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Abstract

In this paper, a real case study on a Goal Line Moni-
toring system is presented. The core of the paper is a re-
fined ball detection algorithm that analyzes candidate ball
regions to detect the ball. A decision making approach, by
means of camera calibration, decides about the goal event
occurrence. Differently from other similar approaches, the
proposed one provides, as unquestionable proof, the image
sequence that records the goal event under consideration.
Moreover, it is non-invasive: it does not require any change
in the typical football devices (ball, goal posts, and so on).
Extensive experiments were performed on both real matches
acquired during the Italian Serie A championship, and spe-
cific evaluation tests by means of an artificial impact wall
and a shooting machine for shot simulation. The encour-
aging experimental results confirmed that the system could
help humans in ambiguous goal line event detection.

1. Introduction
Soccer is the world’s most popular sport and an enor-

mous business, and every match is currently refereed by a

single person who ”has full authority to enforce the Laws of

the Game”. So, controversies are inevitable, and the most

glaring of them are usually about referee calls for which

no interpretation is required and concern about whether the

ball has completely crossed goal line or not. Recently, fa-

mous ’bad calls’ happened during the Euro 2012 (Ukraine

scored a goal against England that clearly went over the line

but was disallowed by referee, see fig. 1) and World Cup

2010 (England scored a goal against Germany that was dis-

allowed by referee) Competitions.

In cases like these, the referee’s call is influenced by,

among other things, three ineluctable factors:

• the referee’s position on the field: he is not aligned

with the goal line and then a parallax error affects his

decision;

• the high speed of the ball that can reach up to 120km/h.

It is impossible for human visual and cognitive systems

Figure 1. During the 2012 Euro Competition, England’s defender

John Terry lunges for the ball, which appears to be over the line

(as well as for standard broadcast images, at 25fps) to

estimate the position of such a moving object continu-

ously.

• the considerable distance (about 35-40 m.) between

the linemen and the goal post: this makes it very hard

to evaluate goal events with a resolution of about 1-2

cm.

The only way to definitively avoid these kinds of contro-

versies is to introduce a ”goal line technology”, i.e an au-

tomatic system to assist the referee in decisions concerning

goal events.

For this purpose different technologies have been pro-

posed. The earliest ones were based on instant replay: in

case of a controversial call about a goal event the referee (or

an assistant) could stop the game and watch the images (ac-

quired from broadcast or dedicated cameras). This would

slow down the game taking away possible plays and an-

noying the audience. Thus attention has recently turned to

technologies able to decide autonomously whether or not

the ball has crossed the goal line. One of the most promis-

ing approaches uses a magnetic field to track a ball with

a sensor suspended inside [3]. Thin cables with electrical

current running through them are buried in the penalty box

and behind the goal line to make a grid. The sensor in the
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ball measures the magnetic grids and relays the data to a

computer which determines if the ball has crossed the line

or not. However, this kind of technology cannot provide

unquestionable proof of detected events; and requires sub-

stantial modifications to the infrastructure of the stadium

and game component (ball, playing-field, goalposts,...).

For these reasons, the efforts of several companies and

research institutes are currently focused on the development

of non-invasive goal line technologies. In particular, vision-

based systems appear to be very promising considering their

capability to provide a posteriori verification of the system’s

operations [1, 2].

The main issue of an automatic system is the detection of

the ball; it is very difficult when images are taken from fixed

or broadcast cameras with a wide camera view since the

ball is represented by a small number of pixels and more-

over it can have different scales, textures and colors. For

this reason, most ball detection approaches are based on an

evaluation of the ball trajectory. The underlying idea is that

the analysis of kinematic parameters can point out the ball

among a set of ball candidates [13, 15, 11, 10].

However, trajectory based approaches are generally off-

line since the evaluation of the kinematic parameters for

all ball candidates requires a long period of observation;

so they are not suitable to be used in a real time goal line

monitoring system.

In recent years, few research groups have started work-

ing on visual frameworks with the aim of recognizing real

time events. These systems have also to address problems

associated with the time spent on image acquisition, trans-

mission and processing (often the frame rate is even higher

than for standard TV cameras). Furthermore, the ability to

work autonomously for several hours and in all environmen-

tal conditions are additional characteristics required in this

kind of systems. In [5] the authors present a real time vi-

sual system for goal detection which can be used as decision

support by the referee committee. A system for automatic

judgment of offside events is presented in [7]. The authors

propose the use of 16 cameras located along both sides of

the soccer field to cover the whole area. The integration of

results from multiple cameras is used for offside judgment.

Six fixed cameras were used in [4] to cover the whole field

and to acquire image sequences from both sides of the sta-

dium. Player and ball tracking processes run parallel on the

six image sequences and extract the player and ball posi-

tions in real time.

However, the ball detection approaches proposed in

these works are developed to perform mainly in single im-

age; they don’t use temporal consistency to reinforce the

detection, and also integration between different views is

quite superficial. In our work we integrate all information

to realize a system able to work consistently for long time

periods.

In this paper, a visual system able to detect the goal event

through real time processing of the acquired images and

immediately provide the image sequence that records the

goal event under consideration is presented. The system

has been implemented at the Friuli Stadium in Udine. It

has been tested both during real matches of the Italian Serie

A championship, and specific simulation sessions: in this

case, the ball was shot by a shooting machine in different

contexts, as explained in detail in the experimental results

section, in order to validate the system in terms of both spa-

tial and temporal accuracy.

2. Overview of the System
In figure 2(a) the visual system is outlined. Six cameras

are placed on the stands of the stadium. For each side of

the pitch, two of the three cameras have their optical axes

parallel to the goal frame, the remaining one is placed be-

hind the goal with its optical axis perpendicular to the goal

frame. Each camera is connected to a processor (node) that

records and analyzes the acquired images. In figure 2(b) a

schematic diagram of the processing steps executed by each

node is shown.

(a)

(b)

Figure 2. The scheme of the visual system (2(a)), and a schematic

diagram of the processing steps executed by each Node (2(b))

The six processors are connected to a main node, which

has the supervisor function. The supervisor node has a de-

cision making function by combining the processing results

coming from the cameras. The strategy is based on some

heuristics that perform data fusion evaluating the time space

coherence of the ball’s 3D trajectory. The processing results

of the three corresponding nodes are compared and a goal
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event probability function is evaluated.

3. Preliminary Steps: Calibration and Moving
Object Segmentation

First of all, it is necessary to do a calibration step for

each node in which the correspondences between the im-

age plane and a plane in the 3D world are assessed. This

step is fundamental in determining the 3D position of the

ball. In other words, the homography transformation ma-

trix is estimated by using Random Sample Consensus for

each node [6] in this step. Each homography transforma-

tion matrix Mi relates the points on the image plane to the

corresponding points on the 3D plane. The only constraint

to be considered when choosing the planes is that they must

not be perpendicular to the image plane of the associated

camera. This calibration needs to be done only once, after

camera installation, and if the cameras remain in place these

measures are still valid for any subsequent matches. For

the experiments reported in this paper, the calibration phase

was carried out using non-deformable steel structures: each

structure defines a plane in the 3D world and specific mark-

ers were used for the identification of the control points.

The segmentation of the image to extract moving ob-

jects is the first processing step executed by each node. It is

fundamental as it limits the ball detection to moving areas

and reduces computational time. For this purpose a back-

ground subtraction-based segmentation algorithm was im-

plemented. Firstly, a background model has to be generated

and then continuously updated to include lighting variations

in the model. The implemented algorithm uses the mean

and standard deviation to provide a statistical model of the

background. Detection is then performed by comparing the

pixel current intensity value with its statistical parameters,

as explained in several works on this topic (a good review

can be found in [12]). Details about the implemented ap-

proach can be found in [14] Finally, after the detection of

moving points, a connected components analysis detects the

blobs in the image by grouping neighboring pixels. After

this step, regions with an area less than a given threshold

are considered as noise and removed, whilst remaining re-

gions are evaluated in the following steps.

4. Ball Detection and Tracking
An automatic method that detects ball position in each

image is the central step to building the vision system. In the

soccer world, a great number of problems have to be man-

aged, including occlusions, shadowing, mis-detection (the

incorrect detection of objects similar to the ball), and last

but not least, real time processing constraints. The ball de-

tection method has to be very simple, fast and effective as a

great number of images per second must be processed. This

kind of problem can be addressed by considering two dif-

ferent detection systems: geometric approaches that can be

applied to match a model of the object of interest to differ-

ent parts of the image in order to find the best fit; or example

based techniques that can be applied to learn the salient fea-

tures of a class of objects from sets of positive and negative

examples.

This method uses two different techniques together in or-

der to take advantage of their peculiarities: first of all, a fast

circle detection (and/or circle portion detection) algorithm,

based only on edge information, is applied to the whole im-

age to limit the image area to the best candidate containing

the ball; second, an appearance based distance measure is

used to validate ball hypothesis.

The Circle Hough Transform (CHT) aims to find circu-

lar patterns of a given radius R within an image. Each edge

point contributes a circle of radius R to an output accumu-

lator space. The peak in the output accumulator space is

detected where these contributed circles overlap at the cen-

ter of the original circle. In order to reduce the computa-

tional burden and the number of false positives typical of

the CHT, a number of modifications have been widely im-

plemented in the last decade. The use of edge orientation

information limits the possible positions of the center for

each edge point. This way only an arc perpendicular to the

edge orientation at a distance R from the edge point needs

to be plotted. The CHT, as well as its modifications, can be

formulated as convolutions applied to an edge magnitude

image (after suitable edge detection). We have defined a

circle detection operator that is applied over all the image

pixels, which produces a maximal value when a circle is

detected with a radius in the range [Rmin,Rmax]:

u(x, y) =

∫ ∫
D(x,y)

�e(α, β) · �O(α− x, β − y)dαdβ

2π(Rmax −Rmim)
(1)

where the domain D(x,y) is defined as:

D(x, y) = {(α, β) ∈ �2|R2
min ≤ (α−x)2+(β−y)2 ≤ R2

max}
(2)

�e is the normalized gradient vector:

�e(x, y) = [
Ex(x, y)

|E| ,
Ey(x, y)

|E| ]T (3)

and �O is the kernel vector

�O(x, y) = [
cos(tan−1(y/x))√

x2 + y2
,
sin(tan−1(y/x))√

x2 + y2
]T (4)

The use of the normalized gradient vector in (1) is nec-

essary in order to have an operator whose results are inde-

pendent from the intensity of the gradient in each point: we

want to be sure that the circle detected in the image is the
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most complete in terms of contours and not the most con-

trasted in the image. Indeed, it is possible that a circle that is

not well contrasted in the image gives a convolution result

lower than another object that is not exactly circular but has

a greater gradient. The kernel vector contains a normaliza-

tion factor (the division by the distance of each point from

the center of the kernel) which is fundamental to ensuring

that we have the same values in the accumulation space

when circles with different radii in the admissible range are

found. Moreover, normalization ensures that the peak in the

convolution result is obtained for the most complete circle

and not for the greatest in the annulus. As a final considera-

tion, in equation (1) the division by (2Π · (Rmax −Rmin))
guarantees the final result of our operator in the range [-1,1]

regardless of the radius value considered in the procedure.

The masks implementing the kernel vector have a dimen-

sion of (2 ·Rmax+1)(2 ·Rmax+1) and they represent the

direction of the radial vector scaled by the distance from the

center in each point. The convolution between the gradient

versor images and these masks evaluates how many points

in the image have a gradient direction concordant with the

gradient direction of a range of circles. Then the peak in

the accumulator array provides the center of the sub-image

with higher circularity that is finally passed to the valida-

tion step. Examples of sub-images given as input to the ball

recognition process are shown in figure 3.

Figure 3. Some images of the training set: in the first row there

are some negative examples of the ball, in the second row some

positive examples

The validation step assesses the similarity of appearance

between the candidate region and a set of positive examples

stored previously. The similarity is evaluated by comput-

ing the Bhattacharyya distance among histograms (reduced

to 64 bins): this measure is not computationally time con-

suming but at the same time it is sufficiently robust as it

is invariant to the rotation of the target (textured balls are

considered) and also to slight changes in scale. One of the

strengths of the proposed system is that the construction

and updating of the set of reference examples for validation

takes place automatically.

Initially, the set of reference examples is empty and all

the moving objects with the highest value of circularity

(greater than a weak threshold) and with an area compatible

with that of the ball are taken into account. Their displace-

ment on the image plane frame after frame is then evaluated

in order to estimate some motion parameters e.g. direction

and velocity. The candidate regions are then included in the

reference set if the associated motion parameters are com-

patible with those that only a ball can have in case of a shot

on goal (direction towards the goal and plausible number

of pixel displacement between frames). At the same time

the relative distance into the image plane between the can-

didate regions and the other moving object in the scene is

evaluated: if the relative distance is low and almost consis-

tent, the ball candidate is discarded since it has likely been

produced by incorrect segmentation of players’ bodies.

The same criteria are used to add new examples in the

reference set, additionally considering the value of the mea-

surement of similarity with the pre-existing examples. The

maximum number of examples in the reference set is 100

and it is managed as a circular buffer.

The reference set is re-initialized when circular objects

with peculiar motion parameters and low similarity (i.e.

higher distances in the space of histograms) to the exam-

ples in the reference set appear in a number of consecutive

frames. This way the introduction of a new type of ball or

sudden and substantial changes in lighting conditions (due

to clouds or floodlights) can be handled automatically.

The ball has to be detected in more consecutive images

in order to be sure that a true positive has been found. In

this case, a different and more reliable procedure for select-

ing candidate moving regions is used (tracking phase). A

ball position probability map, covering all the points of the

processing image, is created as follows:

P (x, y) =
e(−

|(x−|x̃+Vxsign(cos θ)|)+(y−|ỹ+Vysign(sin θ)|)|2
2σ2 )

σ
√
2π

(5)

where (x̃, ỹ) is the last known ball position and

σ =
RpVmaxn

RcmT
(6)

where V and θ are the local velocity and the direction

of the ball in the image plane respectively, Rp is the Ball

radius in pixels, Rcm is the Ball radius in centimeters and

Vmax is the maximum admissible velocity of the ball (in

cm/sec), T is the camera frame rate and n is the number

of frames between the past and actual ball detection (1 if,

in this case, the two frames are consecutive). This way the

maximum probability value is related to the point where,

on the basis of past information about the ball’s movement,

the ball should be found (predicted point). The probability

value decreases exponentially as the distance from the pre-

dicted point becomes close to 0 for points far from the last

known ball position that cannot be reached considering the

maximum speed limits (usually 120 km/h). In the follow-

ing frames, the probability map is used to select candidate
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moving regions (like those with a probability greater than

zero). This way, the ball can be detected both in case of

merging with players and in case of partial occlusions. The

ball velocity, direction and probability map are always up-

dated using the proper value for n (i.e. the number of frames

between the actual frame and the last ball detection). If the

ball is not detected for three consecutive seconds (i.e. n be-

comes greater than T*3) the past information is considered

outdated and the ball detection procedure starts again con-

sidering all the candidate ball regions in the whole image.

5. Supervisor node
The supervisor node has a decision-making function ac-

cording to the processing results coming from the nodes.

For each frame the processing units send several items of

information to the supervisor, including the last frame num-

ber processed, the position of the ball (if detected), and the

number of consecutive frames in which the ball has been

correctly tracked. It should be noted that even if the images

are synchronized in the acquisition process, the processing

results are not necessarily synchronized, since each node

works independently from the others. Moreover, a node

may jump some frames having accumulated a significant

delay during the processing. When the supervisor receives

the results of three nodes for a given frame, or when it de-

tects that synchronized data obtained cannot be retrieved for

a given frame, the supervisor processes the obtained infor-

mation to evaluate the occurrence of a goal event. This is

done by evaluating the goal line crossing in the available

2D images. However, this way it is not possible to evaluate

if the ball crossed the goal line inside the goal posts or not.

For this reason, the 3D ball position and its trajectory before

crossing the goal line are evaluated. This requires a calibra-

tion procedure (described in section ??), and an accurate

evaluation of the 3D position of the ball.

If the ball position is evaluated in the image plane, it is

possible to estimate the corresponding projection line. The

intersection of the three projection lines provides the esti-

mate of the ball position in the real world coordinate sys-

tem as shown in figure 4. In practice, this process entails

uncertainty, so corresponding lines of sight may not meet in

the scene. Furthermore, it is likely that in certain moments

it is not possible to see the ball by one or more cameras

because of occlusions, for example created by the players,

the goalkeeper or the goalposts. For these reasons a special

procedure for estimating the 3D position of the ball was in-

troduced. If the ball is visible in only 2 cameras the 3D dis-

tance between the two projection lines is firstly computed.

Then, if this distance is smaller than a selected threshold

(typically about the size of the diameter of the ball, ie 22

cm.) the two projection lines are considered as referring to

the same object (dealing with possible errors of the detec-

tion algorithms of the ball which are described in section 4)

and then the mid-point of the common perpendicular to the

two projection lines is chosen as an estimate of the 3D po-

sition of the ball. If the ball is visible in all three cameras,

the mutual 3D distance among the three projection lines is

calculated. The two projection lines with shorter distance

are then considered the most reliable and this leads the cal-

culation to the previous case. We are aware that different

approaches have been proposed in literature to handle the

3D position estimation issue by triangulation ([9], [8]), but

we have not considered using them because of the difficul-

ties of their implementation and their high computational

costs that make them unsuitable for a real-time system.

Finally, if the ball is only in a single camera, its 3D posi-

tion can be estimated if some previous temporally close 3D

positions are available. In this case, a linear filter is used to

predict the next 3D position and then to estimate the projec-

tion lines of the missing views.

Figure 4. The intersection of the three projection lines produces

the estimated ball position.

6. Experimental Results

A prototypal system was installed at the Friuli Stadium

in Udine. The system uses Mikrotron MC1362 cameras

with a spatial resolution of 1024x768 pixels at 504 fps and

Xeon QuadCore E5606 2,13 Ghz as the processing node.

Each node is equipped with a X64-CL iPro PCI frame grab-

ber capable of acquiring images from one Medium Camera

Link
TM

camera and performing image transfers at rates of

up to 528 MB/s. The system was extensively tested dur-

ing real ”Serie A” championship matches and a specific ex-

perimental session (making use of the impact wall, slide,

ball shooting machine, etc.) was conceived to evaluate goal

event detection accuracy. Thus, both the system’s reliability

in the real context of a soccer match and its performance in

very stressful sessions of shots executed using a ball shoot-

ing machine (which also allows repeatable results to be ob-

tained) were tested.

An observation about experimental tests is mandatory:

a comparison with other approaches is unfeasible, due to

the complexity of the whole system. It could be interesting

a comparison with commercial/industrial systems ([1], [2],

[3]), but companies do not release technical information and

data such as to make possible such comparisons.
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6.1. Benchmark Results

Here we focus our attention on benchmark sessions per-

formed outside of the match. In detail, four different exper-

iments were carried out:

• Impact Wall shots (fig. 5(a) - 5(b)): during this test, an

artificial wall was placed behind the goal line in two

different positions: in the first, the ball position at the

moment of impact is ”No Goal”, while in the second

it is ”Goal” (ground truth). The ball was shot by a

shooting machine at different speeds. This way the ac-

curacy of the system to detect the goal event in terms

of both spatial resolution and mostly temporal resolu-

tion (at high ball speed, even at 200 fps, there are just

1-2 frames to correctly detect the goal event) can be

tested.

• Sled (fig. 5(c)): in this test, the ball is positioned on

a mobile sled, and slowly moved from a non-goal to

a goal position. The system’s precision to detect the

exact ball position (in terms of cm over the goal line)

was tested.

• Free Shots: during these experiments, several shots

were performed by means of the shooting machine,

in different positions with respect to the goal: left,

right, middle, just under the horizontal crossbar, and

just over the ground; each of them at different ball

speeds. We tested whether the system fails to detect

a specific portion of the goal area. Moreover, the reli-

ability of the 3D reconstruction procedure (to separate

shots inside and outside the goal posts) was tested.

• Outer Net (fig. 5(d)): in this session, specific shots on

the outer net were performed with the final position of

the ball inside the volumetric area of the goal, but arriv-

ing from outside the goal posts. We tested the system’s

capability of tracking the ball accurately (even in 3D),

by separating balls that arrived in the goal volumet-

ric area from a ’goal trajectory’ (inside the goal posts)

from balls that arrived from an external trajectory.

In order to show the weak impact of light conditions,

some tests were also performed at night, in the presence

of artificial stadium light. In table 1 the final results are

reported. The Impact Wall sessions gave good results, with

an overall success rate of more than 92%. The experiments

were carried out by shooting the ball at different speeds,

impacting the wall in different positions.

All shots in the Outer Net session were correctly de-

tected; for the Sled session, we reported the mean distance

over the goal line detected by the system, while a more de-

tailed analysis of this data, to emphasize that the system

mostly detected the event within 2 cm, is reported in table

2.

(a) Impact

Wall Position

for No Goal

Simulation

(b) Impact

Wall Position

for Goal

Simulation

(c) Sled (d) Outer Net

(note that the

ball is over the

net)

Figure 5. Example of different tests

The Free Shots session realized different results accord-

ing to test lighting conditions: in the daylight test a suc-

cess rate of over 98% was obtained. On the contrary, in the

night test, an 88.54% success rate was obtained, in the same

test. This was due to the different performances of the al-

gorithms. First of all, the background subtraction together

with computational aspects: if the segmentation algorithm,

due to artificial light flickering, detects a number of moving

points greater than reality, the following algorithms have to

process more points causing a growing computational load,

which leads to problems with memory buffers, and subse-

quently some frames are discarded (it should be noted that

all our experiments were performed in realtime). To con-

firm this, this test session was off-line processed again, ob-

taining results comparable to those in daylight. It can be

concluded that this drawback can easily be overcome, by

simply optimizing the code and/or improving hardware with

more performing components. The same observations are

valid for the night session of the Impact Wall test.

Figure 6 reports images acquired during the experimen-

tal phase and corresponding to two goal events; the first row

refers to a goal event during the Free Shot session, while in

the second row images from the Impact Wall session are

shown (just 2 cameras are reported for this experiment, the

third one is evidently occluded and cannot help in any way).

6.2. Real match results

In order to evaluate the system’s robustness in real

uncontrolled conditions, test were conducted during real

matches of the Italian Serie A Championship; in particular,
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Table 1. Overall performance of the GLT system during extensive

experimental sessions.

Test Results
Impact Wall - Daylight 175/186 - 94.09%

Outer Net - Daylight 70/70 - 100%

Free Shots - Daylight 165/168 - 98.21%

Impact Wall - Night 84/93 - 90.32%

Free Shots - Night 85/96 - 88.54%

Sled - Daylight average of 3.8 cm

Table 2. Sensibility evaluation of the system in the sled test.

Distance Results
0 - 2 cm 17/32 - 53.125%

2 - 3 cm 8/32 - 25.00%

3 - 5 cm 4/32 - 12.50%

> 5 cm 3/32 - 9.375%

(a) camera 1 (b) camera 2 (c) camera 3

(d) camera 1 (e) camera 2

Figure 6. Some images acquired during the experimental phase

the system was tested during 19 matches played at the Friuli

Stadium in Udine (Italy). Table 3 reports the goal detection

results. In a real context, the important events (goals) are

limited in number so the benchmark sessions reported in

the previous section are mandatory in order to test the sys-

tem exhaustively. On the other hand, in a benchmark ses-

sion, it is really hard to introduce and simulate all possible

events that could happen during a real match: the presence

of players in the scene that could alter the detection of the

ball (some body parts, like legs and shoulders, could be er-

roneously detected as the ball); the presence of logos and/or

particular combinations of colors on the players’ uniforms

that can influence the ball detection procedure; the possibil-

ity that players randomly cross the goal line (goalkeepers

often do); the presence of objects in the goal area (towels,

bottles, etc.) that could lead to misclassifications.

As it can be noted, during the 19 matches there were 33

goal events that were correctly detected (no misdetections)

and just 1 false positive occurrence.

In figure 7, one of the goal events correctly detected

(even if the ball was occluded by one camera and the ball

appearance is not very different from the player’s jersey) is

shown. During this experimental phase, in addition to goal

events, a very controversial situation occurred: the goal-

keeper saved a shot when the ball was on the goal line (see

fig. 8). The system evaluated that situation as No-goal and

the image clearly evidences that it was right.

A false positive also occurred during a complex defen-

sive action: four defenders were close to the goal line, try-

ing to protect the goal and one of them kicked the ball away

clearly before it crossed the line (see fig. 9). Afterwards, a

defender crossed the goal line and, unfortunately, the sys-

tem recognized the pattern of the ball on his shorts (whose

position was also consistent with the trajectory predicted by

the ball tracking procedure). Cases like this (although rare)

could happen again, and certainly need further investiga-

tion. Considering that the system processed a huge amount

of data, i.e a total of over 1.7K minutes of play, which cor-

respond to about 20M of images, the percentage of errors

can be considered acceptable.

Finally, something about computational load: a speedy

response is mandatory for the system to actually be used.

For this reason we evaluated the delay in response for each

test. In fig. 10 a summary of the response time is reported.

As evidenced, considering the realistic threshold of 2 sec-

onds for the system’s response, it can be noted that in about

80% of the total number of experiments the response time

was acceptable. Considering that algorithms can be further

improved and optimized, it can be concluded that the real-

time constraint can easily be achieved.

Table 3. Performance in real conditions.
Goal True False False

Events Positives Negatives Positives
33 Goals 33 0 1
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