. the chosen seed pixel. It only has to be computed

once per frame and can be used for all accumulator updates.

Computational complexity Concerning the memory re-

quirements of the method we need to allocateN×K×(a·b)
integers. Depending on the expected size of a change blob,

a and b vary within dozens of pixels. Within a typical

multi-camera setup, storage demands are therefore within

the megabyte regime.

3.2. Accumulator filtering using a maximum den-
sity subgraph

We showed in the previous section how accumulators are

updated over time. Next, we describe how to extract those

cells from each accumulator which encode the true corre-

spondence with high probability.

In the following we assume that enough temporal coin-

cidences were collected in an accumulator in order to de-

termine a correspondence with a sufficient low uncertainty.

Due to noise, erroneous change masks, and discretization

in cells etc. many accumulator elements will have a large

value, despite they do not encode the true correspondence.

Therefore a filter operation is required prior to the extrac-

tion of the true corresponding cells. A simple thresholding

of each accumulator, e.g., based on the current maximal ac-

cumulator value is not feasible because a) in scenes with

large depth variation corresponding cells (along the epipolar

ray) may be eliminated and b) in scenes with coeval mov-

ing objects (e.g. traffic scenes) non-corresponding cells will

survive. Instead we determine a localized cluster of cells

within the accumulator which encode the true correspon-

dence with high probability.

Let K be a subset of accumulator elements ai , and let

|�rij | denote the geometric distance (in accumulator units2)

between two elements of K. Next, we define the non-linear

potential function

V (K) =
1

2|K|
∑

i,j∈K
i�=j

√
aiaj

|�rij | . (8)

The purpose of this potential function is to ensure that ac-

cumulator elements with a high coincidence matching count

2Accumulator units are equal to the corresp. cell width/cell height.
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Figure 2. Visualization of the approximation of the densest sub-

graphs. (top left) The input graph. Numbers besides vertices

denote the weighted degree of each vertex, see text for details.

Within each iteration i the vertex with the lowest degree is re-

moved and subsequently the density of the remaining graph is

determined. Once the densest subgraph of size 2 has been de-

termined, those vertices are chosen, whose induced subgraph has

maximum density (red marked frame, i = 3). Best viewed in

color.

contribute strongly to the total potential V . In order to ex-

tract the cluster of cells which encode the true correspon-

dence with high probability we determine the set K∗ of ac-

cumulator elements that maximize Eq. 8. Here the intuition

is, that those cells within the vicinity of the true correspon-

dence will have a higher matching count than those far away

and will thus form a cluster in accumulator space. K∗ is

given as:

K∗ = argmax
K

V (K). (9)

We cast the optimization problem in Eq. 9 as finding a dens-

est subgraph as follows. Let G = (V,E) be a fully con-

nected undirected graph, where the set of vertices V is given

as all elements of an accumulator and the edge weights for

pairs of vertices are given by Eq. 8. The density d of such

a weighted graph is defined as the ration of the sum of edge

weights to the number of vertices [9]. The densest subgraph

of G is now found as the graph G∗ = (K∗, E∗) maximiz-

ing d. While the Goldberg algorithm [9] yields the optimal

solution we use a fast greedy approximation developed by

Asahiro et al. [3]. The algorithm iteratively removes the

vertex with the smallest degree (sum of all edge weights

incident to this vertex ) and all the edges the vertex is con-

nected to until the graph with desired size is reached. How-

ever, this algorithm expects the size of the subgraph as an

input parameter which is unknown in our setting. There-

fore, we determine the densest subgraph of size |K| = 2
based on Asahiro’s method and store within each iteration p
the density dp of the current graph of size |K|−p. Then the

densest subgraph G∗ = (K∗, E∗) is the one maximizing

dp. This process is depicted in Fig. 2. Finally, the filtered
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accumulator is given as:

A∗
k,t = (apq)

∗
k,t =

{
(apq)k,t, if (apq)k,t ∈ K∗

0, else
.

(10)

3.3. Back-projection into the image

We interpret the filtered accumulator as an empirical dis-

tribution α(p, q) over coordinates p and q and encode the

region containing the true correspondence with high proba-

bility by means of first and second order moments. There-

fore, the filtered accumulator is subject to a normalization

as

αk,t(p, q) := (apq)
∗
k,t /

∑
(apq)

∗
k,t , (11)

Based on αk,t(p, q) we determine the weighted mean

vector �mA = (mA
p ,m

A)T and the weighted co-variance

matrix CA. These moments are given in accumulator coor-

dinates and are easily converted to image coordinates as

�mI = (a ·mA
p , b ·mA

q )
T (12)

and

CI =

(
a2 · Var[p] ab · Cov[pq]
ba · Cov[qp] b2 · Var[q]

)
, (13)

where a and b denote the width and height of a cell as al-

ready described.

Based on an eigenvalue analysis of the co-variance ma-

trix, we determine so called error ellipses which, depending

on the depth variation at the regarded seed pixel, are elon-

gated along the epipolar line w.r.t. to the chosen seed pixel

and the principal axis of the objects.

4. Experiments
In the following we present experimental results for var-

ious multi-camera benchmark data that show the applicabil-

ity of the proposed approach in real world setups.

The PETS2006 (Performance Evaluation of Tracking

and Surveillance) [1] datasets were of particular interest

since they show realistic and challenging surveillance sce-

narios. Here the scenes show a wide area train station

scenario with very different viewpoints and viewing direc-

tions which cause significant depth variation between cor-

responding points.

The Videoweb Activities (VWA) dataset [5] contains

several relevant multi-camera sequences; we used an out-

door scene which shows a traffic intersection and an ad-

jacent courtyard. Again, the camera positions vary sig-

nificantly in orientation and scale of their fields of view.

Furthermore, we used several video streams from the LRS

work-group at TU Graz [14]; these sequences show a part

of the campus with cameras mounted high above ground.

Again the views largely differ in orientation and scale.
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Figure 3. Qualitative and quantitative results of the SIFT frame-

work we used on the sample sequences. Top left: Image patches of

an urban intersection with relatively similar camera views. SIFT

delivers very reasonable results. Top right: Intersection sequence

from the VWA data set. No points could be matched by a SIFT-

based approach in this case. Below: False positive rate as a func-

tion of the matching metric proposed by [12]. The outlier rate is

very high in all sequences, often almost 100%. Matches were hand

labeled. Best viewed in color.

We assess the accuracy of the learned pixel-to-patch cor-

respondences in the following way. For each seed pixel

�yk we extract the first and second order moments from its

associated accumulator as described, and determine its co-

variance error ellipse. Given that this error ellipse (posi-

tion given by the mean, size given by the co-variance ma-

trix) contains part of the epipolar ray �ljk = Fj�yk a corre-

spondence has been learnt. Here Fj is the fundamental ma-

trix between the reference view and view Vj . We generate

ground truth F matrices for all sequences by hand selected

100 pixel-to-pixel correspondences per camera pair. Subse-

quently these correspondences are use to robustly estimated

the F-matrices via RANSAC [8].

4.1. Results and discussion

To compare the results of our approach with a standard

feature matching pipeline, we applied the SIFT framework

806806806812



to the aforementioned benchmark data. However, for none

of the challenging data sets correspondence could be de-

termined in this way. This does not really come at a sur-

prise to us, as matching based on appearance is hard within

wide-baseline setups and more importantly where cameras

are oriented in opposite directions. Figure 3 shows qualita-

tive and quantitative results based on the SIFT framework.

In contrast to the poor results from a spatial feature

matching pipeline, our approach is able to learn correspon-

dences in those challenging surveillance setups. In Fig. 5

for each of the sequences, the learned region correspon-

dences and the associated temporal developments of the ac-

cumulators are shown for a subset of 4 chosen seed pixels

(k = 1, ..., 4). Note that the seed pixels can be selected au-

tomatically, e.g., at those pixels where high visual activity

is to be expected. The estimated correspondence regions

are visualized by means of their respective co-variance er-

ror ellipses. For each seed pixel we compute the cumulative

change probability as well as the the ratio between the max-

imum value of the accumulator and the maximum possible

accumulator value (= number of events detected at a seed

pixel):

Φt(�yk) =
t∑

τ=2

φτ (�yk) and max[Ãk,t]/Φt(�yk). (14)

These measures are used to scale the color bars for the vi-

sualization of the accumulator at different time steps. Fur-

thermore these numbers are shown right next to each color

bar within Fig. 5 and are an indicator for the overall visual

activity within the vicinity of the seed pixels.

To better visualize the accuracy of the determined re-

gions, ground truth epipolar lines w.r.t. the chosen seed

pixels are shown for every sequence and seed pixel.

In Fig. 5 (rows 1-2), results for sequences from the data

set PETS2006 are presented. This scenario features strong

variations in both depth and orientation of the cameras. As

can be seen from Fig. 5, our method was able to learn the

true correspondence regions. Due to the depth variation,

these regions align along the epipolar lines w.r.t the chosen

seed pixel. At first glance, the blue and yellow regions seem

as if they are assigned incorrectly (Fig.5 (row 2)). However,

there is no depth information whatsoever of these seed pix-

els. Accordingly, the process finds one possible correspon-

dence along the epipolar line for a seed pixel, which is to be

found somewhere between the train and the fence.

Figure 5 (rows 3-4) shows results for two sequences from

the VWA data set. The sequences have relatively little ac-

tivity, which can be seen in the temporal evolution of the

accumulators. Only a few cells are activated and the max-

imum values are smaller. Note that the camera streams are

not perfectly in sync and are affected by strong jitter. How-

ever, our method was still able to learn the true correspond-

ing regions.

Finally, in Fig. 5 (row 5), results for sequences from the

TU Graz data set are shown. The different viewing direc-

tions cause depth variations between corresponding pixels,

which are not as remarkable as in the PETS2006 data set.

All correspondences could be estimated reliable. Only the

blue one is shifted along the epipolar line due to depth varia-

tions such that the corresponding points on the ground plane

are slightly mismatched.

5. Conclusion
In this paper we introduced a novel method that can

rapidly and reliably determine correspondence priors for al-

most arbitrary surveillance setups. The only assumption

that is made is that relative orientation of pairs of cam-

eras may be arbitrary, but fixed, and that the observed scene

shows visual activity. In extensive experiments, the perfor-

mance of the method has been evaluated on the basis of pub-

licly available benchmark data-sets. In most cases (86%)

the estimated priors were highly precise. Even in the few

cases when they were not entirely exact (7%), the results al-

ways showed a trend towards the correct result. Sometimes

learnt correspondence did not coincide with the true corre-

spondence on the ground plane due to depth variations. The

learning approach is unsupervised and the necessary param-

eters are not critical over a relatively large domain. Further-

more our method can be integrated into existing systems

efficiently and may support other computer vision compo-

nents by information about corresponding regions.

Acknowledgements This work was partially supported

by the German Federal Ministry of Education and Research

(BMBF) in the project Bernstein Fokus Neurotechnologie

– Frankfurt Vision Initiative 01GQ0841, and in parts sup-

ported by the ELLIIT, the Lund-Linköping Excellence Ini-
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Figure 5. Results obtained by our method for all processed video data. From left to right column: Reference view and selected seed pixels,

estimated corresponding regions in the second view and temporal developments of the accumulators. Here, the filtered accumulators after
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