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Abstract

We propose a variational bayes approach to the problem
of robust estimation of gaussian mixtures from noisy input
data. The proposed algorithm explicitly takes into account
the uncertainty associated with each data point, makes no
assumptions about the structure of the covariance matri-
ces and is able to automatically determine the number of
the gaussian mixture components. Through the use of both
synthetic and real world data examples, we show that by in-
corporating uncertainty information into the clustering al-
gorithm, we get better results at recovering the true distri-
bution of the training data compared to other variational
bayesian clustering algorithms.

1. Introduction

Standard EM-based clustering algorithms [7] assume
that input data points are all equally important and the ef-
fect of noise or measurement errors is often ignored and not
explicitly modeled during model estimation. However, this
is not always a valid assumption since the input data can be
corrupted by measurement errors. Uncertainties can also be
introduced by additional transformations on the data such as
dimensionality reduction. In particular, in the case of non-
linear transformations, it is no longer safe to assume that the
uncertainties are uniform across the data. If the level of un-
certainties can be quantified, it makes sense to incorporate
them into the clustering algorithm to improve the estimation
of the true data distribution.

In this paper we propose a novel algorithm for learning
a mixture of Gaussians that takes into account the uncer-
tainties of the input data. In our formulation we assume the
uncertainty on a data point can be modelled by a multivari-
ate Gaussian distribution and is independent from the other
data points. Intuitively, this allows a data point with large
uncertainty to exert less influence on the mixture compo-
nents, than a data point with smaller uncertainty. The opti-
mal mixture model that represents the data with uncertain-
ties is found using a variational bayesian algorithm that au-
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tomatically chooses the appropriate number of components
in the mixture model. We show that by taking into account
the uncertainty of information, our algorithm performs bet-
ter at estimating the correct number of clusters and recov-
ering the true distribution of the training data compared to
other variational bayesian clustering algorithms [6, 3]. The
proposed algorithm is evaluated on a number of synthetic
and real data sets and is shown to improve the results of
various pattern recognition tasks such as motion segmenta-
tion and partitioning of microarray gene expressions.

2. Related Work

Previously, researchers have looked into the problem
of incorporating uncertainty information into the field of
model fitting and have developed algorithms such as To-
tal Least Square [1] which assumes the noise on all data
points are drawn from the same uncertainty distribution, and
Fundamental Numerical Scheme [5] which allows different
data points to be associated with different uncertainty dis-
tributions. It has also been studied in the context of support
vector machine classification [2].

Various researchers have also investigated the problem of
unsupervised clustering of data with uncertainty. Chaudhuri
and Bhowmik [4] proposed a modified K-means algorithm
which assumes uniform uncertainties such that the true po-
sition of a data point can be anywhere within a hypersphere
centred on its observed position. Kumar and Patel [11] also
proposed generalisations of K-means and hierarchical clus-
tering to handle zero-mean Gaussian measurement uncer-
tainty. However their formulation is simply based on intu-
ition and is not probabilistically well principled. Handman
and Govaert [8] proposed an EM [7] clustering algorithm
which modelled non-identically distributed uncertainty as
rectangular error zones.

More recently in Bioinformatics, in order to group genes
with similar expression patterns from microarray experi-
ments, Liu et al. [12] proposed a probabilistic clustering
algorithm for estimating the maximum likelihood mixture
of Gaussians with spherical covariance matrices from data
with zero-mean Gaussian measurement errors represented



by diagonal covariance matrices. In their method, the pa-
rameters of the mixture components are updated using gra-
dient descent based optimisation, and Bayesian Information
Criterion (BIC) [14] is used to determine the appropriate
number of components. Our method is more general and
does not make any assumption about the structure of the co-
variance matrices of the mixture components and the mea-
surement uncertainties. The variational bayesian model se-
lection used by our method is well principled and handles
datasets of various sizes whereas BIC is an asymptotic re-
sult which may not be able to handle small datasets well.

Sun et al.[16] proposed a generalised Expectation Max-
imisation (GEM) algorithm for estimating the maximum
likelihood mixture of Student t-distributions from astro-
physical datasets with measurement errors and thus improv-
ing the detection of peculiar quasars as statistical outliers.
Our algorithm is similar to theirs in that we both solve
the intractable integration in the resulting formulation using
variational approximation. However, while their algorithm
returns the maximum likelihood solution for a fixed num-
ber of components, our algorithm finds the optimal num-
ber of components during a single clustering run. We also
place priors on the parameters of the mixture components to
prevent singularity and components with degenerate shapes
from forming.

As the level of uncertainties on the input data increases,
maximum likelihood algorithms such as [12] [16] tend to re-
turn mixtures with some very narrow components which are
collapsing onto a point or a hyperplane. The t-distribution
is somewhat more robust to this effect than the Gaussian
distribution, it can still be affected by it. Although this is
not an issue if the estimated mixture model is only going to
be used in some discriminative tasks, it does however, pose
a serious problem if it is meant for generative tasks which
requires sampling and synthesising from the learnt distri-
bution. This is not a problem in our clustering algorithm
because we place priors on the parameters of the mixture
components which constrains the shape of the components
to prevent them from collapsing.

3. Learning mixture of Gaussians in the pres-
ence of errors

Our aim is to estimate a mixture of K Gaussian com-
ponents which best represents the distribution of a set of N
data points X = {x1,...,x } that have been observed in a
D dimensional space, where the optimal number of compo-
nent K is unknown. It is assumed that each data point x,, is
a noisy measurement of its true position and is drawn from
a Gaussian distribution N'(x,,[t,, C;,). The mean t,, is the
unknown true position of the data point and the covariance
matrix C,, is the known uncertainty on the measurement.

Under a latent variable model, we associate each
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Figure 1. Mixture of Gaussians with Uncertainty

data point x, with a binary latent variable z, =
{2n1, .-, Znk }15_|, in which only one element is set to one
to indicate that a data point t,, was generated from that com-
ponent and all other elements of the latent variable are equal
to zero. Given the latent variables Z = {z;,...,zy} and

T = {t1,...,tn}, the conditional distribution of X can be
written as:
N
p(X|C,T) = [[ N (xnltn, Cn) (1)
n=1

And the conditional distributions of T and Z are given by:

N K

p(T|Z,p,A) = [TV @l ALH™ @)
n=1k=1
N K

p(zln) = T II~" 3)
n=1k=1

where pj, and Ay are the mean vector and precision matrix
of the kth Gaussian component and w = {7y,..., 7k } are
the mixing coefficients for the components.

We place a Normal-Wishart prior on the mean and preci-
sion of the Gaussians components as shown by Bishop [3]:

K
P, A) = T N (melmo, (BoAr) ™YW (ALIWo, 1) (4)
k=1
where my is usually set to zero and [y is set to a very small
value. W(A|W,v) is a Wishart distribution with scale ma-
trix W and v degrees of freedom.
The model described can be represented as a directed
graph in figure 3. Assuming uniform prior on C, the joint
distribution over all variables conditioned on 7 is:

p(X,C,T,Z,u,Alr) = p(X|C,T)p(T|Z,p,A) x
p(Zlm)p(u|A)p(A) 5)

3.1. Variational Inference

Variational inference is a framework for computing ana-
lytical approximation to naturally intractable posterior dis-
tribution, by restricting the range of functions used for ap-
proximation. Given that X denotes the set of observable



variables, H denotes the set of latent variables and param-
eters and ¢(H) is a variational distribution over H, the log
marginal probability of X is:

In p(X) ln/p(X,H)dH

. p(X,H)
= /Q(H) q(H) "

> /(H)ln (X7H)dH

q(H)

o = [amnlam o
where £(q) is a strict lower bound on In p(X) and is derived
using Jensen’s inequality. The difference between In p(X)
and £(q) is the Kullback-Leibler divergence between ¢ and
p, which is always positive.

Assuming that the ¢ distribution factorises with respect
to the disjoint groups of variables in H, such that ¢(H) =
Hf\il q;(H;), then the optimal solution for the jth fac-
torised distribution is given by the expectation of the log
of the joint distribution over all the other ¢ distributions [3]:

Ingj (H;) = i [Inp(X, H)] 4 const.  (7)

3.2. Variational Bayes mixture of Gaussians with
Uncertainty

In our case, the set of latent variables is {T, Z, u, A} and
its variational distribution can be factorised as:

q(H) = ¢(T|Z)q(Z)q(p, A) (8)
which can be further factorised:
K
g, A) = [ alerlAn)a(Ar) ©)
k=1

[
=
=

Q(T|Z) Q(tn|znk = 1)Z7lk (10)

Il
=

n k=1

The optimal solution for ¢*(t,,|z,x = 1) is the posterior
distribution of the true position t,, with uncertainty C,, and
conditioned on the kth mixture component:

g (tnlznk = 1) = N (tnklrnk, Enpr) (11
where the mean and the covariance are computed as:

To = En|k(C;1xn + v, Wimy) (12)

E.i = (C'+uWy)™! (13)

The optimal solution for ¢*(Z) is computed as:

¢ (Z) = H Hrm (14)
n=1 k=1
Pk = — —Elz) (15)

Zj:l Pnj

where 7,1, is the responsibility of the kth component for the
nth data point and:

1 D
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and t(.) is the digamma function and E[ln|Ag|]] =
SP ¢ (X)) £ DIn2 4+ In|[Wy.

The optimal solution for ¢*(ux|Ay) is similar to the
derivation in [3] and is computed as:

g (prAx) = N (g [y, (BrAr) ™) 17
where:
Br = Po+ Nk (18)
1
my, = —(Bomg + Nity) (19)
Br
X
r, = E 7;1 E[znk]rn‘k (20)
N
Ny = > Elzn] (21)
n=1
and the optimal solution for ¢*(Ay) is computed as:
q"(Ar) = WA Wi, i) (22)
where
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1
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Finally, since no priors are placed on the mixing coeffi-
cients 7, it is not considered as latent variable and is instead
optimised as parameters:

1 N
= Dok (26)
n=1



Following the approach suggested by Corduneanu and
Bishop [6] for choosing the correct number of mixture
components, we initialise the mixture with a large number
of components and remove any whose mixing coefficients
have been driven to zero during the optimisation.

3.2.1 Variational Lower Bound

The optimal mixture model is found by repeatedly updat-
ing the variational distributions of T, Z, p and A and then
optimising the mixture coefficients w. The convergence of
the iterative update is monitored by computing the varia-
tional lower bound £(g), which cannot decrease after each
update. For our mixture model, the lower bound defined by
equation (6) is computed as:

L(qg) = E[mpX,C,T,Z p,Alr)] —E[llng(T,Z,pu,A)]
= E[lnp(X|C,T)] +Ellnp(T|Z, p,A)]
+E[Inp(Z|r)] + E[lnp(p, A)] — E[ln ¢(T|Z)]
—E[lng(Z)] — E[lng(u,A)]
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4. Results

We have tested our clustering algorithm on both syn-
thetic and real data sets to demonstrate the benefit gained
by taking into account of the uncertainty information.

4.1. Synthetic Examples

Two synthetic datasets proposed by Corduneanu
and Bishop [6] were used to test the performance
of our clustering algorithm. The first data set con-
tains 900 data points sampled from a mixture of three
Gaussian components with means [0, —2],[0,0] and
[0,2] and the same covariance [2,0;0,0.2]. The sec-
ond data set contains 600 data points sampled from
a mixture of five Gaussian components with means
[0,0],[3,-3],[3,3],[—3,3] and [—3,—3] and covariances
[1,0;0,1],[1,0.5;0.5,1],[1,—0.5; —0.5, 1], [1,0.5; 0.5, 1]
and [1,—0.5; —0.5,1].

For each data point t,, we generate the covariance
matrix of uncertainty about the data point as C, =
[|zn]/10,0;0,|yn|/5] * A and sample a noisy data point x,,
from N (t,,C,). A is an experiment parameter for con-
trolling the overall scale of noise. The noisy data points
are then clustered using the variational bayesian clustering
algorithm from [6] and the results compared with our clus-
tering algorithm which also takes into account the uncer-
tainty information. The noisy input data is shown in figure
2(a) and 2(d) and the corresponding clustering results are
shown in figure 2(b) and 2(e). The clustering algorithms
were initialised with a mixture of 20 components and while
both were able to find the correct number of mixture compo-
nents, the mixtures estimated by our algorithm were closer
to the ground truth, as can be seen from visual inspection of
the clusters and from the symmetric KL divergence scores
computed with the ground truth mixtures. Figure 2(c) and
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(a) Noisy input data with uncertainty

(b) Without uncertainty, SKL = 0.5029. With un-
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(d) Noisy input data with uncertainty

(e) Without uncertainty, sKL = 0.4413. With un-
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Figure 2. In the left column, red ellipses represent the uncertainty on the point it is centred on; for clarity, only the uncertainty in one of
every ten data points is shown. In the middle column, the black ellipses represent the ground truth, the red ellipses represent clustering
without uncertainty and the green ellipses represent clustering with uncertainty. In the right column, the red plot represents clustering
without uncertainty and the green plot represents clustering with uncertainty.

2(f) show our clustering algorithm gives consistently lower
symmetric KL score as A varies from O to 3. Even in the
simplifying case of negligible uncertainty and the extreme
case of very large uncertainty, the resulting mixture is at
least as good as the ones obtained without taking uncer-
tainty into account.

4.2. Motion Segmentation

We applied our clustering algorithm to the problem of
multi-body motion segmentation, which is an important
preprocessing step for many computer vision applications.
We tracked a number of feature points through a video se-
quence using the Kanade-Lucas-Tomasi (KLT) tracker [15].
The uncertainty of each tracked feature point was evalu-
ated using the method described by Nicklels and Hutchin-
son [13] for estimating uncertainty in SSD based feature
tracking, for which KLT tracking is an example.

We perform motion segmentation for the ¢th frame by
clustering the velocities of tracked features at frame ¢ and
t — 1, therefore x,, = [[f — fi=1] [fi=1 — £/=2]], where

f! denotes the position of the nth tracked feature at the
tth frame. The uncertainty on f! is denoted by the ma-
trix Cfl and it follows that the uncertainty on x,, is C,, =
[C},,0;0,C 1],

Figure 3 shows the motion segmentation result on a well
known sequence of two persons walking past each other.
For this sequence, the features tracked on the cloth of the
person on the left is often not well localised along the Y
axis due to its stripey nature and similarly some features
tracked on the cloth of the person on the right is not well
localised due to its lack of texture. The figure shows that
our algorithm was able to appropriately take into account
the uncertainty on feature positions and find a mixture with
three components to represent the motion vectors, corre-
sponding to the two moving persons and the background.
Occasionally, a fourth component will be found which usu-
ally corresponds to some outliers such as features that have
latched onto the wrong image patches because the original
features have disappeared due to occlusion. In comparison,
if the uncertainty information were not taken into account,



(b) Visualisation of the uncertainty on the tracked features, the green ellipses represent features tracked in the current frame and the

red ellipses represent the features tracked in the previous frame

(c) Segmentation results obtained using standard variational bayes clustering algorithm [6] without taking into account the uncertainties

of the tracked features.

(e) Segmentation results obtained using Kanatani and Sugaya’s method in [10]

Figure 3. Comparison of motions segmentation results on a well known sequence of two persons walking past each other. Frame 5, 7, 9,
11 and 13 are shown here. The coloured circles only serves to distinguish between different clusters in the same frame and although the
visualisation try to make the assignment of colours to clusters consistent from frame to frame, this is not guaranteed. The figure is best
viewed in colour and please refer to the supplemental material for the full size version and videos

then a lot of features that were not well localised will be
incorrectly segmented.

We also compared our method to the multi-stage opti-
misation based segmentation method by Kanatani and Sug-
aya [10] which is known to give very accurate results. Al-
though their method is designed to operate on the trajectory
of tracked features over the entire sequence, this is not pos-
sible for the sequence in figure 3 as one person is occluded
by the other person for part of the sequence. So in our ex-
periment, we test their method at each frame on features
that have been successfully tracked for the last four frames,

therefore the input data consists of feature positions from
frame ¢ — 4 to frame ¢. We also provided their method with
the information that there are three objects in the scene. It
can be seen that although our approach only uses a simple
transformation model and velocity information from the last
two frames, there are very few feature points that are incor-
rectly segmented and even they can be eliminated if a longer
temporal window is used.

We also tested our algorithm on the three datasets used
in [10], though in this case, because only features that are
consistently tracked are provided, i.e. those with low track-



ing uncertainty, the improvement to motion segmentation is
not as significant. For these experiments we try to use fea-
ture velocity information from as many frames as possible
by concatenating velocity vectors from multiple frames into
a single feature vector and cluster that instead.

One particular problem with our approach to motion seg-
mentation is that sometimes the moving objects are much
smaller than the background and consequently the back-
ground features significantly outnumbers the foreground
features, causing too few components to be selected or
too many features assigned to the background component
which has a very large prior probability. This can be miti-
gated by placing a strong prior on the mixing coefficients
and encouraging them to remain close to %

4.3. Clustering Microarray Gene Expression

Clustering algorithms are important tools in Bioinfor-
matics for analysing microarray gene expression data and
grouping genes with similar expression patterns [12]. Since
microarray experiments are complex multiple stages pro-
cedures, the acquired data can exhibit high levels of mea-
surement errors which are introduced in the various stages
of the experiments. Therefore it is important to explicitly
take into account of these measurement errors during clus-
tering to make the algorithm more robust to noise. Liu et
al. [12] presented an clustering algorithm which estimates a
mixture of Gaussians with spherical covariance matrix and
takes into account of zero-mean Gaussian measurement er-
rors represented by diagonal covariance matrices.

We applied our clustering algorithm to the six group
dataset with 10 conditions and seven group dataset with 10
conditions from [12]. Table 1 and 2 shows the comparison
of average adjusted rand index [9] of data partitioning ob-
tained by our algorithm and the algorithm described in [12],
the top row shows the variance of the zero-mean Gaussian
noise added to the datasets:

In all experiments, we assume that the number of classes
is unknown and need to estimated along with the mixture.
Tables 1 and 2 shows that when our algorithm is restricted to
estimating spherical Gaussian components, it achieves com-
parable results to those obtained by Liu et al [12]. If diago-
nal Gaussian components were estimated instead, then sig-
nificant improvements can be obtained. Our algorithm also
has the advantage that the appropriate number of mixture
components is found during the clustering process which is
more efficient than estimating mixtures with different num-
ber of components and then choose the best one using BIC.

5. Conclusion

In this paper, we presented a variational bayes solution
to the problem of estimating a mixture of Gaussians from
noisy input data with known uncertainty distributions. The

algorithm was tested on both synthetic datasets and real
datasets. We have shown that by incorporating uncertainty
information into the clustering algorithm, we can improve
the results of pattern recognition tasks such as multi-body
motion segmentation of feature point trajectories and parti-
tioning of microarray gene expressions. In all experiments,
we also assumed that the correct number of mixture com-
ponents is unknown and model selection is done within the
variational bayesian framework [6].
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