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Abstract

In this paper, we extend a computationally efficient
framework for real-time 3D tracking and segmentation to
support deformable subdivision surfaces. Segmentation is
performed in a sequential state-estimation fashion, using an
extended Kalman filter to estimate shape and pose param-
eters for the subdivision surface. As an example, we have
integrated Doo-Sabin subdivision surfaces into the frame-
work. Furthermore, we provide a method for evaluating
basis functions for Doo-Sabin surfaces at arbitrary param-
eter values. These basis functions are precomputed during
initialization, and later used during segmentation to quickly
evaluate surface points used for edge detection.

Fully automatic tracking and segmentation of the left
ventricle is demonstrated in a dataset of 21 3D echocardio-
graphy recordings. Successful segmentation was achieved
in all cases, with limits of agreement (mean±1.96SD) for
point to surface distance of 2.2±0.8 mm compared to man-
ually verified segmentations. Real-time segmentation at a
rate of 25 frames per second consumed a CPU load of 8%.

1. Introduction

The emergence of volumetric image acquisition within
the field of medical imaging has attracted a lot of scientific
interest over the last years. In a recent survey, Noble et
al. [1] presented a review of the most significant attempts
for 3D segmentation within the field of ultrasonics. How-
ever, all of these attempts are limited to being used as post
processing tools, due to extensive processing requirements,
even though volumetric acquisition may be performed in
real-time with the latest generation of 3D ultrasound tech-
nology. Availability of technology for real-time tracking
and segmentation in volumetric data sets would open up
possibilities for instant feedback and diagnosis during data
acquisition.

Orderud et al. has recently presented a framework for
real-time tracking and segmentation in volumetric data [2].
This framework treats the tracking problem as a state es-
timation problem, and uses an extended Kalman filter to
recursively track global pose and local shape parameters
using a combination of state predictions and measurement
updates. In [2], a deformable spline model was used to
track left ventricular (LV) shape segmentation 3D echocar-
diography. Later, in [3] the framework was combined with
a trained active shape model with predefined deformation
modes to improve segmentation accuracy.

This state estimation approach is based on prior work by
Blake et al. [4] in 2D, who used a Kalman filter to track
B-spline contours deformed by linear transforms within a
model subspace referred to as shape space. Later, the
same approach was applied to real-time LV tracking in 2D
echocardiography by Jacob et al. [5]. Similar efforts have
later been published by Comaniciu er al. [6], who focused
on the information fusion problem encountered in state-
space tracking. A state-based approach for cardiac defor-
mation analysis has also recently been published by Liu &
Shi in [7].

Usage of spline models for shape segmentation does,
however, imply some inherent topological restrictions,
since the control vertices of a spline surface are restricted
to form a regular quadrilateral structure. The LV model in
[2] were for instance based on a cylindrical topology, with
a hole at both the apex and base that required ad-hoc steps
to form a closed surface. Polygonal models coupled with
subspace deformation [3] does not suffer from any of these
topological restrictions, but instead requires much higher
mesh resolution in order to form smooth surfaces, which
implies higher computational complexity and a more com-
plex surface description.

1.1. Contributions

In this paper, we extend the Kalman tracking framework
from [2] to support a wider class of smooth deformable
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surfaces known as subdivision surfaces [8, 9], that general-
ize spline surfaces to support meshes of arbitrary topology.
This allows for more flexible modeling of arbitrary mesh
structures, without the inherent topological restrictions as-
sociated with spline surfaces. We focus on a specific type of
subdivision surfaces known as Doo-Sabin surfaces, which
have some properties that make them suitable for low res-
olution cardiac modeling. Details for exact evaluation of
surface points, as well as partial derivatives, for Doo-Sabin
subdivision surfaces is also presented, to provide a means
of evaluating basis functions for arbitrary surface points re-
quired for the edge detection process.

A low resolution Doo-Sabin subdivision model is then
used to model the left ventricle of the heart. This model has
adjustable control vertices to allow alteration of the shape,
and is coupled with a global pose transform to position and
orient it within the volume. Successful real-time LV seg-
mentation in 3D echocardiography is finally demonstrated
using the proposed subdivision model in conjunction to the
Kalman filter based tracking framework.

1.2. Nomenclature

Scalars are expressed in italic, vectors in boldface and
matrices in uppercase boldface. Control vertices are de-
noted ’q’, displacement directions ’d’, surface points ’p’
and surface normal vectors ’n’. State vectors are denoted
’x’. Discrete time is denoted with subscript ’k’ for the
Kalman filter, and control vertex or surface point indices
are denoted with subscript ’i’.

2. Evaluation of Doo-Sabin Surfaces

Doo-Sabin surfaces [8] is a type of subdivision sur-
face that generalize bi-quadric B-spline surfaces to arbi-
trary topology. Following the same approach as Stam for
Catmull-Clark surfaces [10], we define Doo-Sabin subdi-
vision as a matrix operation. Each surface patch can be
subdivided into four new sub-patches by multiplying the
Nq × 3 control vertex matrix Q0 with the (Nq + 7) × Nq

subdivision matrix S, as is shown in Fig. 1. The con-
tent of this matrix originates from the regular Doo-Sabin
subdivision rules, which are outlined in appendix A. Con-
trol vertices for the region of support for each sub-patch
k ∈ {0, 1, 2, 3} of choice can then be extracted from the
subdivided control vertices using a picking matrix Pk, such
that Qn+1,k = PkSQn.

Regardless of the topology of Qn, all sub-patches
Qn+1,k will at most consist of a single irregular face in ad-
dition to three quadrilaterals. Successive subdivision oper-
ations on Qn+1,k will then yield a single irregular patch,
while the three others becomes regular bi-quadric spline
patches that can be evaluated directly. By assuming, with-
out loss of generality, that the irregular face in Qn+1 is

located top-left, then the picking matrix Pk gives an reg-
ular 3 × 3 bi-quadric control vertex mesh when k 6= 0,
and a irregular mesh consisting of Nq control vertices when
k = 0. This relation can be exploited by performing re-
peated subdivisions n times until the desired surface point is
no longer within an extraordinary patch (k 6= 0). Denoting
S0 = P0S, we can express this as Qn,k = PkSSn−1

0 Q0.
The number of subdivision steps n required depends on

the logarithm of (u,v), while the sub-patch to pick after the
final subdivision is determined using the following criteri-
ons:

n = b− log2 (max{u, v})c (1)

k =


1 if 2nu > 1/2 and 2nv < 1/2
2 if 2nu > 1/2 and 2nv > 1/2
3 if 2nu < 1/2 and 2nv > 1/2

(2)

Direct evaluation of surface points can then be performed
for any patch location (u, v) except (0, 0), by subdividing
sufficient number of times, until the new subdivided patch
below (u, v) no longer contains a extraordinary face, and
treating the resulting sub-patch as a ordinary bi-quadric
spline surface. For locations near (0, 0), an approximate
surface evaluation can be obtained by perturbating (u, v)
slightly to prevent n from growing beyond a predefined up-
per limit. Basis functions with regards to the original non-
subdivided control vertices can similarly be computed using
the same approach:

b(u, v)|Ωn
k

=
(
PkSSn−1

0

)T
b̃(tk,n(u, v)) , (3)

where Ωn
k is the subdivision mapping function described

above, that determines the number of subdivision steps re-
quired based on (u, v) [10]. b̃ is the regular bi-quadric B-
spline basis functions defined in appendix B, and tk,n is a
domain mapping function used to map the parametric inter-
val (u,v) to the parametric interval within the desired sub-
patch:

tk,n(u, v) =


(2n+1u− 1, 2n+1v ) if k = 1
(2n+1u− 1, 2n+1v − 1) if k = 2
(2n+1u, 2n+1v − 1) if k = 3

(4)

Partial derivatives of the basis functions, bu and bv , are
similarly computed by replacing b̃(u, v) with the respective
derivatives of the B-spline basis functions in the formula.
Surface positions can then be evaluated as an inner product
between the control vertices and the basis functions

p(u, v) = QT
0 b(u, v) . (5)

Note that this approach is not dependent on diagonaliza-
tion of the subdivision matrix, as in [10]. Instead, repeated



Q
n+1

= S Q
n

Q
n Q

n+1

P
0
Q

n+1
P

1
Q

n+1
P

2
Q

n+1 P
3
Q

n+1

u

v

Figure 1. Illustration of the Doo-Sabin subdivision process. The
control vertices Qn that define the initial surface patch (upper left)
are subdivided into new control vertices Qn+1 (upper right) by
multiplying Qn with the subdivision matrix S. Application of the
picking matrix Pk on Qn+1further divides the subdivided mesh
into four sub-patches that together span the same surface area as
the original patch.

matrix multiplication performed n times will result in ex-
actly the same result. The associated increase in computa-
tional complexity associated with this repeated multiplica-
tion will not be a burden if evaluation of basis functions is
performed only once, and later re-used to compute surface
points regardless of movement of the associated control ver-
tices.

3. Deformable Subdivision Model
This section explains how deformable subdivision mod-

els, such as the LV model shown in in Fig 2, can be incorpo-
rated into the Kalman tracking framework. The subdivision
models consists of control vertices qi for i ∈ {1 . . . Nq}
with associated displacement direction vectors di that de-
fines the direction in which the control vertices are allowed
to move. Displacement directions are typically based on
surface normals, since movement of control vertices in this
direction results in the greatest change of shape. In addition
to the control vertices, the topological relationships between
the control vertices have to be defined in a list C(c). This
list maps surface patches c ∈ {1 . . . Nc} to enumerated lists
of control vertex indices that define the region of support
for each surface patch.

We denote the local deformations Tl(xl) to our de-
formable model as the deformations obtainable by mov-
ing the control vertices of the subdivision model. These
local deformations are combine with a global transform
Tg(xg,pl) to position, scale and orient the model within
the image volume where the tracking takes place.

After creation of the model, a set of surface points have
to be defined, which are to be used for edge detection mea-
surements. This set consists of parametric coordinates (in-
cluding patch number) for each of the points (u, v, c)l,

and are typically distributed evenly across the model surface
to ensure robust segmentation. By restricting the distribu-
tion of these edge profiles to fixed parametric coordinates
throughout the tracking, then basis functions for each edge
profile can be precomputed during initialization. These ba-
sis functions are independent of the position of the control
vertices, and can therefore be re-used during tracking to ef-
ficiently generate surface points regardless of local shape
deformations.

3.1. Calculation of Surface Points

The Kalman filter framework requires the creation of a
set of surface points pl with associated normal vectors nl

and Jacobi matrices Jl, based on a predicted state vector x̄l.
The creation of these objects can be performed efficiently
following the steps below:

1. Update position of control vertices qi based on the
state vector: qi = q̄i + xidi, where q̄i is the mean
position of the control vertex and xi is the parame-
ter corresponding to this control vertex in the state
vector for each control vertex. di is the displace-
ment direction for control vertex qi. The full state
vector for the model then becomes the concatenation
of the state parameters for all control vertices xl =
[x1, x2, . . . , xNl

]T . One can here chose to force cer-
tain vertices to remain stationary during tracking with-
out altering the overall approach. This would both re-
duce the deformation space, as well as the number of
parameters to estimate.

2. Calculate surface points pl as a sums of control ver-
tices weighted with their respective basis functions
within the surface patch of each surface point: pl =∑

i∈C(cl)
biqi.

3. Calculate surface normals nl as the cross product be-
tween the partial derivatives of the basis functions with
regards to parametric values u and v within the surface
patch of each surface point: nl =

∑
i∈C(cl)

(bu)iqi ×∑
i∈C(cl)

(bv)iqi.

4. Calculate Jacobian matrices for the local deformations
Jl by concatenating the displacement vectors mul-
tiplied with their respective basis functions: Jl =[

bi1di1 , bi2di2 , . . .
]
i∈C(cl)

. The Jacobian ma-
trix will here be padded with zeros for columns corre-
sponding to control vertices outside the region of sup-
port for the surface patch of each surface point.

Precomputation of basis functions enables the operations
above to be performed very quickly, which is crucial for
enabling real-time implementations.



(a)

Figure 2. Orthogonal views of the initial undeformed subdivision
surface (left), as well as the same model deformed to fit the LV
after tracking in some frames (right). The model consists of 24
surface patches, that each are outlined by a bold black border and
subdivided into a 5 x 5 quadrilateral grid for visualization. The
encapsulating wire-frame mesh illustrates the control vertices (cir-
cles) that define the surface.

3.2. Global Transform

The composite object deformation T(x) =
Tg(Tl(xl), xg) is obtained by combining the local
deformations of the subdivision model with a global
transform to create a joint model. This leads to a composite
state vector x = [xT

g , xT
l ]T consisting of Ng global and

Nl local deformation parameters. This separation between
local and global deformations is intended to ease modeling,
since changes in shape are often parametrized differently
compared to deformations associated with global position,
size and orientation.

We denote pl, nl and Jl for the surface points cre-
ated from the subdivision surface with local deformations
Tl(xl). These points are subsequently transformed by
means of a global pose transform Tg , that translates, rotates
and scales the model to align it correctly within the image
volume. Surface points are trivially transformed using Tg ,
whereas normal vectors must be transformed by multiply-
ing with the normalized inverse spatial derivative of Tg to
remain surface normals after the global transform [11]:

pg = Tg(pl,xg) (6)

ng =
∣∣∣∣∂Tg(pl,xg)

∂pl

∣∣∣∣ (
∂Tg(pl,xg)

∂pl

)−T

nl (7)

The Jacobian matrices for the composite deformations then
becomes the concatenation of both global and local state-
space derivatives. The local part is created by multiplying
the 3 × 3 spatial Jacobian matrix for the global transform
with the 3 × Nl local Jacobian matrix for the deformable
model, as follows from the chain-rule of multivariate calcu-
lus:

Jg =
[
∂Tg(pl,xg)

∂xg
,

∂Tg(pl,xg)
∂pl

Jl

]
. (8)

Model
Kalman
Predict

Kalman
Update

x,P-

x,P^

Measure

T(x)

Assimilate

∑
p, n v, r

H R v,
H R H

T

T

-1

-1

h

Figure 3. Overview over the processing chain in the Kalman filter
based tracking framework. All five steps are performed only once
for each new frame.

4. Kalman Tracking Framework
The tracking framework is decomposed into the 5 sepa-

rate steps shown in Fig. 3.

4.1. State Prediction

Incorporation of temporal constraints is accomplished in
the prediction stage of the Kalman filter by augmenting the
state vector to contain the last two successive state esti-
mates. A motion model which predicts state x̄ at time step
k + 1, with focus on deviation from a mean state x0, can
then be expressed as:

x̄k+1 − x0 = A1 (x̂k − x0) + A2 (x̂k−1 − x0) , (9)

where x̂k is the estimated state from time step k. Tuning
of properties like damping and regularization towards the
mean state x0 for all deformation parameters can then be
accomplished by adjusting the coefficients in matrices A1

and A2. Prediction uncertainty can similarly be adjusted by
manipulating the process noise covariance matrix B0 that is
used in the associated covariance update equation for P̄k+1.
The latter will then restrict the rate of which parameter val-
ues are allowed to vary.

4.2. Evaluation of Deformable Model

Creation of surface points p, normals n and Jacobian
matrices J, based on the predicted state x̄k. This is per-
formed as described in section 3.

4.3. Edge Measurements

Edge measurements are used to guide the model toward
the object being tracked. This is done by measuring the dis-
tance between points on a predicted model inferred from the
motion model, and edges found by searching in normal di-
rection of the model surface. This type of edge detection is
refereed to as normal displacement [4], and is calculated as
the normal projection of the distance between a predicted
edge point p with associated normal vector n and a mea-
sured edge point pobs:

v = nT (pobs − p) . (10)

Each normal displacement measurement is coupled with
a measurement noise r value that specifies the uncertainty



associated with the edge. This value is typically depen-
dent on edge strength or other measure of uncertainty. This
choice of normal displacement measurements with associ-
ated measurements noise enables usage of a wide range of
possible edge detectors. The only requirement for the edge
detector is that it must identify the most promising edge
candidate for each search profile, and assign an uncertainty
value to this candidate.

Linearized measurement models [12], which are re-
quired in the Kalman filter for each edge measurement, are
constructed by transforming the state-space Jacobi matrices
the same way as the edge measurements, namely taking the
normal vector projection of them:

hT = nT J . (11)

This yields a separate measurement vector h for each nor-
mal displacement measurement, that relates the normal dis-
placements to changes in the state vector.

4.4. Measurement Assimilation

State-space segmentation forms a special problem struc-
ture, since the number of measurements typically far ex-
ceeds the number of state dimensions. Ordinary Kalman
gain calculation will then be computationally intractable,
since they involve inverting matrices with dimensions equal
to the number of measurements.

An alternative approach is to assimilate measurements
in information space [12] prior to the state update step.
This enables very efficient processing if we assume that
the measurements are uncorrelated, since uncorrelated mea-
surements lead to a diagonal measurement covariance ma-
trix R. All measurement information can then be summed
into an information vector and matrix of dimensions invari-
ant to the number of measurements:

HT R−1v =
∑

i hir−1
i vi (12)

HT R−1H =
∑

i hir−1
i hT

i . (13)

4.5. Measurement Update

Measurements in information filter form require some
alterations to the state update step in the Kalman filter.
This can be accomplished by utilizing that the Kalman gain
Kk = P̂kHT R−1, and reformulating the equations to ac-
count for measurements in information space. The updated
state estimate x̂ for time step k then becomes:

x̂k = x̄k + P̂kHT R−1vk . (14)

The updated error covariance matrix P̂ can similarly be cal-
culated in information space to avoid inverting unnecessary
large matrices:

P̂−1
k = P̄−1

k + HT R−1H . (15)

Figure 4. Volume correlation plot for the proposed segmenta-
tion against the reference method at end-diastole (EDV) and end-
systole (ESV) in each of the 21 recording.

Distance [mm] EDV [ml] ESV [ml] EF [%]
2.2± 0.8 3.6± 21.4 9.0± 17.4 −5.9± 11.1

Table 1. Bland-Altman analysis of the segmentation results com-
pared to the reference segmentation. Results are expressed as
mean difference ±1.96SD.

This form only requires inversion of matrices with dimen-
sions equal to the state dimension.

5. Results

The proposed tracking framework were evaluated by
performing fully automatic tracking in 21 unselected 3D
echocardiography recordings of the heart, recorded with a
Vivid 7 ultrasound scanner (GE Vingmed Ultrasound, Nor-
way) using a matrix array transducer (3V). Exactly the same
initialization were used in all of the recordings, and the
resulting segmentations were compared to semi-automatic
segmentation using a custom made segmentation tool (GE
Vingmed Ultrasound, Norway). The reference segmenta-
tions were conducted by an expert, and whenever needed
manually adjusted to serve as a validated reference compa-
rable to manual tracing.

A manually constructed Doo-Sabin model consisting of
24 surface patches, as shown in Fig 2, were used as basis for
the LV segmentation. This deformable model were com-
bined with a global pose transform that featured parameters
for translation, rotation and isotropic scaling of the model
to position and orient it within the image volume. 384 edge
profiles distributed evenly over the surface were used used
for edge detection. Each of these profiles consisted of 30
image samples spaced 1 mm apart. Edge detection was then
performed in each profile, based on a transition criterion [2],
with edge weighting based on the transition height. These
edge measurements were combined with a outlier removal
step which discarded edges with normal displacement value
differencing significantly for that of its neighbors.



Figure 5. Example segmentation results from four of the record-
ings (rows). Orthogonal intersection slices through each volume
shows the segmentation result at end-diastole (left) and end sys-
tole (right). The red intersection lines show the proposed Kalman
segmentation, and the yellow lines the reference segmentation.

Figure 4 and table 1 shows the results from the compar-
ison with the reference segmentation, using Bland-Altman
analysis of the average point to surface distance between
the meshes, difference in end diastolic volumes (EDV), end
systolic volumes (ESV) as well as differences in the com-
puted ejection fraction (EF)1. Fig. 5 shows orthogonal inter-
section slices of the segmentations at end diastole and end
systole from four of the recordings to illustrate the typical
segmentation quality obtained.

Compared to previous efforts on real-time Kalman seg-
mentation [2, 3], this indicates slightly more accurate seg-
mentations with smaller distances between the meshes and
less bias in the ejection fraction numbers. The tracking and
segmentation was performed using a C++ implementation
on a 2.16 GHz Intel Core 2 duo processor, were real-time
segmentation at a rate of 25 frames per second consumed
approximately 8% CPU power.

The tracking converged in 2-4 frames after initialization
in most of the recordings. A typical convergence for one
of the recordings is shown in Fig. 6. A single recording
did, however, require a half heartbeat to converge, because
to the basal edge profiles were not long enough to reach the

1Ejection fraction is the ratio of LV contraction. It is commonly used
for assessment of global ventricular function, and is computed as (EDV-
ESV)/EDV.

Figure 6. Intersection slices through the volume showing the con-
vergence rate for the tracking. The initial mesh before tracking
is started is shown top-left (red for proposed and yellow for ref-
erence), followed by deformed meshes after tracking in the first
6 frames. A plot of the average surface to surface distance be-
tween the deformed meshes and the reference segmentation for
each frame is shown bottom-right.

base of the heart before the heart was maximally contracted
at end systole.

6. Discussion
In this paper, we have extended prior work [2, 3] to en-

able fully automatic and real-time LV tracking and segmen-
tation in dense volumetric data using deformable subdivi-
sion surfaces.

6.1. Subdivision Model

Usage of subdivision models for segmentation has some
desirable properties that makes them suitable for model-
ing of cardiac structures, in that they combine the inherent
smoothness and continuity of surface derivatives of spline
surfaces with the support of arbitrary topology from flat
polygonal meshes. This enables more flexible modeling,
since control vertices of the surface models are no longer
restricted to the quadrilateral structure known from spline
surfaces. Subdivision models that form closed surfaces and
surfaces with complex geometries can therefore be con-
structed in a simple and intuitive fashion.

The inherent smoothness also makes it possible to repre-
sent cardiac geometries using low resolution models, con-
sisting of few control vertices, as shown in this paper. This
makes for more robust segmentation compared to high res-
olution models, since fewer shape parameters have to be
estimated during tracking. Papillary muscles and trabecular
structures, that are known to disrupt segmentation [1], are
also handled robustly, since the low-resolution model are
unable to represent the local sharp discontinuities in shape
these structures represents.



Doo-Sabin is chosen in favor of the more common
Catmull-Clark surfaces, that generalize bi-cubic B-spline
surfaces, because bi-quadric surfaces has a narrower region
of support compared to bi-cubic surfaces. This makes them
more suitable for segmentation with low resolution models,
where the range of support for each surface patch should be
restricted to a local area, and not be so large that it covers
a significant portion of the entire model. The proposed seg-
mentation approach is, however, not restricted to Doo-Sabin
surfaces in particular, so other subdivision schemes, such as
Catmull-Clark and Loop could also be used without alter-
ing the overall approach. The only requirement is that the
subdivision process can be expressed as a linear operation
on matrix form.

Usage of subdivision models for cardiac tracking have
also been presented in [13], but this paper focuses on image
registration using iterative gradient descent algorithms, and
not on segmentation per se. It therefore depends on man-
ual surface initialization, and is thus not suitable for fully
automatic behavior.

6.2. Segmentation Results

The results shown in table 1 indicate that usage of sub-
division surfaces leads to improved segmentation accuracy
compared to spline and active-shape models [2, 3], even
though fewer edge profiles were used for edge detection.
This is believed to be caused by the subdivision model is
more capable of capturing the shape and deformation pat-
tern of the LV.

The segmented ventricles showed good overall agree-
ment with the reference segmentations, both with respect
to to point to surface distances and for the computed vol-
umes. Segmentation accuracy is primarily limited by the
difficulty of edge detection in echocardiography recordings,
which suffers from inherently poor image quality. It is dif-
ficulty, even for experts, to accurately determine the endo-
cardial border in such recordings. Perfect agreement with
reference segmentations might therefore never be achieved.
The simple transition criteria used in this paper is chosen
primarily because it behaves robustly and has a long radius
of convergence. More advanced criterias might very well
yield more accurate segmentation in areas of weak and un-
clear edges, but state of the art edge detection is not the
main focus of this paper.

Tracking convergence seems to primarily be limited by
the length of the edge profiles. There is, however, an in-
herent trade-off between convergence speed, and edge de-
tection robustness/outlier frequency here, since longer edge
profiles might lead to the detection of more outlier edges
that might disrupt the tracking. When disregarding the first
few frames during tracking, the Kalman tracker seemed to
respond fast enough to capture changes in pose and shape
between successive frames, even though it only used a sin-

gle refinement iteration per frame.
Precalculation of basis functions for the subdivision

model during initialization also lead to a more computa-
tionally efficient implementation compared to [2, 3], even
when compensating for the reduction in the number of edge
profiles used.

6.3. Kalman Filter Approach

Most segmentation approaches used in medical imaging,
such as active shape segmentation and simplex mesh seg-
mentation [1], are based on modeling of forces acting upon
a deformable model with semi-realistic physical properties.
Segmentation is then performed by using iterative optimiza-
tion algorithms to determine an equilibrium state between
internal shape forces and external image forces. Segmen-
tation typically requires hundreds of iterations to converge
using this approach, which makes real-time 3D segmenta-
tion using this approach computationally intractable.

State-estimation based tracking instead uses a non-
iterative algorithm, based on a Bayesian least squares so-
lution of the linearized tracking problem, namely the ex-
tended Kalman filter. The model is segmented by com-
puting a solution to a system of equations to fit the model
to the detected edges, while at the same time regularizing
the fitting by incorporating a kinematic model to restrict the
rate of change for shape and pose parameters. This leads to
outstanding computational performance compared to itera-
tive algorithms, and enables real-time tracking and segmen-
tation in volumetric datasets. Usage of extended Kalman
filters for segmentation does, however, imply the making
of some assumptions with regards to Gaussian distributions
and linearity:

Firstly, the framework assumes that the normal displace-
ment values are independent and follow a Gaussian distribu-
tion. This, however, only accounts for the normal displace-
ment values only, and not to the shape of the underlying
edge profiles or details in the edge detector, in which are
not assumed to follow any given distribution in the Kalman
filter. Secondly, the extended Kalman filter assumes all de-
formations to be linear. Except for global rotation, which
is inherently non-linear, every other mode of deformation is
linear. This includes global translation, scaling and the lo-
cal shape deformations, which due to the tensor product for-
mulation of the polynomial basis functions are linear in the
position of the control vertices. There is very little change
in global rotation of the heart between successive frames,
so the linearization approximation penalty is believed to be
small.

7. Conclusion
In this paper, we have proposed a Kalman filter based

framework for fully automatic real-time tracking and seg-



mentation in volumetric data, using deformable subdivi-
sion surfaces. Usage of subdivision surfaces enables sim-
ple modeling of closed surfaces, and surfaces with com-
plex topology, without any of the limitations associated with
spline surfaces. In addition, a method for exact evalua-
tion of surface points at arbitrary parameter values for Doo-
Sabin surfaces is provided, to enable efficient precalculation
of basis functions used to extract edge profiles.

The results indicate that usage of subdivision surfaces
leads to improved segmentation accuracy compared to
spline and active-shape models [2, 3]. Precalculation of ba-
sis functions also significantly reduces the computational
complexity. The combination of subdivision models with a
Kalman filter tracker thus enables 3D segmentation that is
both robust and capable of operating in real-time.

A. Doo-Sabin Subdivision Matrix
The subdivision weights used for faces consisting of n

vertices are used as defined by Doo & Sabin [8]:

αj
n =

δj,0

4
+

3 + 2 cos(2πj/n)
4n

, (16)

where δi,j is the Kronecker delta function which is one for
i = j and zero elsewhere. Subdivision of the control ver-
tices within a single face can then be expressed as a linear
operation using a subdivision matrix Sn:

Sn =


α0

n α1
n α2

n . . . α−1
n

α−1
n α0

n α1
n . . . α−2

n

α−2
n α−1

n α0
n . . . α−3

n

. . . . . . . . . . . . . . .
α1

n α2
n α3

n . . . α0
n

 . (17)

Subdivision of whole patches is accomplished by com-
bining Sn for all four faces in a patch into a composite sub-
division matrix S. The structure of this matrix depends on
the topology and control vertex enumeration scheme em-
ployed, but construction should be straightforward.

B. Basis functions for Quadratic B-splines
The 9 tensor product quadratic B-spline functions can be

expressed as a product of two separable basis polymonials
for the parametric value u and v (i = 0, . . . , 8):

b̃i(u, v) = Pi%3(u) Pi/3(v) , (18)

where “%” and “/” denotes the division remainder and divi-
sion operators respectively. Pi(t) are the basis polynomials
for quadratic B-splines with uniform knot vectors:

2P0(t) = 1− 2t + t2 (19)

2P1(t) = 1 + 2t− 2t2 (20)

2P2(t) = t2 (21)
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