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Abstract

Tracking in wide area motion imagery (WAMI) is ex-
tremely complex because of low resolution of targets, low
frame rate and a host of other detrimental environmental
factors. In this paper, we propose a robust feature-based
method to track objects in WAMI data by exploiting local
phase and orientation information based on the monogenic
signal representation. We present a detailed monogenic
space based analysis to develop a robust method to track
objects of low resolution in wide area aerial surveillance
imagery. By exploiting local phase information at multiple
scales, objects in shadows can be tracked. We also propose
an efficient technique to make the feature representation of
objects rotation invariant by utilizing local orientation of
the object region. The proposed technique is shown to be ro-
bust in challenging situations that are characteristic of wide
area motion imagery. Effectiveness of the proposed method
is illustrated by comparing its performance with dense set
of SIFT features and mean shift tracker.

1. Introduction
Huge strides made in the area of sensor technology have

enabled data capture of large geographical areas from aerial

platforms. One of the preliminary steps in extracting infor-

mation from the images captured at such high altitudes is to

track certain objects of interest. Although the field of ob-

ject tracking is not new, the process is complicated when

it comes to wide area motion imagery (WAMI) because of

very low resolution of objects, low frame rate and the ef-

fect of other environmental factors. In this paper we tackle

the problem of object tracking in WAMI data, specifically

in the Columbus Large Image Format (CLIF) [1] dataset.

Images in the CLIF dataset were captured using an array of

monochromatic sensors at an altitude of 7000 feet and cov-

ers an expanse of 2 miles radius. The temporal sampling

rate of the CLIF data is around 2 fps. While other datasets

containing aerial imagery consist of objects of high resolu-

tion in the range of at least a couple of hundred pixels, the

Figure 1. A typical path of a car in CLIF data is marked in yellow

on the image in left. Images (a), (b), (c) and (d) show the varia-

tion in views of the same car when it traverses the path marked in

yellow.

objects in CLIF database have an object region that is less

than hundred pixels. The considerable distance traveled by

an object of interest in between frames because of the low

frame rate does not aid the deployment of existing tracking

mechanisms.

In this paper, we consider the problem of feature repre-

sentation of objects that can aid in tracking the object over

successive frames. The major scenarios that we have con-

sidered in the development of such a detect and hence track

mechanism are: (1) tracking in shadows, and (2) tracking

when the object makes a turn. Most of the existing algo-

rithms for tracking in WAMI consist of a step to detect mov-

ing objects in the scene and then a robust data association

algorithm that can accurately predict where the object of in-

terest is based on velocity patterns. The accuracy of such a

framework for tracking depends on the accuracy of the al-

gorithm to detect moving objects. Therefore, they tend to

fail when the background is similar to the object region or

when the object comes to a complete stop. When the ob-
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ject being tracked can be distinctively recognized in succes-

sive frames, the risk of losing track when the object is not

moving can be eliminated. However, the task of modeling

the appearance of objects of interest in WAMI is extremely

challenging because of very low resolution.

1.1. Related Work

The most popular work on tracking in CLIF data was

presented in [15]. The framework utilized the Hungarian al-

gorithm to build a robust tracking technique based on graph

theory. Velocity information was the primary constraint to

achieve data association between detected moving objects

in any particular scene. The assumption is that the object re-

gion stands out in comparison to the surroundings and con-

straints like shadow regions were not considered, thus en-

abling efficient extraction of moving objects in a scene. An-

other approach based on the use of tracklets was proposed

in [11]. They used Bayesian networks to solve the data as-

sociation problem. The method was extended in [14] to en-

able tracking multiple objects based on prior knowledge of

motion patterns of the objects in the scene. These works

are improvements made on standard approaches based on

Kalman filter, particle filter, etc. to accommodate the chal-

lenges posed by the CLIF data. A comprehensive frame-

work for tracking was presented in [10], where velocity and

appearance models were taken into consideration for track-

ing objects in CLIF data. However, the appearance model

used in [10] is the squared difference of the intensities of the

object region. This measure would be distorted in regions

where there is variation in illumination and when the object

is rotated.

There has been very little success when it comes to de-

sign of feature based tracking methods for WAMI. The main

hindrance is the lack of detail that can curtail the attempt to

represent objects in a robust and efficient manner. A method

proposed in [9] makes use of a histogram based representa-

tion of objects. Earth-movers distance was used as the met-

ric to compare histogram of the object model and the test

patches. However, the method is very sensitive to changes

in illumination because of the use of intensity information to

represent the object. In [16], contextual information (roads)

was used to detect all moving objects in a frame and hence

improve tracking. However, the initial step involved a track-

ing step which acts as the seed information for algorithm.

In such a case, a robust feature representation would aid in

generating the initial track.

In this paper, we explore the utility of phase vector fields

derived from monogenic signal [5] representation to repre-

sent an object. The main contributions of this paper are: (i)

development of framework for tracking objects in shadows

using phase vector fields, and (ii) development of a rotation

invariant representation of phase vector fields that can aid

in tracking objects in WAMI.

2. Phase Vector Field from Monogenic Signal
Representation

Local phase information of a signal gives ample infor-

mation regarding the structure of the 2D signal even when

illumination changes. Phase congruency [7] was one of the

concepts using phase information in an image that was able

to represent edges by finding locations where the Fourier

components of the signal under consideration were in phase.

However, phase congruency does not work for WAMI be-

cause of the lack of edge information in images. The an-

alytical signal model in signal processing had enabled the

extraction of phase information from signals for the one di-

mensional case. It was extended to two dimensions by us-

ing steerable filters or finding responses of filters in multi-

ple orientations and combining them. The isotropic exten-

sion of the concept of analytical signal to two dimensions

resulted in the monogenic signal representation. Mono-

genic signal is used to analyze intrinsic 1D (i1D) signals

like edges and lines. While the Hilbert transform was used

to find the local phase of a signal in one dimension, Riesz

transform was used in the case of the monogenic signal.

The analytical signal model is as given in (1).

fA(x) = f(x)− ifH(x) (1)

fH(x) is the Hilbert transform of f(x).In the frequency do-

main, fH(x) is represented as FH(u) and can be computed

as in (2).

FH(u) = H1(u)F (u) (2)

where F (u) is the Fourier transform of f(x) and H1(u) =
i sign(u) is the definition of the Hilbert transform. The

phase for the 1D signal can be computed as in (3).

ϕ(x) = arctan(fH(x), f(x)) (3)

The analytical signal model can be extended into 2D using

the monogenic signal representation as shown in (4).

fM (x1, x2) = (f, fR)(x1, x2) (4)

where fR(x1, x2) = (h∗f)(x1, x2) and h = (h1, h2) is the

Riesz kernel. The spatial and frequency domain representa-

tion of the Riesz kernel is given in (5) and (6) respectively.

(h1, h2)(x1, x2) =

(
x1

2π|x|3 ,
x2

2π|x|3
)
,x = (x1, x2) ∈ R

2

(5)

(H1, H2)(u1, u2) =

(
u1

2π|u| ,
u2

2π|u|
)
,u = (u1, u2) ∈ R

2

(6)

The local phase vector, Φ(x) from the monogenic signal

model is as shown in (7).

Φ(x) =
fR(x)

|fR(x)| arctan
|fR(x)|
f(x)

= ϕ(x) exp(iθ(x))

(7)
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Figure 2. The decomposition of original image (a) into images cor-

responding to local phase (b) and local orientation (c).

where ϕ(x) is the local phase and θ(x) is the local orienta-

tion and can be computed using the Riesz transform of the

signal as shown in (8) and (9).

ϕ = arctan

(√
R2

1{f}+R2
2{f}, f

)
, ϕ ∈ [0, π) (8)

θ = arctan

(
R2{f}
R1{f}

)
, θ ∈ [0, π) (9)

where R1{f} = h1∗f and R2{f} = h2∗f . The local mag-

nitude A, which is a measure of local contrast, is defined as

in (10).

A =
√
f2(x) + |fR(x)|2 (10)

In this paper, we utilize the phase vector, for the pixels in

the object region to represent the object. Thus, the field cre-

ated by the object is represented in terms of the ordered pair

containing local phase and local orientation, Φ = (ϕ, θ).
The assumption is that the object region is comprised of in-

trinsic 1D signals. Phase vector represents the phase and

orientation of the intrinsic 1D signal in a local neighbor-

hood. In terms of physical interpretation, the local phase

captures the structural information of the object and the lo-

cal orientation sheds light on the geometric information of

the object. The contrast information in the image is given

by the local amplitude which we have completely discarded

in the phase vector field representation.

In practical scenarios, the signal being considered is of

finite length. Therefore, the signal has to be convolved with

a band pass filter before the application of Riesz transform.

In this paper, we have used the log-Gabor filter [6] as the

band-pass filter. The transfer function of a log-Gabor filter

is given in (11).

G(ω) = exp

(
− (log(ω/ω2

0))
2

2(log(k/ω2
0))

2

)
(11)

where ω0 is the center frequency of the filter, and k/ω0 re-

mains constant which is a measure of the bandwidth of the

filter.

Robust orientation estimation: In scenarios similar to

WAMI tracking, the estimation for local orientation could

be affected by noise to a very large degree. Unser et al. [17]

proposed to have a least square estimate of the orientation

based on the local neighborhood. The robust estimate is

obtained by maximizing the directional Hilbert transform

of the function over a neighborhood as represented by the

optimization function in (12).

θ̄(x) = argmax
θ∈[−π,π]

∫
R2

vσ(x
′ − x)|Hθ{f(x′)}|dx′ (12)

where vσ is a Gaussian kernel and σ2 is its variance, Hθ(·)
is the directional Hilbert transform represented in the fre-

quency domain as in (13).

Hθ(ω) =
ωx cos(θ) + ωy sin(θ)

|ω| (13)

where ωx and ωy are the components of angular frequency,

ω. The aforementioned maximization problem is formu-

lated as an eigen value problem. The solution is found using

the eigen vector corresponding to the largest eigen value of

the matrix represented as in (14) [2].

[T(x)]mn =

∫
R2

vσ(x
′ − x)Rm{f(x′)}Rm{f(x′)}dx′

(14)

where m,n = [1, 2]. The estimate of local orientation, θ̄(x)
can then be redefined as in (15).

θ̄(x) =
1

2
arctan

(
2[T(x)]12

[T(x)]22 − [T(x)]11

)
(15)

3. Tracking in shadows
One of the major challenges while tracking objects in

WAMI is the presence of shadows. Shadows cast by trees

or buildings can completely alter the feature representation

of an object being tracked. This section gives an insight into

how the phase vector field representation can be used to ef-

fectively track objects in shadows. The images are assumed

to be registered. In our case, we have used Harris corners

with SIFT [8] descriptors to match points, filter outliers us-

ing RANSAC and thus register images as done in [15].

For the purpose of tracking, we start by manually mark-

ing the object of interest to be tracked. The features of the

object are extracted and matched to the features in the next

frame based on nearest neighbor approach. The best match

in the next frame is considered to be the model of the object

of interest which will be matched in the subsequent frame.

In our first case, we consider the amplitude of the phase

vector field as the feature template to be matched in subse-

quent frames for detection. Let ϕx represent the template

containing local phase information of a patch centered at

x = (x1, x2) that is of the same size as the object region.

The template containing the local phase information of ob-

ject to be detected is represented as ϕmodel. The location of
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Figure 3. Illustration of why trackers based on moving object de-

tection fail. (a) and (b) are consecutive frames with the yellow

box showing the location of the object. (c) and (d) are the bi-

nary images of (a) and (b) respectively, showing moving objects

in the scene. The object of interest is completely lost in (d) since

it moved into the shadow region.

the object in the next frame, xn+1 is derived from (16) as

xn+1 = argmin
x

∑
D

abs(ϕx − ϕmodel) (16)

where D represents the patch region. The result of this

tracking procedure is shown in Fig. 4

When an object moves into a shadow region, the illu-

mination is reduced in some neighborhood of the object re-

gion. This causes usual gradient or intensity based measures

to fail. In the monogenic signal model, the effect of illumi-

nation change is reflected only in the local magnitude. If we

consider the local phase information alone for tracking, the

challenges due to change in illumination can be overcome

to a very large extent. However, the design of parameters

for the band-pass filter is critical to the proper functioning

of the algorithm.

Filter design constraints: When objects move into a

shadow region, humans are able to recognize the shape

within the region of shadow because of the faintly visible

edges of the object. This proves that the effective feature

needs to contain the high frequency information of the ob-

ject being tracked. This constraint is incorporated in the de-

sign of the band-pass filter, thus resulting in the filter with

a center frequency in the high range. The center frequency

can be moved towards the lower range depending on the

high frequency content in the object being tracked. For in-

stance, the center frequency may be lowered when there are

objects of higher resolution (e.g. trucks) and the contrast

information in the objects is relatively higher.As the ob-

ject moves from an area of higher illumination to an area

of lower illumination, the edge information allows the ob-

ject to be tracked. When an object comes out of the shadow

Figure 4. A vehicle (inside cyan box) being tracked through

shadow regions in CLIF data. (a) Vehicle in a region with no

shadow, (b) vehicle in partial shadow, (c) vehicle in between

shadow regions and (d) vehicle in complete shadow.

region, the most similar feature with respect to its previous

appearance in the shadow region is the edges. Therefore,

the features at frequencies corresponding to edge informa-

tion have to be matched in order to have a perfect match.

This suggests that the band pass filter that is applied before

the application of Riesz kernel should have low bandwidth

and high center frequency.

Multi-scale representation: When template of features

is matched to patches in the next frame, it is possible that the

feature set in a single scale may be inadequate for match-

ing. Therefore, a multi-scale template is created to match

with the next frame. In our experiments, we found that us-

ing two scales is better than using a single scale for feature

matching.

Why template matching? One of the common tech-

niques to represent features is using a neighborhood based

descriptor like histogram or SIFT. These techniques can be

used for the phase vector field information as well. How-

ever, the aforementioned descriptors are constructed from

information of the local neighborhood of a pixel. There-

fore the effect of the background on the descriptors for

the pixel in the object region is much more than desired.

The method does not cause any problems for describing ob-

jects of high resolution. For WAMI, objects of interest pass

through highly varying backgrounds and this could cause

the feature matching technique to fail. For example, a car

being tracked on the road may not be detected when it is

within a zebra crossing. Therefore, the aim in our research

has been to reduce the dependence of feature representation

on the neighborhood of an object region. Since we manu-

ally marked the object region in our research experiments, it

was made sure that not much of the background is enclosed
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in the bounding box.

4. Rotation invariant representation for track-
ing

Amplitude of the phase vector is sufficient to detect and

track an object from frame to frame as long as orientation

of the object does not change. The template matching pro-

cedure is affected when the direction of movement of the

object changes. However, it is to be noted that the whole

object region is rotated and therefore the direction of the

phase vector field is altered by the amount of rotation of the

object. This implies that the local orientation component

of the vector has a similar change throughout the region of

the object. In our research we have developed the use of

a relative orientation map of the object region that is be-

ing tracked to deal with variation in rotation. The key idea

is that the local orientation relative to the local orientation

of centroid of the object region remains the same through-

out the object region even the object is rotated. Therefore,

when the object is rotated, we match the relative orientation

map of the object region to detect the object in subsequent

frames. Let θx represent the local orientation at a pixel lo-

cation, x = (x1, x2). If D represents the object region,

then the template containing local orientation of the object

region can be transformed to a relative orientation map as

shown in (17).

θ′x = θx − θcentroid (17)

where θcentroid is the local orientation at the centroid of

the pixel. (See Fig. 5 for illustration.) The relative orien-

tation map of the object region can be matched to the next

frame by finding the patch of the same size using the nearest

neighbor approach as shown in (18).

xn+1 = argmin
x

∑
D

abs(θ′x − θ′model) (18)

where xn+1 is the location in the next frame, D represents

a patch of size equal to that of the object, θ′x is the relative

orientation map of the test patch and θ′model is the relative

orientation map of the object region. Sample frames from

video in which a turning car is tracked is shown in Fig. 6.

Filter design constraints: The critical part of comput-

ing the relative orientation map is the computation of the

local orientation at the centroid, θcentroid. If θcentroid is

not related to the general orientation of the object of inter-

est or if it is affected by the noise in the image, then the

method will fail. In order to avoid such a failure, the local

orientation is computed after the application of a band-pass

filter with low center frequency. This would allow the dom-

inant orientation of the signal in the neighborhood of the

centroid to be captured and hence making the relative ori-

entation map invariant to rotation.

Figure 5. Illustration of how the relative orientation map is com-

puted. The squares represent the pixels and contain the respective

orientations. The yellow region represents the object of interest.

Figure 6. Tracking an object (in cyan box) while turning to demon-

strate rotation invariance. Alternate frames in a sequence are

shown in (a) to (d) with the magnified view of object in inset.

Effect of background: The orientation of the edges

(i1D signals) that significantly contribute to the object shape

is to be considered during the feature matching process.

This criterion is taken care of during the design of the filter.

During our experiments, it has been observed that the back-

ground contributes towards perfect definition of the feature

template in terms of the relative orientation map. This is

due to the fact that the orientation of the object is relevant

with respect to its background as reference.

5. Framework for Tracking

In the previous two sections, we demonstrated how the

local phase and local orientation can separately help in de-

tecting an object in subsequent frames. In this section, we
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present a framework to integrate both local phase and local

orientation features to have a robust feature tracking mech-

anism.

If motion in video is segmented using local phase infor-

mation, then almost all changes that happen in a scene can

be detected. In order to model the background, we use the

technique from [15]. The difference in phase information of

the background and the actual scene represents the change

that has occurred. Therefore the search for the object of in-

terest can be narrowed down to the region of changes along

with the prior location of the object. In this scenario, we

take the liberty of representing the local phase information

of the object as a histogram. This representation would

negate the effect of rotation. Thus the new feature represen-

tation for an object is the histogram of phase concatenated

with the relative local orientation.

The architecture of designed framework is shown in Fig.

7 and an illustration of change detection in phase domain is

shown in Fig. 8. It is to be noted that the previous location

of the object of interest is always a candidate location to be

searched irrespective of change detection.

When there is variation in illumination, it is reflected in

the amplitude component of the monogenic signal model.

This measure would dictate the dependence of the final cor-

relation score on the phase component or the orientation

component. In our case, we calculated the mean magnitude

for the selected patch, D. If the value crosses a threshold,

then the weights would be the same. A reduced value for

the mean of magnitude would indicate a greater weight for

the correlation score based on phase component.

Figure 7. Block diagram illustration of the framework for feature

based detect and track mechanism.

6. Experiments
We conducted experiments in multiple scenarios that are

characteristic of WAMI. For the experiments, we have con-

sidered the images from a single sensor only. The images

can be stitched using existing algorithms like [13] as well.

Figure 8. Improved change detection based on difference of phase

component. (a) original image, (b) change detected in terms of lo-

cal phase for object in shadow, (c) the object of interest in shadow

and (d) binary image of change detected for the object region

within the shadow.

In previous research related to WAMI, the emphasis has

been on tracking multiple objects in situations where the

object is completely visible or occluded for a short time. In

this section, we explore some challenging situations where

the feature based tracking process will be a powerful aid to

the development of a perfect tracking framework as well as

a quantitative comparison with the mean shift tracker.

6.1. Quantitative evaluation

We compared the performance of the proposed method

with that of the mean shift tracker [4]. Object tracking error

(OTE) from [3] was the metric used for comparison and is

computed using (19).

OTE =
1

Nrg

∑√
(xgi − xri)2 + (ygi − yri)2 (19)

where Nrg is the number of frames for which the ground

truth and the detections are available, (xgi, ygi) is the

ground truth and (xri, yri) is the location of detection dur-

ing tracking. The locations are computed as the centroid of

the bounding box of the tracked objects.

The comparison of metrics for the proposed tracker and

the mean shift tracker for the scenario displayed in Fig. 1 is

shown in Fig. 9. Another comparison is illustrated in Fig.

10 where illumination of scene is very low. From the re-

sults, it was evident that the proposed tracker worked much

better than the mean shift tracker.

6.2. Qualitative evaluation

In the first part of evaluation, we tested the algorithm on

various cars that pass through shadows. One of the results

is shown in Fig. 11. The car goes in and out of shadow

regions thus making it a tough problem to tackle. The pro-

posed framework was able to consistently track the vehicle

as illustrated.
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Figure 9. The comparison of object tracking error for proposed

tracker and the mean shift tracker for track in Fig.1.

As the second part of qualitative evaluation, the proposed

feature representation is compared with the performance of

SIFT features. A dense set of SIFT features has been proven

to be one of the most effective representation for regions.

Since only regions can be matched from frame to frame for

WAMI, we analyzed the performance of SIFT features as

well. The key strength of the SIFT feature is its descrip-

tor. The descriptor is computed as the magnitude weighted

histogram of gradients of the pixels in the local neighbor-

hood of a point. When every pixel in the object region is

represented using corresponding SIFT descriptor, the effect

of background in the overall description of an object be-

comes significant. Therefore, slight change in background

coupled with the presence of similar objects in the vicinity

causes SIFT feature set to fail. This is illustrated in Fig. 12.

7. Conclusion
We have proposed an effective framework for tracking

objects in WAMI using phase vector fields. The technique

is robust to variations in illumination thus enabling track-

ing of objects in regions containing shadows. The rotation

invariance property of phase vector fields aids in persistent

surveillance of objects in WAMI. The method can be used in

conjunction with other robust multi-object tracking mecha-

nisms as well, thus paving the way towards perfection in

the realm of object tracking for wide area surveillance. The

other major challenge in tracking in WAMI is the presence

of large occlusions like buildings. If the presence of build-

ings and their effect on the path of the object can be modeled

as in [12], the proposed feature matching technique can be

employed to achieve a robust data association method after

the object comes out from the occlusion.
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Figure 10. Performance of the tracker in a scene with low illumination. (a), (b) and (c) illustrate the performance of proposed tracker and

(d) is the comparison with mean-shift tracker for the same object.

Figure 11. Car in the inset is tracked through regions containing shadow. The appearance of car in each image is shown in inset.

Figure 12. Comparison with dense SIFT features. (a) Object of interest marked in frame 1. (b) SIFT features matched to wrong car in

frame 2. (c) Incorrect matching resulted in incorrect association. (d) Same object marked in cyan box. (e) Magnified view of object and

neighborhood. (f) Search and match to same object in frame 2. (g) The overall search region to find the object in frame 2.
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