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Abstract

Sparse representation based methods have recently
drawn much attention in visual tracking due to good perfor-
mance against illumination variation and occlusion. They
assume the errors caused by image variations can be mod-
eled as pixel-wise sparse. However, in many practical sce-
narios these errors are not truly pixel-wise sparse but rather
sparsely distributed in a structured way. In fact, pixels in er-
ror constitute contiguous regions within the object’s track.
This is the case when significant occlusion occurs. To ac-
commodate for non-sparse occlusion in a given frame, we
assume that occlusion detected in previous frames can be
propagated to the current one. This propagated informa-
tion determines which pixels will contribute to the sparse
representation of the current track. In other words, pixel-
s that were detected as part of an occlusion in the previ-
ous frame will be removed from the target representation
process. As such, this paper proposes a novel tracking al-
gorithm that models and detects occlusion through struc-
tured sparse learning. We test our tracker on challenging
benchmark sequences, such as sports videos, which involve
heavy occlusion, drastic illumination changes, and large
pose variations. Experimental results show that our tracker
consistently outperforms the state-of-the-art.

1. Introduction

Visual tracking is a classical problem in computer vi-

sion; it is a core task for many applications e.g. automatic

surveillance, robotics, human computer interaction, etc. It

is also very challenging due to appearance variations such

as occlusion, illumination change, significant motion, back-

ground clutter, etc. Over the years, a significant amount of

effort has been made to overcome these challenges. To sur-

vey many of these algorithms, we refer the reader to [21].

A truly robust tracking method must be able to handle

Figure 1. (a) Frames from six different video sequences, portray-

ing significant occlusion. The ground truth track of each object is

designated in green. Clearly, occlusion renders the tracking prob-

lem very difficult. However, certain assumptions about the struc-

turedness of occlusion (e.g. spatial contiguity ) can be exploited to

alleviate its affect on tracking performance.

occlusion. However, modeling occlusion is not straight-

forward and non-trivial by far. There exists a significant

amount of work that addresses this issue through statisti-

cal analysis [8, 18], robust statistics [1, 3], patch match-

ing [19], the use of multiple cameras [5, 15], context in-

formation [20], model analysis [6], and learning occlusion

with Likelihoods [10]. Recently, sparse representation has

been successfully applied to visual tracking [14, 24, 25, 23]

under the particle filter framework as an attempt to alleviate

the occlusion problem in tracking. In these methods, par-

ticles are randomly sampled around the current state of the

tracked object according to a zero-mean Gaussian distribu-

tion. At time t, n particles are sampled. The observation

(pixel color values) of each particle in the frame is denoted

as: �x ∈ R
d. In the noiseless case, each particle �x is rep-

resented as a linear combination �z of templates that form a

dictionary D =
[
�d1, �d2, · · · , �dm

]
, such that �x = D�z. D

can be constructed from an overcomplete sampling of the
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target object, based on an initial bounding box at the start

of tracking, and dynamically updated to maintain an up-to-

date target appearance model.

In many visual tracking scenarios, targets are often par-

tially occluded or corrupted by noise. Occlusion is unpre-

dictable as it may affect any part, or occlude any amount,

of the target. The occluded object can be either a connect-

ed region or a number of randomly scattered pixels, though

the former is more likely in natural images. In addition,

only a sparse number of these templates is required to re-

liably represent each particle, which encourages �z to be s-

parse. To incorporate these two pieces of information, each

particle �x should be represented as a sparse linear combi-

nation, while allowing for sparse error �e to encode occlu-

sion: �x = D�z + �e. The sparse coefficients �z and sparse

error �e are recovered by solving the following �1 minimiza-

tion problem. The current tracking result is usually chosen

to the be the particle �x with minimum reconstruction error

w.r.t. dictionary D.

min ‖�z‖1 + ‖�e‖1 s.t. �x = D�z+ �e (1)

This approach has demonstrated to be robust against

partial occlusions, which improves tracking performance.

However, it suffers from the following drawbacks.

(1) The error (due to occlusion) is not sparse for many

tracking scenarios, as exemplified in Figure 1. Be-

cause a portion of the target is significantly occluded,

we need to discard that portion for the sparsity assump-

tion to still hold.

(2) This kind of algorithm does not exploit any prior in-

formation about the occlusion, especially the impor-

tant property that occlusion is spatially contiguous. By

modeling error pixels as structured and sparse, the rep-

resentation is made more faithful and better defined.

Motivated by the above drawbacks and inspired by pre-

vious work, we propose a new particle filter tracker that in-

volves tracking by occlusion detection, thus, appropriately

named the TOD tracker. In each frame, particles are repre-

sented in a structured sparse learning framework, which ex-

ploits prior information about the location of occlusion and

its spatial contiguity. This prior is propagated from previous

frames in the form of an occlusion mask. The main goal of

this paper is to show how this prior information can be ef-

fectively incorporated into the sparse representation frame-

work, thus, improving its robustness against more types of

realistic occlusions.

Contributions: Compared with existing methods, the con-

tributions of this work are two-fold. (1) We propose a struc-

tured sparse learning method for occlusion detection in ob-

ject tracking. It exploits structure information to make oc-

clusion both sparse and spatially continuous for more robust

performance. To the best of our knowledge, this is the first

work to use occlusion prior information through structured

sparsity in object tracking. (2) Compared to the popular L1

tracker [14] that does not model occlusion explicitly, our

method is generic. In fact, it yields the L1 tracker as a spe-

cial case.

The paper is organized as follows. The proposed track-

ing approach and optimization methodology are presented

in Sections 2 and 3 respectively. In Section 4, we report and

analyze extensive experimental results.

2. Tracking by Occlusion Detection (TOD)

In this section, we give a detailed description of our parti-

cle filter based tracking method, which makes use of occlu-

sion prior information in a structured sparse learning frame-

work to represent particle samples.

2.1. Occlusion Detection via Structured Sparsity

In this section, we discuss how we incorporate a sparsity-

inducing norm that also encodes prior structural informa-

tion (spatial contiguity) regarding the support of the error

incurred when sparse linear representation is used to de-

scribe particles. We expect that such structural information

renders a more faithful and robust representation model that

can handle occlusions in object tracking.

In our particle filter based tracking method, particles are

randomly sampled around the current state of the tracked

object according to a zero-mean Gaussian distribution. Sim-

ilar to [14], we assume an affine motion model between con-

secutive frames. Therefore, the state of a particle st consists

of the six affine transformation parameters (2D linear trans-

formation and translation). By applying an affine transfor-

mation based on st, we crop the region of interest y∗t from

the image and normalize it to the same size as the target

templates in our dictionary. The state transition distribu-

tion p(st|st−1) is modeled to be a zero-mean Gaussian, with

the dimensions of st independent. The observation model

p(y∗t |st) reflects the similarity between a particle and target

templates in the dictionary. In this paper, p(y∗t |st) is in-

versely proportional to the reconstruction error obtained by

linearly representing y∗t using the template dictionary.

In the tth frame, we sample n particles, where the ob-

servation (pixel color values) of the ith particle is denoted

in vector form as: �x ∈ R
d (for simplicity, we ignore the

subscript i). The observation �x of a particle is represented

as a sparse linear combination �z of m dictionary templates

D ∈ R
d×m, as shown in Eq (1). D is updated dynamically

to handle frame-to-frame changes in target appearance. The

dictionary update issue is addressed later.

The L1 tracking work [14], which represents each par-

ticle by solving an �1 LASSO problem, can be generalized

as shown in Eq (1).
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min
�z,�e

‖�z‖1 + ϕ(�e) s.t. �x = D�z+ �e, (2)

In the L1 tracker, the regularizer ϕ(•) on �e is chosen to

be ‖�e‖1. This regularization scheme encourages the error

(e.g. occlusion) to be pixel-wise sparse. This assumption

fails in many tracking scnearios as exemplified in Fig. 1. It

also does not incorporate the structural information inher-

ent to occlusion, namely spatial contiguity. Basically, the

�1-norm regularization treats each entry (pixel) in �e inde-

pendently. It does not take into account any specific struc-

tures or possible relations among subsets of the entries.

To encode this structured prior information, we assume

that the spatial support of the error is contiguous. This can

be enforced by modeing the error as spatially smooth. Al-

so, this error can be assumed to be sparse, if any significant

occlusion is detected and removed beforehand. Note that

we assume that some pixels in a particle are occluded and

those are determined by an occlusion mask that is propagat-

ed from frame-to-frame. At every frame, this mask is used

to determine the pixels, from which the particle representa-

tion �z is computed. This representation is used to estimate

the error at each pixel in the particle. By thresholding this

error with a predefined threshold, the occlusion mask is up-

dated and propagated to the next frame.

To incorporate pairwise relationships between pixels in

the particle, we adopt a graph-guided fused LASSO frame-

work that explicitly takes into account the complex depen-

dency structure represented as a graph, whose nodes are

pixels in the particle. We assume that the d pixels in each

particle are organized in a graph G with a set of nodes V
and edges E. In this paper, we adopt a simple strategy for

constructing such a graph, whereby an edge exists between

any pair of neighboring pixels and its weight is proportion-

al to the correlation of their intensity values and inversely

proportional to the Euclidean distance between them. More

sophisticated methods can be employed, but they are not the

focus of this paper. Let wml denote the weight of an edge

(m, l) ∈ E that represents the strength of correlation be-

tween pixels m and l. Therefore, to encourage spatial con-

tibuity between particle pixels, we emply a graph-guided

fusion penalty, which extends the standard LASSO by fus-

ing the em and el if (m, l) ∈ E. With the above notation,

we formulate the representation problem as a structured s-

parse �1 problem as follows. Details of solving this problem

are provided in Section 3.

min
�z,�e

‖�z‖1 + λ‖�e‖1 + γ
∑

(m,l)∈E
wml‖em − el‖1

s.t. �x = D�z+ �e,
(3)

where λ and γ are tradeoff parameters that control the com-

plexity of the model. A larger value for γ leads to a greater

fusion effect. The wml weighs the fusion penalty for each

edge such that em and el for highly correlated pixels have a

large wml.

Discussion: As shown in Eq (3), we propose a generic

formulation for robust object tracking using structured s-

parse learning. By defining γ differently, different objec-

t trackers are obtained. When γ = 0, TOD becomes the

popular L1 tracker [14]. In this way, the popular L1 track-

er [14] is a special case of our formulation. To the best

of our knowledge, introducing the structured information in

occlusion detection for tracking has not been proposed in

any of the previous works. In Fig. 2, we present an exam-

ple of how our TOD tracker works as compared to the L1

tracker. In the top row, we show a result of representing

particle �x using structured sparse learning instead of tradi-

tional sparse learning (used in L1 tracking) , whose result

is shown in the bottom row. Clearly, the error generated by

TOD leads to a high response at the actual location of the

occlusion, while it is missed by traditional sparse learning.

It is evident that by enforcing spatial contiguity on the error

values, the occlusion can be better localized. This error is

thresholded to produce an occlusion mask that is propagat-

ed to the next frame.

2.2. Dictionary Template Update

A large body of work in the literature has proposed the use

of object templates for visual tracking [12]. Target appear-

ance remains the same only for a certain period of time, but

eventually the object templates are no longer an accurate

representation of its appearance. A fixed appearance tem-

plate is not sufficient to handle changes in appearance due

to occlusion or changes in illumination and pose. Also, if

the templates are updated too often, small errors are intro-

duced each time a template is updated, errors accumulate,

and the tracker may drift from the target. Many approaches

have been proposed over the years to address the drift prob-

lem [13, 9]. In this paper, we do so by dynamically updating

templates in D.

To initialize the object and background dictionaries, we

sample equal-sized patches at and around the initial posi-

tion of the object. In our experiments, we shift the initial

bounding box by 1-3 pixels in each direction, thus, result-

ing in m = 20 object templates as in [14]. Note that m is

a user-defined parameter. All templates are normalized. To

each object template, we allocate a weight ωi that is indica-

tive of how representative the template is. In fact, the more

a template is used to represent tracking results, the higher is

its weight. Next, we describe how we use these weights to

update D.

As mentioned earlier, the tracking result at instance t
is the particle �zi that is best represented by D such that

i = argmink=1,...,n (‖�xk −D�zk‖2). The weight of an ob-

ject template in D is updated depending on how much that
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Figure 2. Schematic example of TOD. The representation z of particle x w.r.t. dictionary D is learned by solving Eq (3). Notice that z is sparse in general,

i.e. a few dictionary templates are used to represent x. The first row is our TOD, and the second row is the popular L1 tracker. Compared with the L1

tracker, our methods can obtain much more continuous occlusion detection result.

Algorithm 1: Dictionary Template Update
1: Predefined threshold ε1 and ε2
2: �y∗ is the newly chosen tracking target and �zi its

representation. Set Δdi = ‖�xi −D�zi‖2 and

simi = sim(D, �y∗), where sim is the maximum

similarity between �y and all elements in D.

3: �ω is the current weight vector of templates in D
4: Update weights according to the coefficients of the

target templates: ωk ← ωk exp(�zi(k))
5: if (simi < ε1 & Δdi > ε2) then
6: r ← argmink=1,...,mO

ωk

7: D(:, r)← �y∗, /*replace template with �y∗ */

8: ωr ← median(�ω), /*replace weight*/

9: end if
10: Normalize �ω such that ‖�ω‖1 = 1

template is used in representing �zi. If �zi is sufficiently rep-

resented (up to a predefined threshold) by the dictionary,

then there is no need to update it. Otherwise, the current

tracking result replaces the object template that has the s-

mallest weight. The weight of this new template is set to

the median of the current normalized weight vector �ω. This

template update scheme is summarized in Algorithm 1. We

have two criteria: (1) The similarity simi between the cur-

rent tracking result and template should be smaller than ε1,

which avoids updating templates frequently and thus avoids

tracker drift; Once the current tracking result leads to a big

variance, we add it to the dictionary by replacing it with the

‘least’ used dictionary template; (2) The error Δdi should

be smaller than ε2, which means we update the dictionary

template if only if there is no occlusion; In our experiments,

ε1 and ε2 are set to be 0.6, and 0.7, respectively.

3. Optimization

In this section, we provide a detailed description of how

Eq (3) is solved efficiently. First, we rewrite the graph-

guided fusion LASSO problem in Eq (3), using a vertex-

edge incident matrix W ∈ R
|E|×d, as follows:

∑
(m,l)∈E

wml‖em − el‖1 = ‖W�e‖1

where each row in W corresponds to an edge in the graph.

If we label each edge with a linear index, we can define W
formally as below:

Wj,k =

⎧⎨
⎩

wml if j = (m, l) and k = m
−wml if j = (m, l) and k = l
0 otherwise

Therefore, the overall penalty in Eq (3) including both

LASSO and graph-guided fusion penalty functions can be

written as ‖B�e‖1, where B = [λW; γI] and I ∈ R
d×d

denotes an identity matrix. Then, the structured sparsity

problem in Eq (3) is converted into the following problem:

min
�z,�e

‖�z‖1 + ‖B�e‖1 s.t. �x = D�z+ �e (4)

To solve Eq 4, we introduce two slack variables and add

two equality constraints, thus, converting it into Eq (5).

min
z,e

‖�z1‖1 +
∥∥∥�f

∥∥∥
1

(5)

such that: �x = D�z2 + �e; �z2 = �z1; �f = B�e

This transformed problem can be minimized using

the conventional Inexact Augmented Lagrange Multiplier

(IALM) method that has attractive quadratic convergence

properties and is extensively used in matrix rank minimiza-

tion problems [16]. IALM is an iterative method that aug-

ments the traditional Lagrangian function with quadratic

penalty terms. This allows closed form updates for each of

the unknown variables. By introducing augmented lagrange

multipliers (ALM) to incorporate the equality constraints

into the cost function, we obtain the Lagrangian function

in Eq (6) that we show, in what follows, can be optimized
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through a sequence of simple closed form update operations

(refer to Eq (7)).

L(�z1−2, �y1−3, u1−3)

= ‖�z1‖∗ +
∥∥∥�f

∥∥∥
1

+tr
[
�yT
1 (�x−D�z2 − �e)

]
+

u1

2
‖�x−D�z2 − �e‖2F

+tr
[
�yT
2 (�z2 − �z1)

]
+

u2

2
‖�z2 − �z1‖2F

+tr
[
�yT
3

(
�f −B�e

)]
+

u3

2

∥∥∥�f −B�e
∥∥∥2

F
(6)

⇒ min
�z1−2,�y1−3,u1−3

L(�z1−2, �y1−3, u1−3) (7)

�y1, �y2, and �y3 are lagrange multipliers, and u1 > 0,

u2 > 0, and u3 > 0 are three penalty parameters. The

above problem can by solved by either exact or inexact

ALM algorithms [11]. For efficiency, we choose the inexact

ALM, whose details we outline in Algorithm (2). Its con-

vergence properties can be proven similar to those in [11].

In fact, both IALM is an iterative algorithm that solves

for each variable in a coordinate descent manner. In oth-

er words, each iteration of IALM involves the updating of

each variable one-at-a-time, with the other variables fixed

to their most recent values. Consequently, we obtain five

update steps corresponding to the five sets of variables we

need to optimize for. Note that Steps 1-5 all have closed

form solutions.
Step 1: [Update �z1] Updating �z1 requires the solution

to the optimization problem in Eq (8). This solution can

be computed in closed form in Eq (9), where Sλ (zij) =
sign(zij)max (0, |zij | − λ) is the soft-thresholding opera-

tor, and zij is the jth element of vector �z.

�z∗1 = argmin
�z1

1

u1
‖�z1‖∗ +

1

2

∥∥∥∥�z1 −
(
�z2 +

1

u2
�y2

)∥∥∥∥
2

F

(8)

⇒ �z∗1 = S 1
u1

(
�z2 +

1
u2
�y2

)
(9)

Step 2: [Update�f ]�f is updated by solving the optimiza-

tion problem in Eq (10) with the closed form solution shown

in Eq (11).

�f∗ = argmin
�f

1

u3

∥∥∥�f
∥∥∥
1
+

1

2

∥∥∥∥�f −
(
B�e+

1

u3
�y3

)∥∥∥∥
2

F

(10)

⇒ �f∗ = S 1
u3

(
B�e+ 1

u3
�y3

)
(11)

Step 3: [Update �e] �e is updated by solving the opti-

mization problem in Eq (12) with the closed form solution

shown in Eq (13).

�e∗ = argmin
�e

tr[�yt
1(�x−D�z2 − �e)] +

u1

2
‖�x−D�z2 − �e‖2F

+ tr[�yt
3(B�e−�f)] +

u3

2

∥∥∥B�e−�f
∥∥∥2

F
(12)

⇒ �e∗ =
(
BTB+ I

)−1
G , (13)

where G = �x−D�z2 +
1
u1
�y1 −BT

(
1
u3
�y3 −�f

)
.

Step 4: [Update �z2] �z2 is updated by solving the opti-

mization problem in Eq (14) with the closed form solution

shown in Eq (15).

�z∗2 = argmin
�z2

tr[�yt
1(�x−D�z2 − �e)] +

u1

2
‖�x−D�z2 − �e‖2F

+ tr[�yt
2(�z2 − �z1)] +

u2

2
‖�z2 − �z1‖2F (14)

⇒ �z∗2 =
(
DTD+ I

)−1
G , (15)

where G = DT (�x− �e+ 1
u1
�y1) + �z1 − 1

u2
�y2.

Step 5: Update Multipliers �y1, �y2: We update the La-

grange multipliers in Eq (16), where ρ > 1.⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�y1 = �y1 + u1(�x−D�z2 − �e)

�y2 = �y2 + u2(�z2 − �z1)

�y3 = �y3 + u3(�f −B�e)

u1 = ρu1; u2 = ρu2; u3 = ρu3

(16)

The IALM algorithm that solves Eq (5) is shown in Al-

gorithm (2), where convergence is reached when the change

in objective function or solution �z is below a user-defined

threshold ε = 10−3. Empirically, we find that our IALM

algorithm is insensitive to a large range of ε values. In our

implementation, u1 = u2 = u3.

Computational Complexity

For the proposed TOD, it just uses the soft-thresholding

operator, and is also very fast. This complexity is on par

with that of other fast particle-based tracking algorithms. In

comparison, the computational complexity of the L1 track-

er [14], which uses a sparse linear representation similar to

our proposed tracker, is at least O (
nd2

)
, since the number

of dictionary templates (object and trivial) is (m+ 2d) and

n Lasso problems are solved independently. Clearly, our

method is more computationally attractive than L1 tracker.

When m = 21, n = 400, and d = 32 × 32, the average

per-frame run-time for TOD and L1 trackers are about 5
seconds and 6 minutes, respectively.

4. Experimental Results
In this section, we do experimental results that validate

the effectiveness and efficiency of our TOD method. We

also make a thorough comparison between TOD and state-

of-the-art tracking methods where applicable.
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Algorithm 2: Structured sparse learning for occlusion
detection (Solving Eq (5))

Input : data �x, parameters λ, γ, and ρ
Output: �z

1 Initialize �z2 = 0, �y1 = 0, �y2 = 0, �y3 = 0
2 while not converged do
3 fix other variables and update �z1 [Eq (9)]

4 fix other variables and update �f [Eq (11)]

5 fix other variables and update �e [Eq (13)]

6 fix other variables and update �z2 [Eq (15)]

7 update multipliers and parameters [Eq (16)]

8 Update final solution �z← �z2
9 end

Datasets and Baseline Trackers: We compile a set of 10
challenging tracking sequences to evaluate TOD. The se-

quences are sports videos and general videos include chal-

lenging appearance variations due to changes in pose, illu-

mination, scale, and occlusion. Most of them involve vari-

ous types of partial occlusions or multiple occlusions. We

compare our TOD method to 6 recent and state-of-the-art

trackers denoted as: L1 [14], RCT [22], MIL [2], IVT [17],

Frag [1], and OAB [7]. We implemented them using pub-

licly available source codes or binaries provided by the au-

thors. They were initialized using their default parameters.

Implementation Details: The initial position of the tar-

get is selected manually, and we shift the initial bound-

ing box by 1-3 pixels in each dimension, thus, resulting

in m = 21 target templates D (similar to L1 tracker

[14]). All our experiments are done using MATLAB on a

2.66GHZ Intel Core2 Duo PC with 18GB RAM. For all ex-

periments, we model p (�st|�st−1) ∼ N (�0, diag(�σ)), where

�σ = [0.005, 0.0005, 0.0005, 0.005, 3, 3]T . We set the num-

ber of particles n = 400. In Algorithm 2, we set λ = 1 and

γ = 5. Next, we give a qualitative and quantitative analy-

sis of TOD, and compare it against the 6 baseline methods.

Our experiments show that TOD produces more robust and

accurate tracks.

4.1. Qualitative Comparison

In Fig. 3 and Fig. 4, we show tracking results of the 7
trackers on a subset of the videos. The details are introduced

as follows.

In the AF1 sequence, a player is tracked with appearance

changes due to camera motion. Tracking results for frames

{10, 162, 300, 400} are presented in Fig. 3(a). IVT and MIL

start to drift around frame 162. Due to changes in appear-

ance, OAB and L1 start to undergo target drift from frame

300. Frag starts to fail after frame 400. TOD and RCT can

track the target through the whole sequence; however, these

tracks are not as robust or accurate as the TOD tracker.

For the AF2 sequence, the player is subject to changes

in illumination and pose. Based on the results in Fig. 3(b),

OAB, RCT, and L1 start to drift from the target at frame

200, while MIL and Frag drift at frame 277 and finally lose

the target. IVT tracks the target quite well with a little drift.

However, the target is successfully tracked throughout the

entire sequence by TOD.

In So1 shown in Fig. 3(c), a player with white color is

tracked. The results at 4 frames are shown in Fig. 3(c). Be-

cause there is only minor occlusion by other players, most

of the methods can track the face accurately except Frag ,

which drifts around frame 170.

The So2 sequence contains abrupt object and camera

motion with significant scale changes, which cause most

of the trackers to drift as shown in Fig. 3(d). TOD, L1

and RCT handle these changes well. Compared with L1,

TOD obtains much better performance, which shows that

harnessing local structure between pixels is useful for ob-

ject tracking.

In the So3 sequence, tracking results for frames

{1, 27, 92, 230} are presented in Fig. 3(e). Frag and IVT

start to drift around frame 27 and 92, respectively. Due to

changes in lighting and camera motion, most of the track-

ers drift including L1 and OAB. TOD, MTT and RCT can

track the target through the whole sequence; however, the

proposed TOD tracker shows the best performance.

Results on the faceocc2 sequence are shown in Fig. 4(a).

Most trackers start drifting from the man’s face when it is al-

most fully occluded by the book. Because the L1 and TOD

methods explicitly handle partial occlusions, and update the

object dictionary progressively, they handle the appearance

changes in this sequence very well.

Fig. 4(b) shows tracking results for the girl sequence.

Performance on this sequence exemplifies the robustness of

TOD to occlusion (complete occlusion of the girl’s face as

she swivels in the chair) and large pose change (the face

undergoes significant 3D rotation). TOD and L1 are capa-

ble of tracking the target during the entire sequence. Other

trackers experience drift at different time instances.

Fig. 4(c) shows tracking results for the onelsr1 sequence.

In this sequence, partial occlusion happens, and it is much

more easier. Therefore, many trackers (except OAB) can

track the target through the whole video sequence.

In the onelsr2 sequence (refer to Fig. 4(d)), the walking

woman is partially occluded by a walking man. IVT, MIL,

Frag, OAB, and RCT lose the target woman, start tracking

the man when partial occlusion occurs around frame 200,

and are unable to recover from this failure. TOD and L1

track the woman quite well.

In the tud crossing sequence, the target is severely oc-

cluded by multiple humans as shown in Fig. 4(e). RCT and

MIL start to drift around frame 32. Due to multiple occlu-

sions, IVT starts to undergo target drift from frame 83. Oth-
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Figure 3. Tracking results of 7 methods on 5 sports video sequences. Frame numbers are denoted in red and the 7 tracking results (bounding

boxes) are color-coded in each frame.

er trackers, TOD, L1, and Frag can track the target through

the whole video; however, among all of the trackers, the

proposed TOD shows the best performance.

4.2. Quantitative Comparison

To give a fair quantitative comparison among the 7 track-

ers, we obtain manually labeled ground truth tracks for all

the sequences. Most of the ground truth can be download-

ed with the sequences. Tracking performance is evaluated

according to the average per-frame distance (in pixels) be-

tween the center of the tracking result and that of ground

truth as used in [2, 14, 4]. Clearly, this distance should be

small. In Fig. 5, the average center distance for each tracker

over the 10 sequences is plotted. TOD consistently outper-

form the other trackers in all sequences except for AF2 and

onelsr1, where they obtain very similar results to IVT. OAB

is effected by background clutter and easily drifts from the

target. MIL performs well except under severe illumination

changes. RCT is not stable on several video sequences, es-

pecially those that contain occlusion and illumination vari-

ations. Frag and L1 handle partial occlusion well, but tend

to fail under severe illumination and pose changes. IVT

is hardly affected by parameter settings and obtains good

results in the absence of severe illumination changes. TOD

can consistently produce a smaller distance than other track-

ers. This implies that TOD can accurately track the target

despite severe occlusions and pose variations.

Figure 5. Average distance of 7 trackers applied to 10 sequences

Now, we compare TOD with the L1 and RCT track-

ers, which are the most related trackers to ours based

on sparse learning and have shown state-of-the-art perfor-

mance [14, 22]. Based on the results in Fig. 5, TOD outper-

form the L1 tracker and RCT. This is primarily due to the

use of structure information for occlusion modeling, which

makes TOD robust to occlusion problem. In addition, about

the computational cost, TOD is much more efficient than

L1 as discussed in Section 3.

5. Conclusion
In this paper, we propose a novel tracking method that

allows for occlusion modeling and detection via structured

sparse learning. By considering the structural information
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Figure 4. Tracking results of 7 methods on 5 general video sequences. Frame numbers are denoted in red and the 7 tracking results

(bounding boxes) are color-coded in each frame.

inherent to occlusion (e.g. spatial contiguity), the proposed

TOD is much more robust for tracking under occlusion. The

structured sparse learning problem is solved using an effi-

cient IALM method. We show that the popular L1 tracker

[14] is a special case of our formulation. Also, we exten-

sively analyze the performance of our tracker on challeng-

ing real-world video sequences and show that it outperforms

6 state-of-the-art trackers.
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