Joint 3D Scene Reconstruction and Class Segmentation
Supplementary Material

Christian Héne!, Christopher Zach?, Andrea Cohen', Roland Angst'*, Marc Pollefeys'

'ETH Ziirich, Switzerland 2Microsoft Research Cambridge, UK

{chaene, acohen, rangst, pomarc}@inf.ethz.ch chzach@microsoft.com

1 TIllustration of the Wulff Shapes

In the main text the two Wulff shapes “line segment” and “half-sphere plus spherical cap” are described. In
Fig. 1 the Wulff shapes and the corresponding smoothness terms % are depicted.

Figure 1: Visualization of the 2D version of the used Wulff shapes (line segment and half-sphere plus spherical
cap). The red lines depict the Wulff shapes. The black lines are polar plots of the function 1. The distance
of a point on the black curve to the origin is the value that the function ¢ (n) attains for a normal vector n
in the direction of the point (visualized in blue).

2  Output of the Boosted Decision Tree Classifier

This short section gives some additional information about the output of the boosted decision tree classifier
used in this work.

The classifier trains a boosted decision tree for each of the labels separately in a one against all fashion.
The output of the classifier is a score for each label which can be either positive or negative. In a probabilistic
interpretation, these scores correspond to half the log likelihood-ratios [2]. This means that a positive score
“votes” for a specific label and a negative one against it. In Fig. 2 the raw output of the classifier is
visualized.

As explained in [2] in a multi-class setting the classifier scores can also be interpreted as unnormalized
class log likelihoods.
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Figure 2: Output of the boosted decision tree classifier. Positive scores are visualized with blue colors and
negative scores in orange. The intensity of the colors indicates the magnitude.

3 Inference
This section contains a description of our inference procedure. Therefore we first restate our objective
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with the linear constraints
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Together they form a nonlinear and non-smooth convex program and can be minimized e.g. by proximal

splitting methods We use the prlmal dual approach [1], and introduce Lagrange multipliers )\St *, for the
constraints z} =3 7, AR for 2l = =,z and v for >, % = 1. We further partially dualize ¢/
via
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thereby introducing additional dual variables p. Overall, the underlying saddle-point formulation reads as
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subject to zf >0, 2% > 0 and pu¥ € Wy 1 denotes the vector (1,1,1)7. The updates of the primal and
dual variables are straightforward: gradient steps are followed either by projections to the respective feasible
domain (2% > 0, 4 € W) or the following proximity step,
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Instead of solving this proximity step, we slightly modify the objective Fg.p as follows: since w.l.o.g. some
minimizer of Egiscrete (Eq. 1) will satisfy complementarity of 2% and 2% (i.e. (z%¥)T23% = 0, see [3] for a
detailed explanation), we may replace C" ||z — xJ"||2 in Egp with
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leading to a much simpler subproblem
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which corresponds essentially to a shrinkage step in RS.
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