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Abstract

This paper presents a general method for segmenting a
vector valued sequence into an unknown number of sub-
sequences where all data points from a subsequence can
be represented with the same affine parametric model. The
idea is to cluster the data into the minimum number of such
subsequences which, as we show, can be cast as a sparse
signal recovery problem by exploiting the temporal corre-
lation between consecutive data points. We try to maximize
the sparsity (i.e. the number of zero elements) of the first or-
der differences of the sequence of parameter vectors. Each
non-zero element in the first order difference sequence cor-
responds to a change. A weighted l1 norm based convex ap-
proximation is adopted to solve the change detection prob-
lem. We apply the proposed method to video segmentation
and temporal segmentation of dynamic textures.

1. Introduction

Change detection is a very general concept that is en-
countered in many areas of computer vision. From edge de-
tection to video segmentation or image segmentation, a va-
riety of computer vision tasks can be considered as change
detection problems with different interpretations of change.
Hence, we believe that a general purpose change detection
method with only a few adjustable parameters will be valu-
able. This paper takes a step in this direction by exploiting
some recently developed results on signal sparsification.

Under the assumption that there exists an underlying
piecewise affine model (e.g. vectors are clustered in differ-
ent subspaces), our main objective is to find when the model
changes from one mode to another and, at the same time,
learn the parameters of the model. Hybrid piecewise affine
models [17, 8] and mixture models [1, 15, 14] have been the
object of considerable attention in the past few years. Al-
though some of the work (for instance [1]) assumes a fixed
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number of models, one of the main problems when working
with hybrid models is that the number of models is usually
unknown. [17] provides a closed form algebraic solution
for the noise free case, but the estimation of the number of
models usually fails when the data is noisy. As we show
in this paper, assuming a bound on the noise level, allows
for recasting the problem into a robust optimization form
where the objective is to find the minimum number of clus-
ters (i.e. the simplest model to represent the data). A sec-
ond point where our method departs from existing cluster-
ing techniques is that we make explicit use of the sequential
nature of the data. For example, neighboring pixels in an
image or consecutive frames in a video sequence are more
likely to be within the same segment, and thus imposing
continuity of the clusters leads to improved robustness.

The main result of the present paper shows that the ro-
bust segmentation problem can be recast into a change de-
tection form, where the goal is to detect points where the
underlying hybrid model switches modes, or, equivalently,
to detect changes in the affine parameters describing the
model. In principle, detecting these changes can be hard
when the measurements are corrupted by noise. However,
as we show in the paper, this can be robustly accomplished
by searching for models that explain the observed data with
the lowest possible number of switches (e.g. looking for
segmentations that maximize the length of subsequences).
This is equivalent to searching for descriptions that maxi-
mize the sparsity of the vector of first order temporal param-
eter differences, since each non-zero element of this vector
corresponds to a switch. Maximizing sparsity is a combina-
torial problem and it is generally NP-Hard. However, recent
developments show that l1-norm minimization provides a
very good approximation for sparse signal recovery. More-
over, as shown in [3] and [16], this relaxation is indeed exact
in the case where the constraints form an underdetermined
linear system. Finally, [5, 9] have very recently presented
some algorithmic results that improve upon the l1-norm re-
laxation for general sparsity maximization problems subject
to convex feasible sets. Exploiting these results leads to ef-
ficient, computationally tractable segmentation algorithms.
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x a vector in euclidean space Rd
‖x‖p p-norm in euclidean space Rd

{x(t)}Tt=1,{x} a vector valued sequence of length T
where each x(t) ∈ Rd

‖{x}‖lp lp norm of a vector valued sequence

‖{x}‖lp
.=
(∑T

i=1 ‖x(i)‖pp
)1/p

‖{x}‖l0 number of non-zero vectors in the se-
quence (i.e. cardinality of the set
{t|x(t) 6= 0, t ∈ [1, T ]})

Table 1. Notation for Sequential Sparsification

The organization of the paper is as follows. In Section
2, we present the problem set-up, main ideas and the al-
gorithm. Potential application areas are stated in Section 3
together with an overview of previous work in these areas.
Section 4 illustrates the proposed method with various ex-
amples. Finally, Section 5 concludes the paper with some
remarks and directions for future research.

2. Segmentation via Sparsification

In this paper we consider the problem of segmenting vec-
tor valued sequences {x(t)}Tt=0 that are generated by an
affine parametric hybrid model with unknown parameters.
Specifically, we consider models of the form:

H : f
(
pσ(t), {x(k)}t+jk=t−i

)
= 0 (1)

where f is an affine function1 of the parameter vector pσ(t)

which takes values from a finite unknown set according to a
piecewise constant function σ(t). Here i and j are positive
integers that account for the memory of the model (e.g. j =
0 corresponds to a causal model, or i = j = 0 corresponds
to a memoryless model).

We say that there exists a change at time t if σ(t) 6=
σ(t + 1). Hence segmentation of a given sequence into
subsequences is equivalent to finding how many times and
when these changes occur. The segmentation problem can
be formally stated as follows:

Problem 1 Given a sequence
{
x(t) ∈ Rd

}T
t=1

generated
by a hybrid parametric model H of the form (1) find the
minimum number of segments (i.e. subsequences) {Si}Ni=1

where on each Si = {x(t)}Ti+1−1
t=Ti

, σ(t) is constant and
T1 = 1, TN+1 − 1 = T .

This is a difficult problem, since neither the segmenta-
tion nor the parameters of the hybrid model are known. In

1That is: f
“
pσ(t), {x(k)}t+jk=t−i

”
= A(x)pσ(t) + b(x)

order to overcome this difficulty, we consider the sequence
of first order differences of the parameters p(t), given by

g(t) = p(t)− p(t+ 1) (2)

Clearly, since a non-zero element of this sequence corre-
sponds to a change, the sequence should be sparse having
only N − 1 non-zero elements out of T . Next, in order to
account for noise we introduce a noise term η(t), satisfying
‖η‖∗ ≤ ε, where ‖.‖∗ denotes a norm relevant to the spe-
cific problem under consideration and ε is an upper bound
on the noise level. In this context, Problem 1 can be recast
as an optimization problem as follows:

minimizep(t),η(t) ‖{g}‖l0
subject to f

(
p(t), {x(k)}t+jk=t−i

)
= η(t) ∀t

‖{η}‖∗ ≤ ε
(P1)

2 Here l0 is a quasinorm that counts non-zero elements (i.e.
minimizing l0 norm is the same as maximizing sparsity) and
can be approximated by the l1 norm, leading to a linear cost
function. When f is an affine function of p(t), (P1) has a
convex feasibility set F . Thus, using the l1 norm leads to a
convex, computationally tractable relaxation. Further, Fazel
et al. proposed an iterative procedure in [5] and [9] to im-
prove the solution obtained by the l1-norm relaxation. In the
sequel, we adopt this heuristic to solve Problem (P1). This
heuristic solves, at each iteration, the following weighted
l1-norm minimization on the convex feasible set F :

minimizez,g,p,η
∑T−1
t=1 w

(k)
t zt

subject to ‖g(t)‖∞ ≤ zt ∀t
f
(
p(t), {x(k)}t+jk=t−i

)
= η(t) ∀t

‖{η}‖∗ ≤ ε
(P2)

where w(k)
i = (z(k)

i + δ)−1 are weights with z(k)
i being the

arguments of the optimal solution at the kth iteration and
z(0) = [1, 1, .., 1]T ; and where δ is a (small) regularization
constant that determines what should be considered zero.

The choice of ∗, the norm characterizing the noise, is
application dependent. For instance the l∞-norm performs
well in finding anomalies, since in this case the change de-
tection algorithm looks for local errors, highlighting out-
liers. On the other hand, when a bound on the l1 or l2-norm
of the noise is used, the change detection algorithm is more
robust to outliers and it favors the continuity of the segments
(i.e. longer subsequences). In addition, when using these
norms, the optimization problem automatically adjusts the
noise distribution among the segments, better handling the
case where the noise level is different in different segments.

2If f(0, ·) is the zero function, (P1) has a trivial solution p(t) = 0 for
all t. To overcome this problem, in this paper we work with models where
f(0, ·) is not the zero function.



3. Applications
3.1. Video Segmentation

Segmenting and indexing video sequences have drawn a
significant attention due to the increasing amounts of data
in digital video databases. Systems that are capable of seg-
menting video and extracting key frames that summarize
the video content can substantially simplify browsing these
databases over a network and retrieving important content.
An analysis of the performances of early shot change detec-
tion algorithms is given in [6]. The methods analyzed in [6]
can be categorized into two major groups: i) methods based
on histogram distances, and ii) methods based on variations
of MPEG coefficients. A comprehensive study is given in
[19] where a formal framework for evaluation is also devel-
oped. Other methods include those where scene segmenta-
tion is based on image mosaicking [11, 12] or frames are
segmented according to underlying subspace structure [10].
Formally, the video segmentation problem can be stated as
the following instance of Problem 1:

Problem 2 Given the frames
{
I(t) ∈ RD

}T
t=1

, findN seg-
ments (i.e. subsequences) {Si}Ni=1 whereN is unknown and
Si = {I(t)}Ti+1−1

t=Ti
with T1 = 1, TN+1 − 1 = T , are gen-

erated by an underlying hybrid model.

Since the number of pixelsD is usually much larger than
the dimension of the subspace where the frames are embed-
ded, it is reasonable to project the data to a lower dimen-
sional space using PCA:

I(t) 7−→ x(t) ∈ Rd.

Assuming that each x(t) within the same segment lies on
the same hyperplane not passing through the origin3 leads
to the following hybrid model:

H1 : f
(
pσ(t),x(t)

)
= pTσ(t)x(t)− 1 = 0 (3)

Thus, in this context algorithm (P2) can be directly used
to robustly segment the video sequence. It is also worth
stressing that as a by-product of our method we can also
perform key frame extraction by selecting I(t) correspond-
ing to the minimum ‖η(t)‖ value in a segment (e.g. the
frame with the smallest fitting error) as a good representa-
tive of the entire segment.

The content of a video sequence usually changes in a
variety ways: For instance: the camera can switch between
different scenes (e.g. shots); the activity within the scene
can change over time; objects or people can enter or exit the
scene, etc. There is a hierarchy in the level of segmentation
one would require. The noise level ε can be used as a tuning
knob in this sense.

3Note that this always can be assumed without loss of generality due to
the presence of noise in the data.

3.2. Segmentation of Dynamic Textures

Modeling, recognition, synthesis and segmentation of
dynamic textures have drawn a significant attention in re-
cent years [4, 1, 2, 7]). In the case of segmentation tasks,
the most commonly used models are mixture models, which
are consistent with our hybrid model framework.

In our sequential sparsification framework, the problem
of temporal segmentation of dynamic textures reduces to
the same mathematical problem as problem 2, with the dif-
ference that now the underlying hybrid model should take
the dynamics into account. First, dimensionality reduction
is performed via PCA (I(t) 7−→ y(t) ∈ Rd) and then the
reduced-order data is assumed to satisfy a simple causal au-
toregressive model similar to the one in [2]. Specifically,
the hybrid model we use is:

H2 : f
(
pσ(t), {y(k)}tk=t−n

)
= pTσ(t)

y(t− n)
...

y(t)

−1 = 0

(4)
where n is the regressor order. This model, which can be
considered as a step driven ARX model, was found to be
effective experimentally4.

4. Experiments
4.1. Video Segmentation

To evaluate the proposed method for video segmentation,
we used four different video sequences (roadtrip.avi,
mountain.avi, drama.avi and family.avi) avail-
able from http://www.open-video.org. The orig-
inal mpeg files were decompressed, converted to grayscale
and title frames were removed. Each sequence shows a dif-
ferent characteristic on the transition from one shot to the
other. The camera is mostly non-stationary, either shaking
or moving. We applied sequential subspace identification,
GPCA, a histogram based method and an MPEG method
for segmenting the sequences. For the first two methods,
we preprocessed each frame by downsampling it by four
and projecting to R3 using principal component analysis
(PCA). For histogram based method, we used bin to bin
difference (B2B) with 256 bin histograms and window av-
erage thresholding as suggested in [6]. This method has two
different parameters. The MPEG method [18] is based on
DC-difference images. This method requires seven differ-
ent parameters, one of which is very sensitive to the length
of the gradual transitions. In our experiments we adjusted

4The independent term 1 here accounts for an exogenous driving signal.
Normalizing the value of this signal to 1, essentially amounts to absorbing
its dynamics into the coefficients p of the model. This allows for detecting
both changes in the coefficients of the model and in the statistics of the
driving signal.



the parameters of both methods, by trial and error, to get
the best possible results. Hence the resulting comparisons
against the proposed sequential-sparsification method cor-
respond to best-case scenarios for both MPEG and B2B.

In the roadtrip sequence, the shot changes are in the form
of cuts. The first three segments, captured in a moving
car, have frames switching between the driver and views
of country side through the car windows. The last segment,
captured from outside the car, shows the car passing by and
moving away so that there is an extreme change in the view
angle. Figure 1(b) shows the results for this sequence.

The mountain sequence consists of five shots, connected
via three gradual transitions and one cut. The transitions
are in the form of approximately forty frames long dissolv-
ing effect. Figure 1(c) shows our groundtruth segmentation
together with the initial and final frames of each shot. The
results obtained using different methods are shown in 1(d).

While the drama sequence consists of a single shot, the
semantic meaning of the sequence changes as the actors and
actresses enter and exit the scene. Hence, it is still desirable
to segment the video so that the whole story can be sum-
marized by using just one frame from each segment. Fig-
ure 1(e) shows the groundtruth segmentation5 together with
some key frames. The sequence starts with an empty room,
then an actor enters the empty room during the first transi-
tion. The first actor leaves the scene between frames 234
and 273. After approximately 20 frames of empty room, a
second actor, the actress and the first actor enter the scene.
Hence, three people are in the room during segment 3. In
the final transition the second actor exits leaving the first
actor and the actress back in the room. The segmentation
results for this sequence are also show in 1(f).

The family sequence consists of six shots, connected via
gradual transitions of different lengths. The sequence and
its segmentation are shown in Figure 1(h).

Finally, Table 2 shows the Rand indices [13] corre-
sponding to the clustering results obtained using the dif-
ferent methods, providing a quantitative criteria for com-
parison. Since the Rand index does not handle dual mem-
berships, the frames corresponding to transitions were ne-
glected while calculating the indices. These results show
that indeed the proposed method does well, with the worst
relative performance being against MPEG and B2B in the
sequence Roadtrip. This is mostly due to the fact that the
parameters in both of these methods were adjusted by a
lengthy trial and error process to yield optimal performance
in this sequence. Indeed, in the case of MPEG based seg-
mentation, the two parameters governing cut detection were
adjusted to give optimal performance in the Roadtrip se-
quence, while the five gradual transition parameters were
optimized for the Mountain sequence.

5Since the segments are not well defined in this case, the groundtruth
segmentation is not unique.

Roadtrip Mountain Drama Family
Our Method 0.9373 0.9629 0.9802 0.9638

MPEG 1 0.9816 0.9133 0.9480
GPCA 0.6965 0.9263 0.7968 0.8220

Histogram 0.9615 0.5690 0.8809 0.9078

Table 2. Rand indices

Figure 2. Sample dynamic texture patches: water, flame, steam.

Sequence Type Precision Recall
Two Different Textures 0.8384 0.9167
Three Different Textures 0.7362 0.6061

Table 3. Results on Dynamic Texture Database

4.2. Temporal Segmentation of Dynamic Textures

For temporal segmentation of dynamic textures, we
used the synthetic dynamic texture database (available
from http://www.svcl.ucsd.edu/projects/
motiondytex/synthdb/) to generate a dataset con-
sisting of dynamic textures that change only temporally6.
We extracted patches of size 35 × 35 × 60 from each
segment in the database and concatenated them in time. We
applied our algorithm to find the frame number at which the
video sequence switches from one texture to another one.
Since the number of switches is unknown to our method,
there were cases where the method found extra changes
or missed an existing change. Table 3 shows the precision
and recall rates over a hundred sequences for a fixed noise
level. We used fourth order regressors. A change detected
within a window of the size of the regressor order from the
true frame of change is considered a correct detection.

Most of the false positives occured in the sequences that
contain flame. This is probably due to the fact that the vari-
ance of the stochastic process noise necessary to explain the
dynamics of flame is substantially larger than the other tex-
tures. Since we used the same noise bound for all dynamic
texture experiments, this resulted in extra segments in the
sequences that contain flame.

Next, we consider two more challenging sequences. In
the first one, we appended in time one patch from smoke to
another patch from the same texture but transposed. There-
fore, both sequences have the same photometric properties,
but differ in the main motion direction: vertical in the first
half and horizontal in the second half of the sequence. For

6Representative sample patches of these textures are shown in figure 2.
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Figure 1. Video Segmentation Results. Left Column: Ground truth segmentation. Right Column: Changes detected with different methods.
Value 0 corresponds to frames within a segment and value 1 corresponds to the frames in transitions.
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Figure 3. Results for detecting change in dynamics only. Top:
Smoke sequence concatenated with transposed dynamics. Bottom:
River sequence concatenated with reversed dynamics.

the second example, we generated a sequence of river by
sliding a window both in space and time (by going forward
in time in the first half and by going backward in the sec-
ond). Hence, the dynamics due to the river flow are re-
versed. For these sequences both the histogram and MPEG
methods fail to detect the cut (since the only change is in
the dynamics), while the proposed method yields the cor-
rect segmentation, as summarized in Figure 3.

5. Conclusions
We proposed a method for segmenting vector valued se-

quences into a minimum number of subsequences given an
underlying hybrid parametric model that is affine in its un-
known parameters. As shown both with video and dynamic
textures, this method is capable of robust segmentation in
the presence of noise, and contrary to many existing meth-
ods has few adjustable parameters (essentially just one: the
noise level). In addition, the proposed method allows for in-
corporating any physical insight that may be available about
the underlying process. One example is the case of dynamic

textures, where it is well-known that they can be modeled
as linear stochastic processes. We are currently working on
building up reliable models for different segmentation tasks
in potential application domains.
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