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1 Illustration of the Wulff Shapes

In the main text the two Wulff shapes “line segment” and “half-sphere plus spherical cap” are described. In
Fig. 1 the Wulff shapes and the corresponding smoothness terms ψij are depicted.

Figure 1: Visualization of the 2D version of the used Wulff shapes (line segment and half-sphere plus spherical
cap). The red lines depict the Wulff shapes. The black lines are polar plots of the function ψ. The distance
of a point on the black curve to the origin is the value that the function ψ(n) attains for a normal vector n
in the direction of the point (visualized in blue).

2 Output of the Boosted Decision Tree Classifier

This short section gives some additional information about the output of the boosted decision tree classifier
used in this work.

The classifier trains a boosted decision tree for each of the labels separately in a one against all fashion.
The output of the classifier is a score for each label which can be either positive or negative. In a probabilistic
interpretation, these scores correspond to half the log likelihood-ratios [2]. This means that a positive score
“votes” for a specific label and a negative one against it. In Fig. 2 the raw output of the classifier is
visualized.

As explained in [2] in a multi-class setting the classifier scores can also be interpreted as unnormalized
class log likelihoods.
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(a) Input image (b) Best label (c) Sky (d) Building (e) Ground (f) Vegetation (g) Clutter

Figure 2: Output of the boosted decision tree classifier. Positive scores are visualized with blue colors and
negative scores in orange. The intensity of the colors indicates the magnitude.

3 Inference

This section contains a description of our inference procedure. Therefore we first restate our objective

Ediscr(x) =
∑
s∈Ω

∑
i

ρisx
i
s +

∑
i,j:i<j

φij(xijs − xjis )

 , (1)

with the linear constraints

xis =
∑
j

(xijs )k, xis =
∑
j

(xjis−ek)k (k ∈ {1, 2, 3})

xs ∈ ∆, xijs ≥ 0. (2)

Together they form a nonlinear and non-smooth convex program and can be minimized e.g. by proximal
splitting methods. We use the primal-dual approach [1], and introduce Lagrange multipliers λi,kst→s for the

constraints xis =
∑
j x

ij
s,k, λi,kts→s for xis =

∑
j x

ij
s−ek,k, and νs for

∑
i x

i
s = 1. We further partially dualize ψij

via

ψij(xijs − xjis ) = max
µijs ∈Wψij

(
µijs
)T (

xijs − xjis
)
,

thereby introducing additional dual variables µijs . Overall, the underlying saddle-point formulation reads as

ES-P(x; ν, µ, λ) =
∑
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i
ρisx

i
s + νs

(∑
i
xis − 1
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((
µijs
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)

+ Cij
∥∥xijs − xjis ∥∥2

)
+
∑
s,i

(
λist→s

)T (
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∑
j
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+
∑
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λits→s

)T xis1−∑
j

 xijs−e1,1

xijs−e2,2

xijs−e3,3

 , (3)

subject to xis ≥ 0, xijs ≥ 0 and µijs ∈ Wψij . 1 denotes the vector (1, 1, 1)T . The updates of the primal and
dual variables are straightforward: gradient steps are followed either by projections to the respective feasible
domain (xis ≥ 0, µijs ∈ Wψij ) or the following proximity step,

arg min
xijs ,x

ji
s

1

2τ

∥∥xijs ∥∥2

2
+

1

2τ

∥∥xjis ∥∥2

2

+ Cij
∥∥xijs − xjis ∥∥2

+ ı{xijs ≥ 0, xjis ≥ 0}.
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Instead of solving this proximity step, we slightly modify the objective ES-P as follows: since w.l.o.g. some
minimizer of Ediscrete (Eq. 1) will satisfy complementarity of xijs and xjis (i.e. (xijs )Txjis = 0, see [3] for a
detailed explanation), we may replace Cij‖xijs − xjis ‖2 in ES-P with

Cij
∥∥∥( xijs

xjis

)∥∥∥
2
,

leading to a much simpler subproblem

arg min
xijs ,x

ji
s

1

2τ

∥∥xijs ∥∥2

2
+

1

2τ

∥∥xjis ∥∥2

2

+ Cij
∥∥∥∥(xijsxjis

)∥∥∥∥
2

+ ı{xijs ≥ 0, xjis ≥ 0},

which corresponds essentially to a shrinkage step in R6.
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