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Abstract

This paper presents a new method for the reconstruction
of a surface from its � and � gradient field, measured, for
example, via Photometric Stereo. The new algorithm pro-
duces the unique discrete surface whose gradients are equal
to the measured gradients in the global vertical-distance
least-squares sense. We show that it has been erroneously
believed that this problem has been solved before via the
solution of a Poisson equation. The numerical behaviour
of the algorithm allows for reliable surface reconstruction
on exceedingly large scales, e.g., full digital images; more-
over, the algorithm is direct, i.e., non-iterative. We demon-
strate the algorithm with synthetic data as well as real data
obtained via photometric stereo. The algorithm does not
exhibit a low-frequency bias and is not unrealistically con-
strained to arbitrary boundary conditions as in previous so-
lutions. In fact, it is the first algorithm which can recon-
struct a surface of polynomial degree two or higher exactly.
It is hence the first viable algorithm for online industrial in-
spection where real defects (as opposed to phantom defects)
must be identified in a robust manner.

1. Introduction

Photometric stereo provides a means of measuring the
� and � gradient field of a surface at discrete points. Inas-
much, it holds great promise for industrial applications such
as geometric surface inspection. What is rarely discussed
in photometric stereo literature, is the reconstruction of the
surface from said gradient measurements. Often, analysis is
attempted based on the gradients alone. Existing algorithms
provide reconstructions with significant systematic (as op-
posed to stochastic) errors, which make them unusable for
industrial applications where real (and not phantom) flaws
must be detected in a robust manner. It is for this reason that
photometric stereo has remained a rather theoretical nicety,
and not yet found its way prolifically into industrial environ-
ments. In this paper, we present the unique solution to least
squares surface reconstruction from its measured gradient.

Previous methods in the literature work with either local or
global cost functions, and can be summarized as follows.
Line integral methods [12], entail choosing an arbitrary
height at an arbitrary point, then evaluating and averaging
(arbitrarily chosen) line integrals to compute the height at a
nearby point. The underlying principle is that all possible
line integrals between two points should be the same. This
can be considered to be a local method, and hence the error
distribution is highly irregular, starting from zero at the ini-
tial point and propagating irregularly outward to the most
distant points.
Grid-based basis function methods such as [9, 7]. As
demonstrated in the following, introducing basis functions
to represent the surface is redundant, and, in fact, only in-
troduces computational error into the reconstruction pro-
cess. Reconstruction results reflect this numerical ill-
conditioning.
The variational approach [6, 4, 10, 2], based on the calcu-
lus of variations is the root of the most common algorithms
for surface reconstruction from gradient fields. Formulat-
ing the cost function as a continuous integral, a stationary
point of the integral should satisfy the corresponding Euler-
Lagrange differential equation. However, since there is a
family of non-unique solutions that satisfy said equation,
none can be the least-squares minimizer proper; that is, a
true least-squares solution of a linear system is unique for
fully-determined problems. This approach is discussed fur-
ther in comparison to the method presented here in Section
5.
The contributions of the paper are as follows:

� A straightforward derivation of a numerically sound
solution to the least-squares surface reconstruction
from gradient fields. It has been falsely believed that
this has been solved before; however, we show that the
new method is the first strictly correct and unique so-
lution. This is first proven, then verified by numerical
testing; a simple evaluation of the least squares cost
function shows that the previous methods are not least
squares minimizers.
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� Simple parameterization of the discrete surface as a
matrix leads to a computationally efficient solution by
avoiding Fourier and Cosine transformations, whilst
showing that introducing basis functions to represent
the surface is redundant. An appropriate circumstance
for the introduction of basis functions is briefly dis-
cussed in Section 8.

� Since the surface is discrete, we can do no better than
numerical derivatives (i.e. there is no analytical form
of the derivatives of an unknown surface). The algo-
rithm presented here allows for numerical derivatives
of arbitrary polynomial accuracy (in practice up to ��th

order accurate). Previous methods are limited to for-
ward/backward differences which are only first order
accurate; hence, the new method is the first that can
reconstruct surfaces of degree two and higher.

� We show that most existing methods are based on a
subtly false premise, whereby tacit assumptions per-
taining to the Euler-Lagrange equation have gone un-
noticed by previous authors.

In the following, we formulate the reconstruction problem
as that of reconstruction of a discrete surface �, whose
derivatives are equal to the measured derivatives in the least-
squares sense. With a matrix definition of the cost function,
we make use of common linear algebra to derive the solu-
tion of the unique least-squares minimum; this solution is
shown to satisfy a Lyapunov equation. It is shown that a
previous approach based on solving a Poisson equation has
been mistakenly believed to be the least-squares solution to
the problem at hand. The above notions are confirmed via
numerical testing with synthetic data, as well as real data
obtained via photometric stereo.

2. Gradient Measurement via Photometric
Stereo

Photometric stereo [11] is a method for measuring the
� and � gradient field (equivalently the orientation) of a
surface at discrete points. The principal assumption is that
light reflects off the surface according to a mathematical re-
flectance model. Assuming that the image is obtained via
an orthographic projection (camera centrepoint at infinity)
and the surface has the explicit form � � ���� ��, we define
the parameters

� �
����� ��

��
and � �

����� ��

��
� (1)

such that we may work in a gradient space ��� �� � �
� . A

typical reflectance model in said space is,

���� �� �
� �� � ��� � �����

� � �� � ��
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� � ��s � ��s

� (2)

where ��s� �s� is the direction of the light source. This par-
ticular model assumes that the surface is Lambertian, al-
though, many other possible reflectance maps exist [11].
Given three images with three different light sources we
may solve uniquely for � and �; however, for improved mea-
surement results this may be generalized to 	 sources as fol-
lows. A set of 	 images give the following set of equations
for each point ���� ���,�
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where, ���� ��� ��� is the direction of the �th light source,

� ��� �� is the intensity at pixel ��� �� in the �th image,

and
�
��� ��� ��

�T
is the surface normal vector at the point

���� ���. This equation, written as,

� � ��� (4)

may be solved in the least squares sense via the Moore-
Penrose pseudoinverse of �,

� � �
�
� � (5)

The measured surface gradients are consequently given as
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and � �

��

��
� (6)

Taken over the whole image, we have the following mea-
sured quantities in the form of �� 	 matrices,
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for � � �� � � � � 	, � � �� � � � ��, obtained from � and � re-
spectively. Note that for the sake of consistency the indices �
and � appear juxtaposed so as to define a right-handed coor-
dinate system. The advantage of using more than three light
sources is the suppression of noise in the gradient measure-
ments; furthermore, gross outliers such as saturated pixels
may be omitted from the measurements.

3. Least-Squares Surface Reconstruction

The premise of the solution is that we have the measured
gradient of a surface, that is, we have a gradient field that
is corrupted by noise. Assuming the noise is Gaussian, the
appropriate cost function is the least-squares cost function,
which in its continuous form is,

� �


 	





 �

�

������� ��� ����� ���
�
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�
�� ��� (9)



where ��� and ��� represent the measured gradient. This cost
function is the volume of the squared differences of the
functions; hence, the equivalent discrete form of the cost
function over a rectangular grid is,

� �
������ � ��

����
F
�
������ � ��

����
F
� (10)

where the subscript “F” denotes the Frobenius norm [5].
Since differentiation is a linear operator, we may write the
derivatives as a simple matrix multiplication (i.e. a linear
transformation),

�� � ��
T
� and �� � ���� (11)

where �� and �� are respectively 	�	 and ��� matrices
such that � is generally � � 	. With this substitution, we
now have the cost function parameterized in terms of the
unknown surface, �, i.e.,
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By definition of the Frobenius norm, the cost function reads,
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which upon expanding yields,
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To find the minimum of the cost function, we differentiate
with respect to the matrix � and equate to zero, yielding the
following �� 	 matrix equation,

�
T
����� ��

T
��� � �

T
�
��� � ����� � �� (15)

This equation, typically known as a Lyapunov Equation, is
clearly linear in the elements of �. There exist stable solu-
tions for � based on orthogonal matrices [3]. The solution is
unique, provided that the eigenvalues, �� of �T

��� and �� of
�T
���, satisfy �� � �� ��  for all pairs ��� ��. For Equation

(15) as it stands, this condition does not hold; however, we
do have a-priori knowledge of the system which allows us
to find the unique solution to the equation. Firstly, we can-
not solve for the constant of integration, which eliminates a
degree of freedom from �, meaning the actual problem has
fewer unknowns. Secondly, the derivative matrices �� and
�� are rank-1 deficient, but the span of their null-spaces is
known analytically. Specifically, a constant function has a
zero derivative, which means that,

��� � �� (16)

and hence the vector � spans the null-space of ��. The Lya-
punov equation has a more convenient form if the first row
and first column of both �T

��� and �T
��� are all zeros. This

can be accomplished by transforming the null-vector � to
the vector

�
�  � � � 

�T
. Specifically, the Householder

reflection [5],
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(18)

will transform the matrix �� to a matrix of the form,
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�
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�
� (19)

and similarly a matrix �� yields ���. Since the Householder
matrices �� and �� are orthogonal, they are perfectly con-
ditioned and do not affect the numerical accuracy of the so-
lution. Hence, we premultiply Equation (15) by �T

�, post-
multiply by ��, and make the substitutions ���T

� � � and
���

T
� � �, yielding,
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Making the substitution � � �T
����, yields a Lyapunov

Equation in �,
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This equation can be shown to have the form,
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which is equivalently the following system of equations,
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	��� � ��� � � (24)

	��� ����
� � � �� (25)

Equation (25) is again a Lyapunov equation, but now of di-
mension �������	���; the two remaining equations are
simple linear equations which can be trivially solved since
	 and 
 are invertible1. Note that, quite correctly, we can-
not solve for one parameter in the set of equations, i.e. the

1Invertibility can be proven as follows: for an appropriate derivative
matrix, only the derivative of a constant function should vanish, i.e. ��� �
� and ���� ���� � ���. Since �� is orthogonal, ���� ������ � ���
and so ����

��
� �

��
� � � �. Finally, this implies ���� ��� �

�� �, and since � is ��� ��� ��� ��, � � �T� is invertible.



constant of integration (��� can be set to zero). Solving
Equations (23) – (25) for the elements of � and recompos-
ing the matrix, we obtain the reconstructed surface as,

� � ����
T
�� (26)

Since the matrices 	 and 
 are by necessity positive def-
inite, the conditions for the uniqueness of the Lyapunov
equation in (25) hold, and hence � is the unique minimizing
surface.
It can be shown that the missing degree of freedom is the
constant of integration. Recall that ��� � � and ��� � �.
Consequently, if � is a solution to Equation (15), then so is
���� � �� ���T. Substituting yields

�
T
���

�
�� ���T

�
�
�
�� ���T

�
�

T
�����T

�
��������� � ��

(27)
and clearly all terms pertaining to the constant of integra-
tion, �, vanish.

4. Matrix Based Numerical Differentiation

Note that in the preceding derivation, there was no as-
sumption as to the particular form of the derivatives beyond
the fact that they are linear transformations. This general-
ization enables the use of numerical derivative formulas that
are accurate to any particular polynomial degree. All previ-
ous methods [4, 10, 2] have used simple forward/backward
differences, which are only first-order accurate (i.e. exact
only for linear functions). Here we briefly describe the
derivation of � -point derivative formulas, which yield ex-
act derivatives for functions up to degree � � � � �.
For equally spaces nodes, we expand the function in a Tay-
lor series of degree � �� about the point �� in the � -point
sequence. This yields � � � equations of the form,

����� � ����� � � ������� � ���� � � �

�
� ���������� � �����������

�� � ���
(28)

for � � �� � � � � � , � �� �, which are linear in the unknown
derivatives � ����� through �������. Using Cramer’s rule,
we may solve for � ����� in this system of equations. Ap-
plying this approach for � � �� � � � � � yields an � point
derivative formula for each point in the � -point sequence
of function evaluations, �����, � � �� � � � � � . Thus, nu-
merical differentiation takes the form of a matrix multipli-
cation, e.g. �� � ���. If the � th derivative of the func-
tion vanishes, then the Taylor expansion is exact, and hence
so are the computed derivatives. For example, for a five
point sequence, the corresponding three-point derivatives

with � � � read,
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(29)
Note the end-point formulas; the derivatives are degree-

two accurate at all five points. Note that if � is chosen to be
odd, we yield a symmetric formula for the internal points in
the sequence.

5. On the Variational Approach to Surface Re-
construction

An approach to surface reconstruction based on the
calculus of variations was first addressed by Horn and
Brooks [6]. The premise is that if the continuous form of
the cost function in Equation (9) has a stationary point, then
it satisfies its corresponding Euler-Lagrange equation,

������ �� �
�

��
������ �� �

�

��
������ ��� (30)

which in this case is a Poisson equation. The trouble with
formulating the problem as a differential equation of this
form, is that it does not uniquely specify the solution. This
can be seen by discretizing Equation (30) while, as before,
taking differentiation to be a linear operator, i.e.

������ ��
T
��

T
� � ��

��� � ����
T
� � �� (31)

Although this equation is strikingly similar to Equation
(15), it is the subtleties which are its undoing. It should be
noted that discretizing the Euler-Lagrange equation in this
form is essentially new. Any alternative approach leads to
a problem of integrability [4], whereby a constraint upon
the solution is required. Whereas this new form solves
the integrability problem, it unfortunately demonstrates that
any approach based on the Euler-Lagrange equation is only
valid for a few special cases. Clearly the matrix ���� is a
second derivative operator and hence must be at least rank-
two deficient (i.e. second derivatives of both linear and
constant terms must vanish, hence the null-space is two-
dimensional). This implies that in Equation (31) there are at
least four unknowns which we cannot solve for, and hence
there is a parametric family of non-unique solutions. A
specific solution in this case is usually found by imposing
boundary conditions. For example, the Frankot-Chellappa
method [4], and similarly Kovesi’s method [8] both assume
the surface is periodic, which is a largely unrealistic as-
sumption for a real surface.
There is, however, a case in which Equations (31) and (15)
are identical. If both �� and �� are skew-symmetric, then



we may substitute �� � ��T
�, �� � ��T

� into Equation
(31) and multiply through by �� to yield Equation (15).
Skew-symmetric derivative matrices are indeed valid, but
only for the special case of periodic functions. The un-
derlying assumption of the variational approach is therefore
that the surface is periodic. That is, methods relying on the
Euler-Lagrange equation and forward difference formulas
can only yield exact reconstruction for surfaces that are of
degree-one or less, and periodic; the only such surface is
� � ���T. Such methods include the Poisson solver [10],
and the “continuum of solutions” proposed by Agrawal [2].
The Poisson method actually overcomes the lack of skew-
symmetry near the edges by padding the measured deriva-
tives with zeros and simply ignoring the accuracy of the
derivatives near the boundary. It can therefore reconstruct
surfaces up to degree-one, i.e. planes. When working with
real data, however, the fact the cost function is global means
this error at the boundary propagates throughout the solu-
tion. It should be noted that all solutions based on this “vari-
ational approach” tend to exhibit systematic, as opposed to
stochastic, error in their reconstructions. This can be at-
tributed to the fact that they are non-unique solutions to an
equation which is only valid in a few special cases.

6. Conditions Yielding Exact Reconstruction

In stark constrast to previous solutions, there is a range of
conditions under which the algorithm proposed here yields
exact reconstruction up to a constant of integration. Specif-
ically, these are: Polynomial surfaces of degree � � � � �,
where � is the number of points used in the derivative for-
mulas; and transcendental functions with rapidly decaying
derivatives, in which case the reconstruction is numerically
exact (i.e. the absolute errors are close to machine accu-
racy).

7. Numerical Testing

To demonstrate the new approach in comparison to pre-
vious solutions, we propose the following tests:

1. Reconstruction of a surface with piecewise continuous
derivatives.

2. Reconstruction of an analytic, but non-polynomial,
surface in the presence of synthetic noise. We present a
Monte-Carlo simulation for noise standard deviations
ranging from  – �� of the data amplitude.

3. Reconstruction from real photometric stereo data. We
compare the results to “ground truth” data obtained
with a laser scanner.

For the previous solutions, we have made use of the code
available from [1]. Note that all previous methods only re-
construct up to an offset as well as overall scale; therefore,

for the purpose of comparison, we have computed the least-
squares scale and offset to evaluate cost functions, etc. We
have done the same with the new results in spite of the fact
the overall scale is one to one up to a factor of noise. For
the first test, we have computed the analytic derivatives of
the function,

���� �� � �
�

�
�

�
��� �� �

�
�� � �� � �

�
� (32)

which is the maximum height between a plane and a sphere.
The derivatives are therefore only piecewise continuous
(i.e. discontinuous). The closest comparable method to the
Frankot-Chellappa method is to use three-point derivatives
with the proposed algorithm; results are shown in Figure 1.
The new method is reasonably close to a perfect reconstruc-
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Figure 1. (TOP-LEFT) the proposed solution with three-point
derivatives (TOP-RIGHT) the Frankot-Chellappa method (which
has been post-scaled). (BOTTOM) The residual surface of the
new method. Note the Gibbs Phenomenon near the discontinuities.
This is due the fact that polynomial approximation is implicit in
the use of numerical derivatives, whereby the phenomenon arises
when making continuous approximations of discontinuities.

tion, with the exception of the Gibbs phenomena that occur
near the discontinuities, which can be seen in the residual
surface. This can be attributed to the fact that polynomial
approximation is implicit in the use of numerical differen-
tiation; the Gibbs phenomenon arises when approximations
are made to functions with discontinuites via basis func-
tions. The Frankot-Chellappa method clearly has difficulty



to account for the simple, albeit small, gradient. The fact
that the solution is constrained to be periodic leads to a sys-
tematic bias in the solution. Such a small deviation might
represent a misaligned workpiece in an industrial environ-
ment; such a solution is therefore unsuitable for real data.
The second experiment is to reconstruct a transcendental
surface of the form,

���� �� �

��
���

�� ���

�
� ��� ���

� � �� � ���
�

��

�
� (33)

Since the function is infinitely differentiable, its numerical
derivatives will only tend to its analytic derivatives for large
� . Figure 2 shows the reconstructions using the new al-
gorithm with three-point derivatives and the Poisson solver;
the gradients have added synthetic Gaussian noise with a
standard deviation of �� of the amplitude. The residual sur-
faces of these particular reconstructions are shown in Fig-
ure 3. Note that the residual surface for the new method
is largely stochastic in nature; this is to be expected of a
proper least squares solution of data subjected to Gaussian
noise. In constrast, the residual surface of the Poisson solu-
tion is largely systematic in nature, which is typical of when
a geometric model (in this case the Poisson equation) is in-
appropriate for modeling the data. A Monte-Carlo simula-
tion of the reconstruction is shown for noise ranging from
� �  – ��, comparing the Poisson solver, the new method
with three-point derivatives, as well as the new method with
eleven-point derivatives. The relative reconstruction error
and cost function evaluations for the simulation are shown
in Figure 4. This shows that even for exact data, the Poisson
solver has a relative reconstruction error upwards of ��.
For the same exact data, the three-point solution has a rela-
tive error less than ��, whereas the eleven point solution is
(numerically) exact. Note that the error for the new solution
has a linear upward trend, which is expected from a proper
least-squares solution. The cost function evaluations con-
firm that the Poisson solution is not the least-squares min-
imizer. Note that the cost function evaluations for the new
method are smaller than the actual noise added to the exact
gradients. This can be attributed to the fact that the noise is,
to some degree, integrable.

The final experiment is to reconstruct a surface from the
gradient field measured via photometric stereo, shown in
Figure 5. Figure 6 shows the result of the reconstruction us-
ing the new method, along with a laser scanned depth map
of the actual surface. The results show that the least squares
solution from the photometric data produces a credible re-
construction of a surface with significant depth variation.

8. Outlook

Future work is to extend the method to incorporate lin-
ear filtering simultaneously in the reconstruction algorithm.
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Figure 2. (TOP) Surface reconstruction with the proposed solution
(BOTTOM) Reconstruction via the Poisson solver. The new solu-
tion is correctly scaled whereas in the Poisson the overall scaling
is arbitrary. Indeed the two surfaces appear similar, but are sys-
tematically different.

This would, in fact, reduce the computational load, while
suppressing noise at the same time. This entails modeling
the surface as, � � ��T, where the matrices  and �

are sampled basis functions, and � is the matrix of associ-
ated moments (or the spectrum of �). For example, if the
basis functions were chosen to be complex exponentials (a
Fourier basis), then we could incorporate Fourier transform
(i.e., FFT) based filtering into the reconstruction. Although
it would be equivalent to post-processing, combining the
two steps would be more efficient since it leads to a Lya-
punov equation of smaller dimension.

9. Conclusions

In this paper, we presented the true global least-squares
solution to the reconstruction of a surface from its gradient
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Figure 4. (LEFT) Relative error of the reconstructed surface with
respect to the noise level for Poisson (��), the new method with
�-point derivatives (- -), and the new method with ��-point deriva-
tives (�). (RIGHT) The cost function evaluations with respect to
the noise level. The line (� � � ) represents the actual error added to
the error free gradients.
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Figure 5. Gradient of the end of a steel slab with a crack measured
via photometric stereo.

field. It had been erroneously believed that this problem has
been solved before. This fact was proven, then confirmed
via numerical testing. The new method is the first viable
algorithm for photometric stereo in industrial environments.
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