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Abstract

This work presents the development of a surveillance
system for monitoring wide area indoor spaces using mul-
tiple Kinect c© devices. The data from these sensors, con-
figured with the widest possible coverage, is integrated into
a single coordinate system using a novel calibration tech-
nique for non-overlapping range sensors. Moving 3D pix-
els from each Kinect are transformed into a ”plan view”
map of activity where the detection and tracking of people
is executed. The detection of people is a two step process;
data binning and non maxima suppression. The tracking of
people is based on the mean-shift algorithm optimized with
the prediction step of the Kalman Filter.

1. Introduction
Over the last couple of decades considerable effort has

been expended on developing reliable surveillance appli-

cations primarily using RGB video cameras. The final

goal is the design of systems capable of monitoring pub-

lic spaces autonomously without the need for human op-

erators. However, this task has turned out being highly

complex involving the detection and tracking of objects

and the identification of illegal or unusual behaviours. The

use of range-based sensors such as the Kinect depth sensor

brings two main advantages to these surveillance systems.

First, these sensors are highly robust against illumination

changes, working even in dark environments. Second, it

eases the occlusion problem when tracking. Knowing the

depth of the scene, static and dynamic occlusions can be

predicted and special measures could be applied.

In the context of video surveillance a tracking algorithm

consists of maintaining an awareness of the location of in-

dividual people in the scene over time. A typical processing

pipeline comprises of an initial detection process followed

by a track manager, which keeps a consistent id of the peo-

ple detected throughout their presence in the sequence. A

target or person of interest is normally described by an ap-

pearance model of geometric, colour or shape image fea-

tures which are used later by the track manager to match

corresponding objects between frames.

Typically there are two main approaches to tracking. The

first approach uses the history of objects to predict their fu-

ture state, and involves two common processes: segmenta-

tion and association of models. Kalman filters and particle

filters are two well known algorithms within this category.

The second approach searches the neighbourhood of the last

target position for a similar model. Such mode finder tech-

niques include the mean-shift algorithm.

One of the most important challenges in tracking sys-

tems is the change in object appearance over time. Such

changes can be due to one or more of the following reasons:

• Illumination. Changes of the light in the scene will

vary the colour representation of the objects.

• Position. Changes in object orientation or distance

with respect to the camera.

• Occlusions may be dynamic where a target is occluded

by another moving object, or static where a target

moves behind scene structure such as desks. Such oc-

clusions may be partial or total.

In this project, a multi-Kinect system is developed to

monitor wide area indoor spaces. The Kinect sensors are

placed adjacently but with a minimum overlapping configu-

ration to maximise the area covered and minimise the inter-

ference between sensors [2]. A novel calibration technique

has been developed for estimating the geometric transfor-

mations (rotation and translation) between non-overlapping

range sensors. Moreover, two novel formulations of the

standard visual surveillance pipeline are presented for the

detection and tracking of multiple people in indoor envi-

ronments using the combined RGB-D information provided

by the Kinect sensors. Both algorithms are designed to be

robust against appearance changes. The detection of peo-

ple is defined as a two step process executed on the image

plane and on a plan view respectively. The first step is a

depth-based foreground segmentation methodology where

the moving pixels in each Kinect sensor are identified and
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projected into the plan view. A second step follows to seg-

ment blobs (objects of interest) in the scene. The track-

ing algorithm is executed exclusively on the plan view and

uses the mean-shift methodology where the position of the

search window is determined using a Kalman filter. The

main contributions of this paper are:

• A calibration method that recovers the geometric trans-

formation between non-overlapping range cameras.

• The development of a people detection algorithm ro-

bust against changes in the pose of the objects and il-

lumination conditions of the scene.

• A tracking methodology that addresses static and dy-

namic occlusions in crowded scenes.

2. Related work

Whilst very common, RGB camera approaches present

clear difficulties when dealing with occlusions, cluttered

backgrounds or illumination changes; difficulties that have

led researchers to explore alternatives methodologies for the

detection and tracking of people based on the use of multi-

ple sensors or using different modalities e.g. range sensors.

The detection process has two main classes: feature de-

tection such as HOG and background modelling and pixel

differencing. The former offers high performance identify-

ing objects, however it requires the training of a classifier

and does not handle specially well the occlusions. The lat-

ter, it only detects moving objects in the scene by subtract-

ing a background model with the current frame. Although

for object identification the process may require further pro-

cessing such as the implementation of a classifier, in many

applications assuming that the moving object is a person is

normally true. In addition, it presents a more robust be-

haviour when facing occlusions.

Many methodologies have been proposed for tracking

objects such as Kalman Filters [17], Particle Filters [14]

and Mean-Shift approaches [5]. Mean-shift is a very ver-

satile method and is often found in the literature combined

with other techniques; for example using a Kalman filter to

predict the next target position[4].

These approaches address the problem of the changing

appearance of people over time in different ways. Gradual

changes, normally produced by variation in the illumina-

tion conditions, are mostly handled by updating the model

with new observations. For occlusions in monocular views,

it is common to find approaches that continue to predict

the position of the occluded object while waiting for it to

re-emerge [8]. In addition, if the occlusion is partial, the

visible part of the object can still be used to maintain the

tracking [6]. Alternatively, as a way to reduce the impact of

occlusions, cameras may be placed at higher positions and

track primarily heads [12, 7]. Nevertheless, with the contin-

ued increase in the speed and power of computers, the ten-

dency among the research community has been the use of

multiple overlapping-views to handle occlusions [11]. For

instance, Numiaro et al. [13] present a collaborative sys-

tem of multiple cameras where tracking is performed in the

‘best’ view. Harville [10] uses a stereo system to obtain the

3D information and track on a plan view where typically

there are less occlusions.

The use of range-based sensors in video surveillance of-

fers an attractive alternative to obtain systems independent

to illumination changes and occlusions. As an example,

Bevilacqua et al. [1] presented a monitoring system based

on a time-of-flight sensor, which in fact uses a methodol-

ogy highly related to the one proposed here, though they use

a different tracking method based exclusively in geometric

features (position and speed). Until the release of the inex-

pensive Kinect c©depth sensor by Microsoft in 2010, range-

based sensors were not widely considered for surveillance

purposes. The Kinect sensor is a structured light sensor that

provides depth information along with colour video, and has

had a significant impact on visual surveillance research as

well as more general computer vision research in part be-

cause it offers a reasonable accuracy at a very low price.

Spinello and Arras [16] proposed a new people detection

algorithm called Histogram of Orientated Depths (HOD),

inspired by HOG features but using depth gradients instead.

Choi et al. [3] combine image-based and depth-based de-

tectors in order to obtain a more robust detector. Han et
al. [9] presented a system for monitoring smart indoor en-

vironments that uses a depth-based background subtraction

method for people detection, similar to the one proposed in

this work, along with a tracker based on depth position of

people and their colour appearance.

3. Geometry and Calibration
The proposed wide area monitoring system consists of

three Kinect sensors mounted in an adjacent configuration

with minimum overlapping as shown in figure 1. Such

a configuration allows wide areas to be monitored as the

FoV of the device is the aggregation of the FoVs of the

three Kinects, while at the same time avoiding the inter-

ference that occurs when multiple Kinects project overlap-

ping infra-red dot patterns on the same surfaces within the

scene. The device proposed can monitored a room of about

20x25ft (limited in depth by the Kinect range). Optimal

Figure 1: Geometry of the multiple Kinect system
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placement for the device are mounted high on the walls.

3.1. Calibration

A novel calibration technique has been developed to en-

able data generated by each RGB-D sensor to be expressed

within a common coordinate system (CS). This calibration

process entails the selection of a reference CS (the middle

Kinect sensor) and the recovery of the rotation and transla-

tion of the other sensors with respect to this reference CS.

Typically, the calibration between two CSs is based on the

use of corresponding points. Unfortunately this approach

is not available for non-overlapping view volumes. Instead

the approach presented here exploits the depth capability of

the Kinect by using planes as common features. The trans-

formations between CS’s can be recovered from the param-

eters of at least three mutually orthogonal planes extracted

in each pair of depth sensors. A calibration tool has been

built in order to provide a large over-determined set of such

planes. This tool consists of a pole (1.7m length) with two

boards (32x18cm) attached at both edges in a way that both

boards belong to the same plane. Holding the tool in front of

the two cameras, each board can be detected by a different

camera creating a pair of corresponding planes.

Rotation

The rotation between a pair of Kinects is estimated by us-

ing the normal vectors of a set of corresponding planes1. As

illustrated in figure 2, the transformation for a pair of corre-

sponding normal vectors (n̂, n̂′) can be modeled with a 3x3

rotation matrix as follows: n̂R = n̂′. However, the follow-

ing conditions must hold for R: RT = R−1 i.e. R is or-

thogonal, det(R) = 1, and ||Ri:3|| = 1, where the columns

Ri of R are unit vectors. This rotation is calculated using

the method described by Sorkine [15] which guarantees all

these properties.

Figure 2: Corresponding Normal Vectors of two depth

views from different Kinect sensors

Translation

Based on the rotation obtained, the translation is estimated

by error minimization using a set of corresponding points.

How these points are obtained is the key innovation of the

1The expression ”corresponding planes” denotes in this context the

same plane represented in different CSs

method. For a plane detected in the non-reference CS (ro-

tated), a unique point can be identified as that point on the

plane closest to the origin i.e. x = dn̂. This point under-

goes an unknown translation to x′ = dn̂+t in the reference

CS as shown in figure 3. Since this translated point must lie

on the corresponding plane, a constraint on the translation t
can be obtained as follows:

n̂′ · (dn̂+ t) = d′ (1)

n̂′ · t = d′ − d (n̂′ · n̂) (2)

where d and d′ are the distances of the plane to both CS ori-

gins (local and reference), n̂ and n̂′ denote the normal vec-

tors of the plane in both CSs, and t represents the translation

vector between the two CSs. Such a constraint equation is

generated for each pair of corresponding planes enabling

the generation of the following simple linear estimator of t.

Nt = D (3)

where

N =
[
n̂′T1 , · · · , n̂′TM

]
D = [d′1 − d1 (n̂

′
1 · n̂1) , · · · , d′M − dM (n̂′M · n̂M )]

T

and M is the number of corresponding planes.

Figure 3: Recovering the translation

4. People Detection
In common with most approaches, the people detection

methodology comprises of two sequential steps: foreground
segmentation to identify moving objects in the scene, and

blob detection to discriminate people among the innumer-

able small moving regions detected. The foreground seg-

mentation is applied in the image plane of each camera in-

dependently to generate three sets of moving points. Rather

than RGB pixels, the technique is applied to the depth in-

formation, which makes the algorithm robust against clut-

tered backgrounds and changing illumination conditions,

and works even in dark environments.
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Foreground pixels are obtained by thresholding the dif-

ference between the current depth frame It and the depth

background model Bt as follow:

|It −Bt| > τ

where τ is an empirically determined threshold. Pixels with

differences larger than τ are classified as foreground and as

background otherwise.

The depth-based background model is initialized using

the first frames of the sequence on the assumption that there

are no foreground objects in the scene. This model is up-

dated selectively over time as follows:

Bt+1 = αIt + (1− α)Bt (4)

where

α =

{
0.05 , if It �∈ background

0 , else.

where α is the learning rate. The background regions of the

model are not updated as gradual changes are not expected.

The resulting sets of moving pixels, one from each sen-

sor, are then projected into the common CS to create a uni-

fied 3D point cloud. This point cloud is projected ortho-

graphically onto a plan view in a similar manner to Harville

[10] where only the highest points in a binned representa-

tion are kept. As described below, the final object segmen-

tation and tracking stages are performed on this plan view.

Blob detection

The blob detection process aims to remove the residual

noise from the previous step and identify people among

the foreground regions detected. The maximum range of

the plan view is the aggregated field of view of the three

Kinect sensors defining the so called map of activity (MoA).

The MoA is binned to enable modeling of the density of

foreground pixels - see figure 4(a). All moving pixels are

projected into the MoA and accumulated into their respec-

tive bins. A final non-maxima suppression algorithm is ap-

plied to identify blobs of people as illustrated in figure 4(b).

In more detail, the non-maxima supression finds bins with

high values on the MoA, then, centred at each of those bins,

a region is defined, whose dimensions have been specified

previously according to an average person size on the plan
view. Finally, a blob is characterized with all the points un-

der the area.

Every detected person is described by a centroid and a set

of pixels in the MoA. In addition, each pixel is associated

with the colour of the highest of all the points that projected

on that particular pixel in the MoA. The colour information

will be used in the tracking process.

(a) MoA Binning (one person example)

(b) Blob Detection

Figure 4: Processing on the Map of Activity

5. People Tracking

The people tracker presented here combines the mean-

shift approach, to search for targets in the current frame,

and a Kalman filter to predict the next target location. This

combination of techniques was proposed first by Comani-

ciu and Ramesh [4]. Rather than on the image plane, in

this work the tracker is applied on the previously built MoA

where occlusions are easier to resolve.

Mean-shift

The mean-shift approach is a probabilistic technique

which primarily aims to find modes in density functions but

that can also be applied to tracking [5] by searching for a

previously built model of a person in the current image. In

the proposed implementation, the model, represented by a

colour histogram, is built upon the colour distribution of

the highest points of a person as captured in the MoA (see

equation 5). For each of m bins, the relative probability of

a particular bin u is given by

p (u) = C

n∑
i=1

δ [b (xi)− u] (5)

where δ is the Kronecker delta function, n is the number

of pixels of the person, xi represents the coordinates of the

ith pixel of the person and b is a function that takes the co-

ordinates of an image pixel and returns the corresponding

bin in the histogram associated with that colour. The con-

stant C is used to normalize the histogram and is defined as

C = 1/max(p(u);u = 1 · · ·m). This model is searched

by mean-shift on the image to determine the new location

of the person in the current frame.
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Kalman filter

Kalman filtering is a technique that predicts future loca-

tions of targets based on their history and it is incorporated

into the algorithm as a way to optimize the searching of tar-

gets. The predicted position is used as the starting point

for mean-shift which normally reduces the number of iter-

ations required to find the target. In addition, Kalman filter

predicts a variance in the position, which is used to control

the search area for each person in the current frame. Hence,

the probabilities are only calculated on the pixels under that

area instead of in the entire image.

Other challenges

Independently of the tracking technique used, there are

two challenges that any tracking system needs to address:

the change in a target’s appearance over time (produced by

gradual changes in the illumination or object orientation),

and the temporal loss of a target due to occlusion or failures

in the detection process.

In this work, the first challenge is addressed by updating

the model as follows: pt+1 = αdt+(1−α)pt, where pt and

pt+1 are the models (histograms) of the person at time t and

t + 1 respectively, d is the colour distribution (histogram)

of the target at time t and α is the learning rate at which the

model is updated with the new observation. The value of

α = 0, 05 has been determined empirically.

For the second problem, once a target has been labelled

as lost2, the updating of its model is suspended and the algo-

rithm predicts only its location in subsequent frames. The

motion model of the target prior to its loss is used in the

prediction. Finally, if the target remains lost for more than

a certain number of frames, its is automatically discarded.

6. Evaluation

This section describes some qualitative results that il-

lustrate the performance of the detection and tracking in a

highly complex environment with a dynamic background

and severe occlusions. In addition, it is presented the de-

tails of the dataset created for the evaluation of the system.

Dataset

A highly challenging data set has been constructed that

represents usual indoor environments. The dataset com-

prises of 5 sequences of approximately 2 minutes each

recorded in a University workshop where students are con-

stantly moving leading to multiple static and dynamic oc-

clusions. The data consists of the RGB-D output of three

Kinect sensors set in an adjacent configuration with mini-

2A target is considered lost in the current frame when the number of

points associated with that target, under the search area, is lower than a

certain threshold.

mum overlapping at a location of about 2 metres high (see

figure 5).

There are two main challenges present in this dataset: a

highly dynamic background over a large indoor space. It

should be noted that the background is composed of sitting

people working at their stations which creates constant un-

predictable small movements in the background. The large

space is covered by the Kinect sensors with distance up to

10 metres where the depth resolution is very low.

Detection

The detection algorithm shows different performance at

different distances. Distant people are more difficult to de-

tect due to the fact that the pixel and depth resolution re-

duces with distance. Figure 5 illustrates the detection of

four people across two of the sensors. In this example, the

system failed to detect the person furthest on the right.

In addition, it is important to emphasis that the algo-

rithm continues to successfully detect people when grad-

ual or sudden illumination changes occurred in the scene.

It detects people even in dark environments (although this

scenario is not considered in this dataset).

Tracking

The tracking of objects in the plan view clearly demon-

strates advantages when dealing with all kind of occlusions.

The dataset contains many types of static and dynamic oc-

clusions and the tracker successfully resolves most of these

even at long distances. Figures 6 and 7 each show a se-

quence of three frames in time to illustrate the results of the

tracking under static and dynamic occlusions respectively.

The figures show only the RGB data from the camera where

the occlusions occur and the selected region in the MoA.

Empirical Results

Currently an evaluation dataset with accompanying

ground truth is in preparation. As a consequence no ex-

haustive quantitative results are available. However, ta-

ble 1 presents some empirical values derived from the vi-

sual inspection of the algorithm execution on the current

dataset videos. The overall performance of the system can

be divided according to different ranges of distance regions

termed Near (0.5-3.5m), Mid (3.5-5.5) and Far (5.5-10m).

Clearly distance has a dramatic impact on performance.

Process Distance Ranges

Near Mid Far

Detection 99% 90% 75%

Tracking 95% 80% 60%

Table 1. Empirical results of the detection and tracking processes

at different distances.

829829829835



Figure 5: Example of Detections in the MoA

Figure 6: Examples of Static Occlusion

7. Conclusions

This paper presents a range-based multi-sensor system

for monitoring wide-area indoor spaces. A key step was the

development of a novel calibration method based on cor-

responding planes to allow the data from non-overlapping

sensors to be represented in a common CS. Next, a depth-

based people detection technique which is robust to vary-

ing illumination conditions has been described. Finally, a

tracker working on the plan view has been described which

exploits the range data to resolve static and dynamic oc-

clusions. A very challenging RGB-D dataset is being de-

veloped to evaluate the approach which covers a large area

indoor space with a extremely complex background. More-

over it includes a significant number of static and dynamic

occlusion events at different distances. This dataset is in-

tended to be made public shortly, so researchers will be able

to evaluate and compare their results. Due to the increasing

popularity of RGB-D sensors in video surveillance applica-

tions, it is hoped that the proposed dataset will be an asset

and challenge for the wider visual surveillance community.
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Figure 7: Example of a Dynamic Occlusion
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