
Probabilistic Graph and Hypergraph Matching

Ron Zass and Amnon Shashua
School of Computer Science and Engineering

The Hebrew University of Jerusalem
zass,shashua@cs.huji.ac.il

Abstract

We consider the problem of finding a matching between
two sets of features, given complex relations among them,
going beyond pairwise. Each feature set is modeled by
a hypergraph where the complex relations are represented
by hyper-edges. A match between the feature sets is then
modeled as a hypergraph matching problem. We derive
the hyper-graph matching problem in a probabilistic setting
represented by a convex optimization. First, we formalize a
soft matching criterion that emerges from a probabilistic in-
terpretation of the problem input and output, as opposed to
previous methods that treat soft matching as a mere relax-
ation of the hard matching problem. Second, the model in-
duces an algebraic relation between the hyper-edge weight
matrix and the desired vertex-to-vertex probabilistic match-
ing. Third, the model explains some of the graph match-
ing normalization proposed in the past on a heuristic ba-
sis such as doubly stochastic normalizations of the edge
weights. A key benefit of the model is that the global op-
timum of the matching criteria can be found via an iterative
successive projection algorithm. The algorithm reduces to
the well known Sinkhorn [15] row/column matrix normal-
ization procedure in the special case when the two graphs
have the same number of vertices and a complete matching
is desired. Another benefit of our model is the straightfor-
ward scalability from graphs to hyper-graphs.

1. Introduction
Object representations through graph and hypergraph is

very useful and popular for applications of tracking, query
to image database matching and visual recognition in gen-
eral. For an overview of recent literature, we refer the reader
to a number of special issues that appeared on the subject
[1, 2, 3] and the survey article [7].

A hypergraph representation allows us to exploit model
relationships between different objects, or between object
features under consideration. Normally nodes (vertices)
represent features, object parts or elementary units of con-

sideration for the task at hand, and hyper-edges represent
a relationship among a tuple of nodes. In a graph, the re-
lationship is pairwise in nature (as edges are defined by
pairs of nodes), whereas in a hypergraph the relationships
are multi-faceted involving multiple features at a time.

The hypergraph matching problem seeks a vertex-to-
vertex mapping between two hypergraphs such that the
overall discrepancy between the corresponding matching
hyper-edges is minimized. Since the number of nodes in
the two hypergraphs are not necessarily equal, the matching
problem includes finding an optimal matching sub-graph
under the considerations above. For example, in an image
tracking problem, we would like to find the largest subset
of pixels in the tracked area of consideration which pre-
serves as much as possible the inter-pixel relations. Like-
wise, in an object recognition task, objects can undergo
certain global transformations (such as affine) followed by
some non-rigid deformations, the valence d = n + 1 (num-
ber of vertices in a hyper-edge) of the hyper-edge commen-
surate with the minimal number n of points required for re-
solving the global transformation. A hyper-graph matching
then seeks an alignment between the query and an image in
which a large proportion of hyper-edges agree on the same
or similar global transformation.

On the other hand, there exist a number of problems with
the use of graph matching. First, we notice the high compu-
tational complexity of many operations on graphs. For ex-
ample, computing the similarity of two graphs is typically
exponential in the number of nodes of the two graphs in-
volved. Secondly, the repository of algorithmic procedures
in the graph domain is quite limited when compared to the
tools available for alternative representations such as vector,
bag-of-features, and so forth.

In this paper we derive the hyper-graph matching prob-
lem in a probabilistic setting represented by a convex op-
timization. First, we formalize a soft matching criterion
that emerges from a probabilistic interpretation of the prob-
lem input and output, as opposed to previous methods that
treat soft matching as a mere relaxation of the hard match-
ing problem. Second, the model induces an algebraic rela-

1
978-1-4244-2243-2/08/$25.00 ©2008 IEEE

tion between the hyper-edge weight matrix and the desired
vertex-to-vertex probabilistic matching. Third, the model
explains some of the graph matching normalization pro-
posed in the past on a heuristic basis such as doubly stochas-
tic normalizations of the edge weights. A key benefit of
the model is that the global optimum of the matching crite-
ria can be found via an iterative successive projection algo-
rithm. The algorithm reduces to the well known Sinkhorn
[15] row/column matrix normalization procedure in the spe-
cial case when the two graphs have the same number of ver-
tices and a complete matching is desired. Another benefit
of our model is the straightforward scalability from graphs
to hyper-graphs.

1.1. Related Work

Matching algorithms can be categorized into exact and
inexact methods, where in the former one seeks a matching
in which all matched (hyper)edges agree, and the later al-
lows some inconsistency in matched edges. In other words,
exact matching is the problem of finding the largest sub-
isomorphism (or monomorphism) between graphs. There-
fore, the exact algorithms focus on heuristics that may ac-
celerate the isomorphism search. While all hypergraph
matching algorithms to date are of the exact type, there
is high interest in inexact graph matching. In the inexact
version, the complete consistency criterion is replaced by
a matching cost to be minimized. The inexact matching
problem minimizes non-convex cost functions over discrete
constraints. A popular line of work is the one of continuous
relaxation of the discrete constraints.

The inexact algorithms differ in the way they minimize
the non-convex cost over the relaxed constraints. [10] ap-
proximate the non-convex cost by a series of linear approx-
imations using Taylor expansions of the cost function about
the current approximated solution: [14] approximate the
continuous rank-1 matching problem by relaxing the rank-
1 constraint into a positive semidefinite constraint, ending
with an SDP optimization problem. The matching is then
obtained from the leading eigenvector of the SDP solution;
[11] approximate the non-convex quadratic cost as an eigen-
vector problem, by further relaxations of the constraints; [8]
extend this spectral method by incorporating more of the
original constraints while staying in the eigenvector type of
problems, and therefore obtaining better approximation of
the original problem. In addition, [8] also suggest a prepro-
cessing on the input, normalizing it into a doubly stochastic
matrix, improving any continuous matching algorithm.

We note that some authors have dealt with finding prob-
abilistic matching between graphs, either by applying a
post-processing procedure on the results to obtain probabil-
ities (cf. [8]), by directly searching for a doubly stochastic
matching matrix (cf. [14, 18]) or by seeking a non-negative
matching matrix that is interpreted as soft matching (cf.

[11]). Our work differs substantially in that manner, as we
assume a probabilistic interpretation of the problem input
and exploit connection between input and output probabili-
ties to extract probabilistic matching, rather than enforcing
probabilistic structure on the output as a relaxation of the
hard matching problem.

From an algorithmic point of view, our method has some
resemblance to the work of [18] and to Softassign [10]. In
[18], iterative projections onto convex domain is used to
solve an approximate relaxed problem. The use of itera-
tive projections is common to our work. However, by using
the Relative Entropy error we avoid the non-convex criteria
function and the following convex approximation, thereby
finding the global optimal solution. Softassign [10] uses
the Sinkhorn algorithm on a series of matrices indexed by a
control variable to make the soft matching matrix discrete in
a deterministic annealing scheme. The parametric input to
the Sinkhorn algorithm is obtained through a Taylor expan-
sion approximation of the graph matching problem, which
come down to a marginalization of the edge-to-edge match-
ing score matrix weighted by the current matching matrix.
Our method differs in two ways. First, we use marginal-
ization without weights, showing that this gives the optimal
soft matching solution without need of for the repeated ap-
proximations that ends in non-optimal solution. Second, we
extend the Sinkhorn algorithm to deal with inequalities in
an optimal way, while Softassign deal with inequalities by
adding slack nodes which again lead to non-optimal solu-
tion.

2. A Bottom-up Probabilistic View of Hyper-
graph Matching

Let G = (V,E) and G′ = (V ′, E′) be two hypergraphs
where hyper-edges correspond to a d-tuple of vertices. A
directed hypergraph is when the order of vertices in the d-
tuple matters unlike an undirected hypergraph when the or-
der does not matter, i.e., there is one hyper-edge per d-tuple.
Our derivations and discussion apply to both cases.

The set of vertices of the hypergraph G is represented by
V and its hyper-edges by E ⊆ V d. A hyper-edge e ∈ E is
denoted by e = (vi1 , ..., vid

) where vij ∈ V . A matching
between G and G′ is a vertex to vertex mapping m : V →
V ′. The vertex matching induces an edge matching, m :
E → E′, as m(e) = (m(vi1), ...,m(vid

)) ∈ E′.
The input to the hypergraph matching problem are

weights among pairs of hyper-edges from the two hyper-
graphs representing a probability that the two match. These
are represented by a |V |d × |V ′|d matrix S with entries:

Se,e′ = Pr(m(e) = e′ | G, G′).

The output of the (soft) hypergraph matching problem is the
probability that two vertices match, represented by a |V | ×

|V ′| matrix X whose entries are:

Xv,v′ = Pr(m(v) = v′ | G, G′).

For X to be a valid soft matching it has to be Doubly Semi
Stochastic (d.s.s.), i.e., X ≥ 0, X1 ≤ 1, X>1 ≤ 1, where
1 is a vector of ones. The later two inequalities become
equalities, and X becomes doubly stochastic, when |V | =
|V ′| and all vertices are matched. Our objective is to derive
an algebraic relation between the input S and the output X .
We will use the algebraic relation to setup an optimization
problem for solving for the optimal X given S.

Note that given we have found the optimal X , if one de-
sires a hard matching result X̄ whose entries are in {0, 1},
then the optimal approach involves a solution to a linear as-
signment problem (cf. [5]). The hard matching result is not
optimal overall as there could be a different route to a better
result that does not go through an optimal soft assignment
(after all, the hard matching problem is NP hard).

Note that by setting up the probabilistic framework as we
have done above, we have already departed from the stan-
dard approach, which starts from the definition of a hard
matching and via relaxation of the optimization constraints
obtain some form of soft matching result. We, on the other
hand, took the other way around: we start with a direct defi-
nition of a soft matching problem and (as we shall see later)
obtain a framework through which we could achieve an op-
timal probabilistic matching. Then, if a hard matching is
desired we solve a linear assignment problem to find the
closest permutation matrix.

The advantage of setting up the soft matching problem
as the first step is that in many applications of interest (like
in tracking) we would like a probabilistic matching to begin
with, i.e., to keep holding the matching ambiguities until a
later stage where more data comes in to disambiguate the
matching. Moreover, as we shall see, we can set up the
framework such that we would be guaranteed to obtain the
optimal soft matching solution.

The connection between the input matrix S and the de-
sired output X can be described compactly if we make the
following assumption: m(vi)⊥m(vj) | G, G′, i.e., that the
matches are pairwise conditionally independent. As we
shall see next, this assumption not only leads to a simple
and elegant connection between S and X , but also explains
normalization heuristics on the input S proposed in the past.

Before we state our result, we need one more preparation
which is the definition of the Kronecker product between
matrices resulting in a block matrix. If A is an p× q matrix
and B is a r×s matrix, the Kronecker product A⊗B is the
pr × qs block matrix:

A⊗B =

 a11B ... a1qB
...

. . .
...

ap1B ... apqB

V’
V

Xij •V
V

V’ V’

V
V

V’ V’

Figure 1. A visualization of eqn. 1 for the case of graphs (d = 2).
The matrix S holds the probability for any possible match between
the edges of G and the edges of G′. The matrix X holds the un-
known probability of matching between vertex of G and vertex of
G′. The matrix X ⊗X holds the probability of matching two ver-
tices in G to two vertices in G′. Under conditional independence
assumption, this is the probability of matching the corresponding
edges, which is exactly the probability given in S.

We also define the following shorthand notations:
⊗d

i=1Ai = A1 ⊗ ... ⊗ Ad and ⊗dA = ⊗d
i=1A. We are

now ready to state the connection between S and X:

Proposition 1 Under the conditional independence as-
sumption of the matching process, m(vi)⊥m(vj) | G, G′,
the following result holds:

S = ⊗dX. (1)

Proof:

Se,e′ = Pr (m(e) = e′|G, G′) =

=
d∏

i=1

Pr (m(vi) = v′i|G, G′) =

=
d∏

i=1

Xvi,v′
i
,

where e = (v1, ..., vd) and e′ = (v′1, ..., v
′
d). By definition

of the Kronecker product of matrices, we have S = ⊗dX .
�

Fig. 1 visualizes this connection for the case of graphs
(d = 2). Taken together, we define an optimization problem
for recovering X from S by minimizing the distance (to be
defined) between S and ⊗dX:

min
X

dist
(
S,⊗dX

)
(2)

s.t. X1 ≤ 1, XT 1 ≤ 1, X ≥ 0,

where the distance function would be discussed in the se-
quel. It is worthwhile noting that the d.s.s property on X
occurs in tandem with ⊗dX , as stated below:

Proposition 2 Let X ≥ 0 be a non-negative matrix, then

• X satisfies X1 ≤ 1, XT 1 ≤ 1 iff the matrix ⊗dX
satisfies (⊗dX)1 ≤ 1, (⊗dX)T 1 ≤ 1.

• X1 = 1 iff (⊗dX)1 = 1.

• XT 1 = 1 iff (⊗dX)T 1 = 1.

The proof is straightforward and thus omitted. The
proposition indicates that if S happens to be d.s.s and we
find X ≥ 0 such that S = ⊗dX , then X is d.s.s as well.
This gives a theoretical justification to the heuristic used by
[8], proposing to replace the matrix S with the nearest (in
Relative Entropy) stochastic matrix to S before performing
graph matching, showing improved results for many graph
matching algorithms.

We have established a statistically valid connection be-
tween input and output of the soft matching problem. We
note that this connection is at the hurt of the traditional
hard matching problem as well. Adding orthogonality to
our constraints restricts the valid matching results to hard
matching, Xv,v′ = 1 if m(v) = v′ and 0 otherwise. Plug-
ging this into the criterion in eq. 2 and using the Frobenius
error norm as a distance measure, the problem is equiva-
lent to maximizing

∑
e′=m(e) Se,e′ , which is the traditional

inexact hard matching problem.
In the next section we show how to find X , in the context

of a relative entropy error measure, as the global optimum
of the optimization problem above.

3. Globally Optimal Soft Matching

In the section above we have ended with the conclusion
that an optimal probabilistic vertex matching between two
hypergraphs G, G′ can be obtained by finding a d.s.s matrix
X such that ⊗dX is nearest to S. In this section we de-
rive the solution in the context of the relative entropy error
measure (maximum likelihood). We setup the problem as
a constrained convex optimization with a dual block update
algorithm. The block update algorithm reduces to the well
known Sinkhorn successive row/column iterative approxi-
mation when |V | = |V ′|.

Eqn. 2 with a relative entropy error measure,

D(A||B) =
∑
i,j

Ai,j log

(
Ai,j

Bi,j

)
−Ai,j + Bi,j ,

takes the following form:

X∗ = argmin
X≥0

D
(
S|| ⊗d X

)
(3)

s.t. X1 ≤ 1, XT 1 ≤ 1.

The criterion function can be reduced to a much simpler
form by defining a marginalization |V | × |V ′| matrix Y de-
fined below:

Yv,v′ =
d∑

i=1

∑
e | ei = v
e′ | e′i = v′

Se,e′ ,

where ei is the i’th vertex in the d-tuple associated with the
hyper-edge e (and likewise for e′i). It can be verified that Y
contains all the information necessary to find X∗ and that
the optimization problem below is equivalent to eqn. 3:

X∗ = argmin
X≥0

D(Y || X) +
(

1T X1
)d

− 1T X1

s.t. X1 ≤ 1, XT 1 ≤ 1. (4)

Although the problem above is convex, it can be simplified
further by setting the value of 1T X1 to some fixed value k
(which represents the total number of matches) and solve
for X∗(k):

X∗(k) = argmin
X≥0

D(Y || X)

s.t. X1 ≤ 1, XT 1 ≤ 1, 1T X1 = k (5)

Since X∗(k) as a function of k = 1T X1 ≥ 0 is convex in
k, we can use this solution for minimizing over 0 ≤ k ≤
min(|V |, |V ′|), a single variable convex problem that can
be solved numerically.

It is worthwhile noting similarities to special cases that
have been handled in the past. When the row and col-
umn sum of the matching matrix X are given in advance,
meaning we know which of the vertices are being matched,
we are left with minimizing D(Y ||X) under column and
row sum equality constraints. This can be solved using the
Menon extension [12] of the Sinkhorn algorithm [15] for
finding the nearest doubly stochastic matrix in relative en-
tropy. Softassign [10], for instance, uses the Sinkhorn algo-
rithm on a weighted version of the Y matrix after extending
it with slack variables, and then update the weights itera-
tively.

We turn our attention to the algorithm for recovering
X∗(k) for a fixed given value of k, i.e., the algorithm for
finding the optimal solution for eqn. 5.

Eqn. 5 is a special case of the general convex problem
minX f(X) where X ∈ C1 ∩ C2 ∩ C3. In our case, the
convex criterion is f(X) = D(Y ||X), and the convex sets
Cj are defined by:

C1 = {X | X ≥ 0, X1 ≤ 1}
C2 = {X | X ≥ 0, X>1 ≤ 1}
C3 = {X | X ≥ 0, 1>X1 = k}

We define a sub-problem operator Pj(H) for j = 1, 2, 3 as
follows:

Pj(H) = argmin
X∈Cj

f(X)− 〈X, H〉 ,

where 〈A,B〉 =
∑

ij AijBij is the dot product between
two matrices. By repeated applications of Pj(H) in a cyclic
manner we obtain a primal-dual block update algorithm, for
finding the globally optimal solution X , defined below.

Algorithm 1 (Successive Projections)

• Define λ
(0)
j , X

(0)
j ∈ R|V |×|V ′|, j = 1, 2, 3 and set

λ
(0)
j = 0 and X

(0)
3 = Y . Use the convention X

(t)
0 ≡

X
(t−1)
3 .

• Iterate on t = 1, 2, ... till convergence:

– For j = 1, 2, 3:

∗ X
(t)
j = Pj

(
λ

(t−1)
j +∇f(X(t)

j−1)
)

,

∗ λ
(t)
j = λ

(t−1)
j +∇f(X(t)

j−1)−∇f(X(t)
j).

At convergence with T iterations, X
(T)
j = X∗, j = 1, 2, 3,

is the optimal solution. The algorithm employs successive
Bregman projections and is derived using the framework
of Fenchel Duality. This algorithm is known under vari-
ous names depending on the function f(·) and the convex
sets Cj . For example, if Cj are linear subspaces and f()
is the L2 distance then the matrices λj are redundant (also
known as ”deflections”) and the scheme is attributed to Von-
Neumann [13] and for general convex sets it is attributed to
Dykstra [9, 4]. For general strictly convex functions and
general convex sets, the algorithm above is essentially con-
tained in [17, 6].

The key therefore is the operator Pj(H) which needs
to be solved at each step of the algorithm. It can be veri-
fied that for each of the sets Cj , finding the optimal X that
minimizes D(Y || X) − trace(H>X) under each of the
constraint sets Cj is a straightforward optimization prob-
lem with a closed form solution. It is also worthwhile not-
ing that when |V | = |V ′|, the constraints on X becomes
X1 = X>1 = 1, the deflections drop out, and the algo-
rithm reduces to the well known Sinkhorn [15] successive
rows and columns approximation algorithm.

4. Sampling
The matching algorithm solves a matrix nearest problem

with Y as an input. Since Y is in R|V |×|V ′|, the time com-
plexity of the algorithm depend on the number of vertices
rather than the number of hyper-edges, and therefore inde-
pendent of the hypergraph degree. However, in order to
calculate Y we have to marginalize S, the hyper-edge to

hyper-edge correlation matrix. For cases where a complete
calculation of S is impractical or unwarranted, we suggest
a smart sampling scheme of S for efficient approximation
of Y . We sample z hyper-edges per vertex. When com-
ing to calculate Yv,v′ , we use only the correlations between
sampled hyper-edges. In the sampling process we have to
ensure that for any two matching vertices, matching hyper-
edges will be sampled, a non-trivial task for high degree
hypergraphs. We therefore base the sampling on the heuris-
tic that hyper-edges that involve vertices of close proximity
in one object, are probable to translate to hyper-edges of
close proximity in the second object as well. Therefore, for
each vertex we sample the z closest hyper-edges (measured
as the mean distance of the involved vertices). This sam-
pling is also appealing when using hypergraph matching to
match two non-rigid body, as it incorporate the assumption
that small regions goes an approximated affine transforma-
tion. We note that other sampling heuristic may be consid-
ered, such as sampling based on vertex to vertex similarity
(such as SIFT descriptors). Sampling only z hyper-edges
per vertex, we calculate Y at O

(
|V | · |V ′| · z2

)
steps.

5. Experiments

Although our main contribution is inexact hypergraph
matching1, we start our experiments with a graph match-
ing (d = 2) experiment. This allows us to compare our
method with other inexact graph matching algorithms, as
there are no other inexact hypergraph matching algorithms
in the literature. We compare our graph matching results
with the spectral technique of [11], with and without the
balancing normalization suggested by [8]. In order to have
ground truth information to measure against, we use syn-
thetic dataset. We generate a cloud of 25 points, uniformly
distributed in 2D space, with mean distance between neigh-
boring points normalized to 1. We produce a rotated du-
plicate of the point cloud, while perturbing the point loca-
tions with a random distortion. The two point sets trans-
lates into two graphs, where edges are labeled with the
Euclidean distance between their two vertices. We use
Se,e′ = exp−|d−d′|, where d is the distance associated with
the edge e, as the edge-to-edge similarity measure. Our task
is to recover the point-to-point matching. In fig. 2(a) we
plot the number of correct matches as a function of the av-
erage point location perturbation. Although the Frobenius
error norm that is used by spectral matching is known to
better handle additive noise, our scheme achieves compara-
ble results. Next, we add additional points that do not have
a match, and measure the amount of correct matches as a
function of the number of additional points (without per-
turbing the point locations). In fig. 2(b) we add points only

1Complete implementation can be found at www.cs.huji.ac.il/
˜zass/gm/

to the second graph, and in fig. 2(c) we add points without
match to both graphs, obtaining significantly better match-
ing when using our method.

To demonstrate the disadvantage of graph matching, we
repeat the test of fig. 2(a), where this time the second cloud
of points is the result of an affine transformation (that does
not preserve distances) of the first cloud, followed by a per-
turbation of the point locations. We compare the three graph
matching algorithms, and a hypergraph matching version
of the problem using our scheme. Throughout our experi-
ments, we use hypergraphs of degree d = 4. Each hyper-
edge, a 4-tuple of points, (v1, v2, v3, v4), is associated with
an affine invariant measure. In particular, we use the ratio
between the areas of the v1, v2, v3 and the v2, v3, v4 trian-
gles. The correlations between two hyper-edges, e ∈ E
and e′ ∈ E′ with an associated ratio of r and r′, is set to
exp−|r−r′|2 . Fig. 2(d) shows the improved results of our
hypergraph matching algorithm, when compared with any
of the graph matching algorithms used. In fig. 2(e-f) we re-
peat the experiments of fig. 2(b-c), that deal with additional
points that have no match, for the case of affine translated
point set, demonstrating the advantage of using hypergraphs
matching. Next we test the effect of the number of sampled
hyper-edges per vertex on the hypergraph matching results.
We use the above settings, with average perturbation set to
one in fig. 2(g), and with 50 additional points that have no
match to one of the graphs in fig. 2(h), demonstrating that
the hypergraph matching results can be further improved by
increasing the number of samples (recall that we used only
60 samples per vertex).

Before going to image related experiments, we compare
the run-time of our algorithm for the case of graphs with the
run-time of spectral matching, that is considered a fast con-
tinuous graph matching algorithm [8]. Fig. 3(a) shows the
net time (without counting time spend on calculating corre-
spondences), demonstrating the efficiency of our scheme.
In fig. 3(b) we study the gross run time (including cor-
respondences calculations) of our scheme for two hyper-
graphs of degree 4 with 50 points each, when the number
of samples per vertex vary.

We move next to image matching examples. Before
going to non-rigid bodies, we demonstrate the inability of
graph matching to cope with even simple and global affine
transformation of an image, where hypergraph matching
performs adequately. Fig. 4 shows the matching results be-
tween a pair of images2, taken from different views of the
same scene. Hypergraph matching restores all matches cor-
rectly, while spectral graph matching produces 10 wrong
matches out of a total of 33.

Finally, we demonstrate our scheme on several challeng-
ing non-rigid point matching examples. We use the point
tracking results of [16], that track non-rigid bodies over im-

2http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html

0 1 2 3 4 5
0

20

40

60

80

100

mean noise

%
 c

or
re

ct
s

0 100 200
0

50

100

of additional points

%
 c

or
re

ct
s

(a) (b)

0 100 200
0

50

100

of additional points

%
 c

or
re

ct
s

0 1 2 3 4 5
0

20

40

60

80

100

mean noise

%
 c

or
re

ct
s

(c) (d)

0 50 100
0

50

100

of additional points

%
 c

or
re

ct
s

0 50 100
0

50

100

of additional points

%
 c

or
re

ct
s

(e) (f)

0 500 1000
10

20

30

40

samples per vertex

%
 c

or
re

ct
s

0 500 1000
40

50

60

70

samples per vertex

%
 c

or
re

ct
s

(g) (h)

Figure 2. Synthetic experiment with ground truth. A cloud of 25
points is going through a transformation. We first deal with a trans-
formation that preserves distances. (a) Our scheme (with d = 2, in
blue o) compared with spectral graph matching with (red �) and
without (black ×) prior normalization in the present of random
perturbation of point locations (average distance between neigh-
boring points is 1). Although the Frobenius norm used by spec-
tral matching is known to function better under additive noise, the
global solution of our relative entropy scheme achieves compara-
ble results. (b) Our scheme give superior results when additional
points that have no match are added to one of the points set, (c)
or to both points sets. In (d-f) we repeat these experiments with
a general affine transformation that does not preserve distances,
demonstrating the power of hypergraph matching (d = 4, in ma-
genta �) in such cases. Next, we demonstrate how results can be
improved by using more samples per vertex: (g) with perturbation
of point locations by an average of 1, and (h) when 50 additional
points that have no match are added to one of the graphs.

20 40 60 80
0

2

4

6

of data−points

se
co

nd
s

50 100 150 200
0

2

4

6

8

samples per vertex

se
co

nd
s

(a) (b)

Figure 3. (a) Running time of our scheme (with d = 2, in blue o)
and spectral graph matching (red �), when the number of points
varies. Times do not include calculation of correlations. While
spectral matching is considered one of the more efficient matching
algorithms, our scheme highly outperforms it. (b) Running time of
our scheme (d = 4) with sampling, when the number of samples
per vertex varies, this time including the correlations time, as it
changes with the number of samples.

(spectral graph matching)

(hypergraph matching)

Figure 4. Matching images that relate by an affine transformation.
Hypergraph matching produces all matches correctly, while spec-
tral graph matching produces 10 (out of 33) wrong matches (wrong
matches are in red).

ages sequences3. We take only the first and last frame of
each sequence, ending with a much more challenging task
than the original tracking problem. While the non-rigid
bodies do not fall into the affine transformation scheme,
our sampling allows our scheme to exploit local transforma-
tions that are approximately affine in order to extract correct
matches. Fig. 5 shows the results of matching points from
the two end frames. While not all points are matched, the
large majority of the matches are visually correct.

6. Summary
We have presented a probabilistic model for soft hy-

pergraph matching between complex feature sets. The
model induces an algebraic relation between the hyper-edge
weight matrix and the desired vertex-to-vertex probabilis-
tic matching which scales naturally from graphs to hypergr-
pahs. A key benefit of the model is that the global optimum
of the matching criteria can be found via an iterative suc-
cessive projection algorithm. The algorithm reduces to the
well known Sinkhorn [15] row/column matrix normaliza-
tion procedure in the special case when the two graphs have
the same number of vertices and a complete matching is de-
sired. Our experiments demonstrate the effectiveness of our
algorithm both as an efficient solution to the special case of
graph matching, and as a new tool for non-rigid matching.

An important combinatorial challenge in hypergraph
matching is the need to calculate the hyper-edge to hyper-
edge correlation, which grow exponentially with the hyper-
graph degree. We have presented a sampling scheme that
samples O

(
|V | · |V ′| · z2

)
correlations. The efficiency of

this sampling scheme has yet to be formalized and studied.
We have limited our discussion to the case where all hy-

peredges are of the same degree. While treating hyperedges
of different degrees is straightforward from a theoretical
point of view, the issue of balancing between different type
of measurements, produced by different number of vertices,
should be further studied.

References
[1] IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI): Special section on graph algo-
rithms and computer vision. 23 (2001) 10401151. 1

[2] Pattern Recognition Letters: Special issue on graph
based representations. 24 (2003) 10331122. 1

[3] Int. Journal of Pattern Recognition and Art. Intelli-
gence: Special issue on graph matching in pattern
recognition and computer vision. 18 (2004) 261517.
1

[4] J. Boyle and R. Dykstra. A method for finding projec-
tions onto the intersections of convex sets in Hilbert

3http://movement.stanford.edu/nonrig/

Figure 5. Non-rigid body matching. Points (in red) are tracked
along an image sequence [16]. We then use only the first and last
frames of the sequence, and match the two point sets. We use
an affine invariant similarity, and our sampling scheme allows the
matching to exploit local transformations which are approximately
affine. While not all points are matched, resulting matches are
visually correct.

spaces. Advances in order restricted statistical infer-
ence, Proc. Symp., Iowa City/Iowa, 1985. 5

[5] R. Burkard, M. Dell’Amico, and S. Martello. Assign-
ment Problems. SIAM Monographs on Discrete Math-
ematics and Applications, in preparation. 3

[6] Y. Censor and S. Reich. The Dykstra algorithm with
Bregman projections. Communications in Applied
Analysis, 2(3):407–419, 1998. 5

[7] D. Conte, P. Foggia, C. Sansone, and M. Vento. Thirty
years of graph matching in pattern recognition. Int.
Journal of Pattern Recognition and Articial Intelli-
gence, 18:265–298, 2004. 1

[8] T. Cour, P. Srinivasan, and J. Shi. Balanced graph
matching. In Neural Information Processing Systems
(NIPS), pages 313–320, 2007. 2, 4, 5, 6

[9] R. Dykstra. An iterative procedure for obtaining i-
projections onto the intersection of convex sets. The
Annals of Probability, 13:975–984, 1985. 5

[10] S. Gold and A. Rangarajan. Softmax to softas-
sign: neural network algorithms for combinatorial op-
timization. J. Artif. Neural Netw., 2(4):381–399, 1995.
2, 4

[11] M. Leordeanu and M. Hebert. A spectral tech-
nique for correspondence problems using pairwise
constraints. In International Conference of Computer
Vision (ICCV), volume 2, pages 1482–1489, October
2005. 2, 5

[12] M. V. Menon. Matrix links, an extremization problem,
and the reduction of a non-negative matrix to one with
prescribed row and column sums. Canadian Journal
of Mathematics, 20:225–232, 1968. 4

[13] J. V. Neumann. Functional Operators Vol. II. Prince-
ton University Press, 1950. 5

[14] C. Schellewald and C. Schnörr. Probabilistic subgraph
matching based on convex relaxation. In Computer
Vision and Pattern Recognition (CVPR), 2005. 2

[15] R. Sinkhorn and P. Knopp. Concerning nonnegative
matrices and doubly stochastic matrices. Pacific Jour-
nal of Mathematics, 21(2):343348, 1967. 1, 2, 4, 5,
7

[16] L. Torresani and C. Bregler. Space-time tracking. In
ECCV, pages 801–812, 2002. 6, 8

[17] P. Tseng. Dual coordinate ascent methods for non-
strictly convex minimization. Mathematical Program-
ming, 59(1):231–247, 1993. 5

[18] B. J. van Wyk and M. A. van Wyk. A pocs-based graph
matching algorithm. IEEE Trans. Pattern Anal. Mach.
Intell. (PAMI), 26(11):1526–1530, 2004. 2

