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Abstract 
 

 Recently, 2DPCA and its variants have attracted much 

attention in face recognition area. In this paper, some 

efforts are made to discover the underlying fundaments of 

these methods, and a novel framework called Unified 

Principal Component Analysis (UPCA) is proposed. First, 

we introduce a novel concept, named Generalized 

Covariance Matrix (GCM), which is naturally derived 

from the traditional Covariance Matrix (CM). Each 

element of GCM is a generalized covariance of two 

random vectors rather than two scalar variables in CM. 

Based on GCM, the UPCA framework is proposed, from 

which the traditional PCA and its 2D counterparts can be 

deduced as special cases. Furthermore, under the UPCA 

framework, we not only revisit the existing 2D PCA 

methods and their limitations, but also propose two new 

methods: the grid-sampling method (GridPCA) and the 

intra-group correlation reduction method. Extensive 

experimental results on the FERET face database support 

the theoretical analysis and validate the feasibility of the 

proposed methods. 

1. Introduction 

As one of the most successful face recognition methods, 

Eigenfaces [1] manipulates 1D image vectors formed by 

concatenating directly the rows of the original 2D face 

image. Despite its success, one main drawback limits its 

usability: it is difficult to estimate the covariance matrix 

stably due to the high dimension of the image vectors and 

the relatively small size of the training set. Recently, many 

methods have been developed to overcome this difficulty. 

Among them, 2DPCA and its variants have attracted much 

attention. In common, these methods treat the face images 

as 2D matrices rather than 1D vectors.  

In 2DPCA [2] (or IMPCA [3]), face images were 

directly treated as 2D matrices, based on which some 

variants were proposed. In [4], the authors proposed to 

transform the transpose of the face images into image 

matrices, while in [6] DiaPCA proposed to transform the 

original face images into diagonal face images by rotating 

each row one pixel to its right. Inspired by the idea of 2D 

process, MatPCA [5] was proposed by matrixizing 1D 

input into 2D matrices and then applying the 2D PCA.  

Usually, compared with PCA, 2D PCA methods need 

more coefficients for image representation. To solve this 

problem, several alternatives were proposed. For instance, 

the Bilateral-projection-based 2DPCA (B2DPCA) [7] 

reduces the redundancies among both rows and columns 

of the face images by projecting them to the left- and right- 

multiplying projection matrices. Similarly, 

two-directional 2DPCA ((2D)2PCA) [4] and Bidirectional 

PCA (BD-PCA) [8] utilizes the two projection matrices 

obtained from 2DPCA and A2DPCA[4] respectively. 

After investigating carefully the existing 2D PCA 

methods, we notice that, in spite of the popularity and 

success of 2D PCA methods in the last few years, there are 

three open fundamental problems on 2D PCA methods:  

1. Why can the 2D PCA methods outperform their 1D 

counterpart, say, the traditional PCA? 

2. What are the reasons behind that well interprets the 

performance variance of different 2D PCA methods? 

3. Is there any underlying theory unifying these 2D 

PCA methods, based on which potentially better 2D 

PCA methods can be proposed?  

Some efforts do have been made to answer the first 

question. For instance, according to [2] [4] [6] [7], the 

advantage of the 2DPCA over PCA is attributed to the 

smaller covariance matrix (CM) and thus its more stable 

estimation. This argument actually can be cast back to the 

overfitting risk of PCA, since 2DPCA is equivalent to the 

PCA performed on the rows of all the face images [7] or 

the line-based PCA [9]. This implies that the training set 

be significantly enlarged. Besides, some researchers 

believe that the spatial information embedded in the face 

images are better preserved in 2D PCA methods [7].  

These arguments can partly explain the superior 

performances of the 2D PCA methods over the traditional 

PCA, but fail to clearly interpret their essential differences, 

as well as the differences between the variants of 2D PCA 

methods. This paper tries to fill this gap by proposing a 
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Unified Principal Component Analysis (UPCA) method. 

The main contributions of this paper are as follows: 

1. A definition of Generalized Covariance Matrix 

(GCM) is proposed. We show that it is a natural 

extension of the traditional covariance matrix (CM).  

2. Based on GCM, a unified framework called Unified 

Principal Component Analysis (UPCA) is presented, 

which offers a unified view for understanding and 

explaining both PCA and the 2D PCA.  

3. Deducing from UPCA, we further propose the grid- 

sampling methods and the intra-group correlation 

reduction methods to achieve better performances. 

The remainder of this paper is organized as follows: In 

Section 2, the GCM are described. The UPCA is 

presented in Section 3. In Section 4, the previous 2D PCA 

methods are revisited and two new methods are proposed. 

Experiments and discussions are presented in Section 5. 

Finally, conclusions are presented in Section 6.  

2. Generalized Covariance Matrix 

In this section, we briefly review the definition of the 

traditional CM and the difficulty of its stable estimation.  

To solve this difficulty, we introduce the novel concepts 

of GCM, which can be more stably estimated. 

2.1. Traditional Covariance Matrix 

In statistics and probability theory, the Covariance 

Matrix (CM) is a matrix of covariance between elements 

of a random vector. Consider two random vectors 

[ ]TmxxxX 21 K=  and [ ]TnyyyY 21 K= , whose entries 

have finite variance (to be concise, all the random vectors 

are assumed to be centered in the paper). The cross 

covariance matrix 
XYΣ  between X  and Y  is the nm ×  

matrix as follows:  

[ ]TE XYXY =Σ . (1)

The covariance matrix of X  is defined as 

[ ]TE XX=Σ . (2) 

Generally, Σ  indicates the dispersion of the random 

vector X’s distribution. Its trace, ( )Σtr , the sum of the 

diagonal components of Σ , is the sum of the variances of 

each random variable in X. Thus, it is a reasonable 

measure of the total scatter of X. 

Suppose that there are N  observations 
NXXX ,,, 21 K  

of X , the sample CM is given by 

( )( )Ti
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2.2. Partitioned Covariance Matrix 

In order to study the relationship between groups of 

random variables, CM can be partitioned. If we consider 

only the simplest case that each group has equal number 

(say p ) of random variables, the random vector X  in 

Equ.(2) can be partitioned as follows  
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where each sub-vector 
iY  contains p  grouped random 

variables, and pk ×  is equal to m, the dimension of X.  

Then the partitioned CM can be written as 
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where 
jiYYΣ  is a pp×  cross covariance matrix between 

the random vectors iY  and jY . 

2.3. Generalized Covariance Matrix 

The dimension of the partitioned CM can be greatly 
reduced if a single scalar instead of the cross covariance 
matrix 

jiYYΣ  is used to measure the overall covariance of 

iY  and jY . One natural choice for this purpose is the 

trace, ( )
jiYYtr Σ , which is also known as the generalized 

covariance of iY  and jY . Formally, let ( )
jiji YYYY tr Σ=σ , 

then, from Equ.(5), Σ  can be simplified asG : 
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We can reform the partitioned m-dimension random 

vector [ ]TT
k

TT YYYX 21 L=  in Equ.(4) to a random matrix 

[ ] pkT
k R ×∈= YYY 21 LY , G  can be rewritten concisely as 

[ ]TE YYG = . (7) 

Equ.(7) is the same as Equ.(2) except that each element 

of G  is a generalized covariance of two random vectors, 

whereas each element of Σ  is a covariance of two random 

scalar variables. From this point of view, we call G  the 

Generalized Covariance Matrix (GCM). Similarly, given 

N  observations 
NYYY ,,, 21 K  of Y , the sample GCM is 

( )( )Ti

N

i
i

N
G YYYY −∑ −

−
=

=11

1 . (8) 

where ∑
=

=
N

iN 1

1
iYY . 

In the above definition of GCM, how to group the 

random variables is not restricted if only each group 

contains equal number of elements. Therefore, in this 

sense, the image CM [2] [3], matrix CM [5] and diagonal 

CM [6] can all be regarded as special cases of  GCM. 

Thus, by grouping the elements of X in different 
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manners, a set of G , denoted by ( )XSG , can be 

constructed. Easy to see that, when 1=p , ΣG = , i.e., 

GCM recedes to traditional CM. It is also easy to prove 

that, for any ( )XSG∈G , ( ) ( )ΣG trtr = , which means that 

the total dispersion of the random variables is preserved 

regardless of the different forms of GCM. However, one 

can also see that it compresses the covariance matrix 

between two random vectors into a single scalar, and thus 

turns into a “coarse” representation of the traditional CM. 

As p increases, GCM denotes a fine-to-coarse 

representation of the dispersion of the random variables. 

In many real world applications, the number of samples 

used to estimate the CM is often far less than the feature 

dimension, which leads to unstable estimations. For GCM, 

however, the estimation may be more stable attribute to its 

lower dimension. Therefore, when we choose among the 

different forms of GCM, there is a tradeoff between 

accuracy and stability of the estimation of covariance.  

3. Unified Principal Component Analysis 

In this section, we describe the UPCA based on GCM and 

some principles guiding the grouping of the random 

variables for UPCA. 

3.1. PCA Based on CM 

PCA is commonly used for feature extraction, which 

pursues an orthonormal transformation matrix 
optW  that 

maximizes the total scatter of the extracted feature vectors. 

The criterion to be maximized is as follows:  

( ) ( )ΣWWW
TJ tr= . (9) 

The optimal W  can be chosen as follows:  

( ) [ ]mT
opt www K21trmaxarg == ΣWWW

W

. (10) 

where { }miwi ,,2,1| K=  are the eigenvectors of Σ  

corresponding to the m largest eigenvalues. The extracted 

low-dimensional feature vector can be obtained by 

XX T
optf W= . (11) 

Thus, uncorrelated random variables are obtained, i.e.,  

[ ] ( )mT
ffE

f
λλλ L21X DiagXX ==Σ . (12) 

where { }mii ,,2,1| L=λ  is the set of m largest eigenvalues 

of Σ . When m is fixed, ( ) ∑=
=

m

i
iopt

T
opt

1

tr λΣWW  indicates the 

energy preserved by the m eigenvectors, which is invariant 

despite the different forms of CM (e.g. the permutation of 

the elements of X).  

3.2. UPCA Based on GCM 

As we can see from the above analysis, the GCM is in 

some sense equivalent to the traditional CM; therefore, G  

can be substituted for  Σ  in PCA, which results in a new 

kind of PCA. We call this method Unified PCA (UPCA).  

Formally, suppose that [ ]TmxxxX 21 K=  is an 

m-dimensional random vector and reformed to a pk ×  

random matrix [ ]TkYYY 21 L=Y , where [ ]Tipiii xxxY 21 L=  

and pkm ×= . Then, one can create GCM as described in 

Section 2.3. With GCM, the orthonormal transformation 

matrix 
optW  that maximizes the total scatter of the 

projected feature matrices can then be pursued by 

maximizing the following criterion:  

( ) ( )GWWW
TJ tr= . (13) 

That is to say, we estimate the optimal W  by the same 

way as in Equ.(10):  

( ) [ ]mT

opt www K21trmaxarg == GWWW
W

. (14) 

where { }miwi ,,2,1| K=  is the eigenvectors of G  

corresponding to its m largest eigenvalues. Then, the 

extracted feature matrix can be obtained by 

YWY T
optf = . (15) 

The dimension of the extracted feature matrix fY  is 

pm × , which is p times of that of PCA based on CM, if 

both methods keep m eigenvectors in their 
optW . And, 

similar to Equ.(12), the GCM after UPCA can written as: 

[ ] ( )mT
ffE

f
λλλ L21Diag== YYGY

. (16) 

with { }mii ,,2,1| L=λ  the m largest eigenvalues of G . 

Compared with PCA, the maximum of the criterion in 

Equ.(13) varies with the different forms of G . On account 

of this point, a more general criterion can be adopted:  

( ) ( )GWWGW TJ tr, = , ( )XSGG∈ . (17) 

In this new criterion, G  is taken as one of the parameters 

to be optimized, which implies the selection of grouping 

strategy by determining the number of variables in each 

group (i.e. p) and how to divide the variables into groups. 

With GCM and the above criterion, we propose the 

Unified Principal Component Analysis (UPCA), which 

not only chooses the specific form of G  but also 

optimizes the orthonormal transformation matrix optW   

that maximizes the total scatter. 

Clearly, when ΣG = (or 1=p ), UPCA degenerates to 

the traditional PCA. However, as mentioned above, in 

case of insufficient training samples, the estimation of 

Gmay be unstable when 1=p . Given a fixed training set, 

as P increases, the estimation of G  can be more and more 

stable. But, in this case, we need solve an optimization 

problem in the condition of 1>p , which is too difficult to 

obtain a close-form solution. The difficulty lies in that, 

compared with PCA, ( ) ∑=
=

m

i
iopt

T
opt

1

tr λGWW in UPCA is not 

invariant to different forms of G , let alone p. Fortunately, 

the key of this optimization problem is to choose a specific 
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grouping strategy (in another word, choose a specific form 

of G from ( )XSG ), which can be guided by some basic 

principles as discussed in the next subsection.  

3.3. Principles of Variable Grouping 

Before introducing the principles of variable grouping 

strategy, we firstly analyze the correlations between the 

features extracted by UPCA. 

Definition 1: Given two n-dimensional random vectors, 

[ ]TnxxxX 21 K=  and [ ]TnyyyY 21 K= , the random 

vectors X and Y are called pseudo uncorrelated, iff the 

following equation holds: 

( ) ( )( ) 0XYtrtr XY == TEΣ . (18) 

From Equ.(16), it is easy to conclude that the different 

row vectors of 
fY are pseudo uncorrelated, that is, UPCA 

leads to an pm ×  feature matrix fY  which is comprised 

of pseudo uncorrelated random vectors. In contrast to 

traditional PCA based on CM, in which any two extracted 

random variables are uncorrelated, there still exist two 

kinds of correlation in the feature matrix fY  if 1>p : 

1. The inter-group correlation: the random variables 

belonging to different rows of fY are correlated. 

2. The intra-group correlation: the random variables 

belonging to the same row of fY are correlated.  

Additionally, with the increase of  p, these two kinds of 

correlation also increase. So, there is a tradeoff between 

the uncorrelation of the extracted random variables and 

the stability of the estimation of GCM, which actually 

reflects the tradeoff between the accuracy and the stability 

of the GCM estimation.  

With the above analysis, we give the following three 

principles for choosing the grouping strategy.  

Principle I: the random variables in the same group 

should be as uncorrelated as possible, because UPCA can 

not reduce the intra-group correlations. 

Principle II: except for the corresponding (i.e., with the 

same position in different groups) random variables, the 

random variables in different groups should be as 

uncorrelated as possible, because UPCA cannot extract 

the really uncorrelated feature vectors but only the pseudo 

ones.  

Principle III: the corresponding random variables in 

different groups should be as correlated as possible, which 

makes UPCA more effective for dimensionality reduction. 

With the above three principles, one can deduce various 

algorithms from UPCA. In the next section, we show that 

the existing 2D PCA methods can be reformulated within 

this general framework. In addition, two novel 2D PCA 

methods are deduced for face recognition. 

 

 

 

 

 

 

 

 
Column-based 

(2DPCA) 

Row-based 

(A2DPCA) 

Diagonal-based 

(DiaPCA) 

Block-based 

(MatPCA) 

Fig.1. The grouping strategies of existing 2D PCA methods. The 

grey panes represent an enlarged 99 × face image matrix, each 

pane corresponding to a pixel (a random variable) in the image. 

The panes in a round rectangle constitute a group. 

4.  Derivatives of UPCA for Face Recognition 

In this section, the existing 2D PCA methods for face 

recognition are first revisited from the point of view of 

UPCA. Then, two new derivative methods are described. 

4.1. Revisiting Existing 2D PCA Methods 

Most 2D PCA methods mentioned in Section 1 directly 

use the original 2D image matrices to form the GCM, 

which actually means that the strategy is to group the 

random variables by row or column of the input image. 

The image covariance matrix of 2DPCA [2] [3] is defined:  

( ) ( )[ ]AAAAG EEE
T

t −−= . (19) 

where A is the image matrix. 

Comparing Equ.(7) with Equ.(19), it can be seen that A 

is a transpose of the 2D feature matrix Y. Intuitively, from 

the viewpoint of grouping strategy, the existing 2D PCA 

methods are illustrated in Fig.1. Specifically, in 2DPCA, 

each column of the image is treated as one random 

variable group. Similarly, A2DPCA [4] treats a row as a 

random variable group and DiaPCA [6] treats a diagonal 

of the image matrix as a random variable group. MatPCA 

[5] also suggests using the image matrix directly, although 

re-matrixization (e.g. block partition) is allowed. 

All the existing methods adopt the natural orders of the 

random variables by their positions in the input image. 

They can be easily analyzed with the help of the three 

principles described in Section 3.3 and the characteristics 

of face images. For normalized face images, neighboring 

pixels are highly correlated. As a result, all the existing 

methods suffer from the relatively high intra-group 

correlation, which somewhat violates the Principle I, 

especially for the block-based method, since the random 

variables in a block are closely located and thus more 

correlated than other existing methods. 

On the other hand, the column-based, row-based and 

diagonal-based methods well conform to the Principle III, 

because the corresponding random variables in each 

group are from the same row or column of the image. 

However, for the block-based method, the correlations 

between the corresponding random variables in different 

groups are relatively weak, because these random 

variables spread over the whole face image. 
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4.2. GridPCA: Grid-sampling Methods 

Based on the characteristics of normalized face images, 

a grouping strategy, named grid-sampling, is proposed, 

which can result in lower intra-group correlation and 

higher inter-group correlation. Specifically, in the method, 

a virtual rectangular grid is overlaid on the image, and the 

points at the intersections of gridline are sampled (see 

Fig.2(a1)). The intensities corresponding to these sampled 

pixels are packed into one group (see Fig.2(a2)). Then, the 

overlaid grid slides by one pixel in the horizontal or 

vertical direction (see Fig.2(b1) and Fig.2(b2)). At each 

new position, grid-sampling is performed and a new group 

of random variables is obtained. Finally, the number of 

different random variable groups is equal to the number of 

pixels included in each block and the number of variables 

in each group equals to the number of intersections. 

Hereinafter, we call the method GridPCA. 
 

 

 

 

 

 

 

 
(a1) (a2) (b1) (b2) 

Fig.2. The proposed grid-sampling grouping method. The 

number in each grey pane indicates the group index that this 

pane belongs to. (a1): the image is overlaid by a 33×  foursquare 

grid. (a2): the random variables on the intersections are packed 

into Group 1 in the order as the arrows indicate. (b1): the next 

position of the grid. (b2): the pixels in Group 2.  

In our method, on one hand, the corresponding random 

variables in different groups are from the same block, as 

indicated by the dashed lines in Fig.2(a2) and (b2). They 

are closely located in the image and thus highly correlated. 

On the other hand, the random variables in a group spread 

over the whole image, which implies lower intra-group 

correlation. So, the proposed grid-sampling strategy 

conforms pretty well to the Principle I and Principle III.  

For the purpose of comparison, the grid-sampling 

strategy is also slightly modified in order to conflict with 

the Principle III on purpose. This is done by circularly 

rotating the random variables in each group one element. 

Thus, the corresponding random variables in different 

groups are no longer sampled nearby and thus with low 

correlations. This method is called RGridPCA. Due to its 

severe confliction with Principle III, its performance is 

expected to be not as good as the GridPCA method. 

4.3. Intra-group Correlation Reduction Methods 

For a specific grouping strategy, there is still room to 

improve. For example, we can further reduce the 

correlation between the random variables in each group by 

some statistical methods such as traditional PCA in order 

to satisfy the Principle I and reserve most information 

embedded in the original variables. 

For k random variable groups, there are two ways to 

construct the PCA subspaces: one is to construct k PCA 

subspaces each corresponding to one random variable 

group; the other is to construct one PCA subspace taking 

all the random variable groups into account. These two 

methods has been investigated in [10] and called Block 

Specific PCA (BSPCA) and Block Universal PCA 

(BUPCA) respectively. Subpattern-based PCA (SpPCA) 

[11] is also an application of BSPCA. 

In the context of UPCA, both BSPCA and BUPCA can 

be applied to either the original feature matrix pkR ×∈Y  or 

the extracted feature matrix pm
f R ×∈Y , which is named as 

prefix or postfix intra-group correlation reduction 

methods respectively. For prefix intra-group correlation 

reduction, BUPCA is a better choice. Specifically, one 

BUPCA subspace is constructed from all the training 

samples of the k random variable groups. Then, all 

p-dimensional random variable vectors are projected into 

this universal lower dimensional BUPCA subspace. 

Therefore, the correlation between the corresponding 

random variables in different groups is likely conserved, 

while the correlation between the intra-group variables is 

mostly reduced. In contrast, in BSPCA, one group- 

specific subspace is constructed for each random variable 

group. So, the correlation between the corresponding 

random variables in the reduced vector is very low, which 

violates Principle III. Therefore, its performance is 

expected to be not as good as that of BUPCA.  

In addition, we can also reduce the intra-group 

correlations that might exist in the final feature matrix fY . 

As a result, most 2D PCA methods utilizing this technique 

can represent face images by much fewer coefficients. 

5. Experiments 

We empirically evaluate the proposed methods, and 

compared with existing methods including direct 

correlation (DC), PCA, 2DPCA, A2DPCA, DiaPCA, 

MatPCA and RGridPCA on the FERET [12] database, 

using nearest neighbor classifier with Euclidean distance. 

For face recognition, these methods are developed mainly 

for dimension reduction and image representation. The 

recognition rates of these methods vary with the 

dimension of the extracted feature matrix. In our 

experiments, we compare not only the recognition rates of 

each method at different dimensions but also the 

cumulated eigenvalues, which can indicate the energy 

preserved from the training set. 

    
Fig.3. Example normalized face images in the FERET database. 
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(a) (b) 

Fig.4. (a) comparison of the cumulative eigenvalues of 2D PCA methods; (b) comparison of the recognition rates of 2D PCA methods 

 
(a) (b) 

  
(c) (d) 

Fig.5. The influences of the prefix and postfix intra-group correlation reduction methods on the cumulative eigenvalues and recognition 

rates of four 2D methods. (a) 2DPCA (b) A2DPCA (c) MatPCA(Block) (d) GridPCA. 

 

5.1. Experiment Setup 

All the face images are geometrically normalized 

to 6464 ×  and preprocessed by histogram equalization. 

Fig.3 shows some examples of the normalized face images. 

So, it is clear that 64=p  in 2DPCA, A2DPCA and 

DiaPCA. Correspondingly, we choose 88×  blocks for 

MatPCA and 88×  grid for our GridPCA. Thus, all the 2D 

PCA methods have 64=p  random variables in each 

group. Then, the prefix and postfix intra-group correlation 

reduction methods (BSPCA and BUPCA) are applied to 

2DPCA, A2DPCA, MatPCA and GridPCA respectively 

and denoted as BSPCA+2DPCA, BUPCA+A2DPCA, etc. 

for prefix intra-group correlation reduction, and 

2DPCA+BSPCA, A2DPCA+BUPCA, etc. for postfix 

ones. The dimensions of BSPCA and BUPCA subspaces 

are set to 48, keeping most energy in the variables group. 

As described in Section 2.3, the 2D PCA methods are 

most appropriate for small sample size problem. 

Therefore, only 160 images, far less than the dimension 

( 40966464 =× ) of the original features, are selected 

randomly from the standard FERET Gallery set to form 

the training set (TS). Then, 200 images are selected 

randomly from the remaining to form the gallery set (GS) 

and the 200 images of corresponding subjects from the 

FERET FB probe set form the probe set (PS). These 

images are all frontal faces and cover only expression 

variations. To reduce the randomness of the experimental 

results, the average results of 10 trials are reported. 

5.2. Experimental Results 

Fig.4(a) shows the cumulative eigenvalues curves for 

PCA, 2DPCA, A2DPCA, MatPCA, GridPCA, DiaPCA 

and RGridPCA against the preserved feature dimension. It 

is worth noting that, for the 2D PCA methods whose p 

value is greater than 1, the dimension of the extracted 

feature matrix is n (a nature number) times of  p.  

It is clear that, with the same dimension, PCA keeps far 

more energy than all 2D PCA methods, which coincides 

with the analysis in Section 2.3 and 3.1 that CM is the 

finest one among all forms of GCM and the random 

variables in the low-dimension feature vectors after PCA 

are uncorrelated. Our proposed GridPCA is also 
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remarkably better than the others, because its grouping 

strategy implies lower intra-group correlations and higher 

correlations between the corresponding random variables 

in different groups. The 2DPCA, A2DPCA and DiaPCA 

are similar since they are essentially row or column based. 

As is expected, MatPCA(Block) and RGridPCA are much 

worse than others, since the former violates Principle I and 

III and the latter conflicts with Principle III. 

Recognition rates of the methods against the feature 

dimension are shown in Fig.4(b). One can see that, when 

the dimension is very low, PCA outperforms the others. 

But, when the dimension gets larger, the performances of 

the 2D PCA methods increase rapidly. Especially for 

GridPCA, the recognition rate is comparable with that of 

PCA even under lower dimension. Some 2D PCA 

methods outperform DC when the dimension is high 

enough, because they can remove noises by discarding the 

eigenvectors corresponding to small eigenvalues [13]. 

The peak recognition rate of PCA is lower than those of 

some 2D PCA methods, which can be explained by the 

stability of estimation as stated in Section 2.3.  

Fig.5 demonstrates the influences of the intra-group 

correlation reduction (CR) methods on the 2D PCA 

methods. As can be seen from Fig.5, BUPCA is more 

appropriate for prefix intra-group CR than BSPCA; and 

the performances of 2DPCA, A2DPCA and MatPCA are 

improved by utilizing it. These results coincide with the 

analysis in Section 4.3. For MatPCA, the postfix 

intra-group CR methods promote the performance more 

evidently than the prefix ones, as shown in Fig.5(c). For 

GridPCA, it has weak intra-group correlations and strong 

correlations between corresponding random variables. In 

this situation, the intra-group CR methods may cause 

significant information loss in each group and affect the 

correlations between the corresponding random variables. 

So, the intra-group CR methods do not suit the GridPCA.  

6. Conclusions and Future Work 

This paper has made an attempt to find an underlying 

fundamental theory unifying the numerous recently 

emerging 2D PCA methods. Firstly, the generalized 

covariance matrix (GCM) is proposed by generalizing the 

traditional and partitioned covariance matrix. By taking 

the different forms of GCM into account, UPCA is 

proposed and the principles for variables grouping are 

discussed. Then, the existing 2D PCA methods are 

revisited from the viewpoint of UPCA. Finally, the 

grid-sampling method (GridPCA) and the intra-group 

correlation reduction method are deduced. Experimental 

results on the FERET face database not only support our 

theoretical analysis of GCM and UPCA, but also validate 

the feasibility of the proposed methods. 

Though the principles of UPCA are founded, they only 

provide some heuristic guidelines to design and tune the 

2D PCA methods. Future researches may focus on some 

general methods to find the optimal grouping strategy. 
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