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Abstract

Given the video of a still background occluded by a fluid
dynamic texture (FDT), this paper addresses the problem of
separating the video sequence into its two constituent lay-
ers. One layer corresponds to the video of the unoccluded
background, and the other to that of the dynamic texture,
as it would appear if viewed against a black background.
The model of the dynamic texture is unknown except that it
represents fluid flow. We present an approach that uses the
image motion information to simultaneously obtain a model
of the dynamic texture and separate it from the background
which is required to be still. Previous methods have consid-
ered occluding layers whose dynamics follows simple mo-
tion models (e.g. periodic or 2D parametric motion). FDTs
considered in this paper exhibit complex stochastic motion.
We consider videos showing an FDT layer (e.g. pummeling
smoke or heavy rain) in front of a static background layer
(e.g. brick building). We propose a novel method for simul-
taneously separating these two layers and learning a model
for the FDT. Due to the fluid nature of the DT, we are re-
quired to learn a model for both the spatial appearance and
the temporal variations (due to changes in density) of the
FDT, along with a valid estimate of the background. We
model the frames of a sequence as being produced by a
continuous HMM, characterized by transition probabilities
based on the Navier-Stokes equations for fluid dynamics,
and by generation probabilities based on the convex matting
of the FDT with the background. We learn the FDT appear-
ance, the FDT temporal variations, and the background by
maximizing their joint probability using Interactive Condi-
tional Modes (ICM). Since the learned model is generative,
it can be used to synthesize new videos with different back-
grounds and density variations. Experiments on videos that
we compiled demonstrate the performance of our method.

1. Introduction

Separation of a video into its constituent motion layers is
a problem that has received significant attention. Typically,
it involves separation of a still background from an occlud-
ing layer that is formed by moving objects. This problem
occurs commonly in real life, usually in the context of a
scene of interest (background) being obstructed by the fore-
ground. The difficulty of the problem depends on the nature
of the moving objects in each layer (e.g. large and rigid vs.
small), their motions (e.g. rigid vs. non-rigid), and their
optical characteristics (e.g. opaque vs. translucent). In this
paper we, assume that the given video sequence can be rep-
resented as a convex sum of the layers. Then, the separa-
tion task consists of extracting each individual layer along
with both their spatial and temporal supports. In the absence
of underlying assumptions regarding the motion or appear-
ance of each layer, this separation problem is ill-defined.
We consider the problem of separating a video containing
a fluid dynamic texture, FDT, moving in front of a still
background, into two distinct layers, as well as learning
a spatiotemporal model for the FDT. For example, such a
video can consist of heavy smoke or fountain water occlud-
ing a building, or fog/clouds blocking a panoramic vacation
scene.

Numerous approaches have been proposed for dynamic
layer separation from video. They differ according to the
motion or appearance models assumed for each layer. In
[15,17], dense spatial and temporal correspondences are re-
quired, thus, restricting the scope of these methods to rel-
atively simple 2D parametric motions, which are relatively
easy to extract. More complex non-rigid motions can be
separated using the “information exchange” approach pro-
posed in [11], but this method assumes that one layer obeys
2D parametric motion. The approach in [12] extends the
previous work by relaxing the assumption of simple para-
metric motion to accept periodic motion. The authors use
a global space-time alignment method followed by local
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space-time refinement to align consecutive video frames.
After alignment, the periodic motion is extracted using a
median filter applied on spatial and temporal image deriva-
tives. Despite the advantages these methods offer, they are
unable to separate an FDT from its background for the fol-
lowing reasons: (1) FDT motion is non-periodic in general
and is characterized by rapid temporal variations, both in
density and flow. Consequently, current separation methods
will produce significant errors especially in regions where
the texture density is high. (2) Many of the past methods
use frame alignment which is not a well defined task for
FDT images.

In general, image-based models of dynamic texture [2,
8, 13] tend to incorporate the background into the model,
thus, rendering it too specific to use in general purpose ap-
plications (e.g. extrapolating the dynamic texture into novel
backgrounds). Also, this drawback hinders the generaliza-
tion performance of recognition systems that are built based
on these models. Therefore, separating the dynamic tex-
ture from its background support becomes necessary. At-
tempts at simultaneously separating dynamic textures from
video and modeling include [1, 5]; however, they use spe-
cific physical models of the motion and appearance of the
dynamic texture (e.g., rain and snow). These models there-
fore do not serve as general mechanisms for FDT’s. To mo-
tivate our problem, we consider a sample smoke sequence,
from which we seek to extract both the FDT and the build-
ing in the background. Figure 1 shows results of separating
the FDT layer from the static background layer, using (i)
a temporal median filter (1(d)), which fails to capture the
background, due to the smoke’s temporal persistence, (ii)
the dynamic layer separation method of [11,12], which fails
to separate the layers especially in regions of high smoke
density, and (iii) the algorithm we propose in this paper.

Contributions: In this paper, we present a novel approach
to model and separate FDT’s from video sequences, which
addresses the aforementioned limitations of previous meth-
ods. The contributions of the proposed method are twofold.
(I) It simultaneously separates an FDT from its static back-
ground and learns a general fluid model of the FDT’s ap-
pearance and dynamics. For simplicity, we assume that
the FDT’s appearance is temporally stationary and that the
temporal variations of its density are governed by basic
laws of fluid dynamics. In fact, we model the frames of a
video sequence as being produced by an HMM, character-
ized by transition probabilities based on the Navier-Stokes
equations for fluid dynamics and by generation probabilities
based on convex matting of the FDT with the background.
Both the FDT and background layers are estimated by for-
mulating and maximizing an appropriate joint probability
using Iterative Conditional Modes (ICM). (II) Due to the
generative nature of our DT model and the separability of
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Figure 1. 1(a) is an original frame from a smoke sequence and 1(d)
is the median image of this sequence. 1(b) and 1(e) show the re-
sults of layer separation (extracted background and smoke, respec-
tively) using the information exchange method of [11, 12], while
1(c) and 1(f) show the corresponding separation results produced
by our algorithm.

its underlying components (i.e. the FDT appearance, FDT
dynamics, and background), higher level applications can
be performed (e.g. synthesis and recognition). This sep-
arability property allows us to avoid the shortcomings of
current DT models that couple the aforementioned compo-
nents. In this paper, we use this model to synthesize novel
FDT sequences.

The paper is organized as follows. Section 2 describes
the FDT dynamics and appearance models used in formu-
lating the probabilistic framework of Section 3. In this sec-
tion, we establish a joint probability of the variables to be
estimated and explain how to maximize it using ICM. We
derive iterative update equations and describe how the ini-
tialization is performed. Section 4 presents experimental re-
sults of applying the proposed method to real and synthetic
video sequences.

2. Problem Formulation and Overview

Given a video sequence {It}F
t=1, which includes an FDT

moving in front of a static background B, we assume that
each frame is a convex combination of the FDT and B. In
other words, for an individual frame of M × N pixels, we
have ∀x = 1, · · · ,M, y = 1, · · · , N



{
It (x, y) = ρt (x, y)D (x, y) + [1− ρt (x, y)]B (x, y)
ρt (x, y) ∈ [0, 1], It (x, y) ≤ max (B (x, y) ,D (x, y))

(1)

where ρt (x, y) is the density (α matte) of the FDT at spa-
tiotemporal location (x, y, t) and D (x, y) is its appearance.
The first term in the sum designates the contribution of FDT
to It, while the second term designates that of the back-
ground.

This model makes two fundamental assumptions. (1)
The textured appearance of the FDT does not change with
time (i.e. D is static). This implies that the appearance of
an FDT at a specific time is the result of applying a soft
mask (ρt) to a static 2D texture. This is valid for the vast
majority of dynamic textures that behave as fluids (e.g. fog,
smoke, water, etc.). For example, in the case of fog, D is
approximately constant. In the following sections, we also
see that this assumption can facilitate the estimation of the
FDT model. (2) The model defining an FDT’s dynamics
can be made independent of its appearance model. Equiv-
alently, {ρt}F

t=1 and D are statistically independent. This
assumption is valid and widely used in computer graphics
to render FDT’s (e.g. smoke) with different texture maps
or colors. Based on this claim, we can learn {ρt}F

t=1 and
D from one sequence and synthesize a novel FDT sequence
with the same temporal variations but with an appearance
D′ 6= D, or vice versa.

We model the temporal variations of an FDT by the
Navier-Stokes differential equations for fluid dynamics. In
their general form, they govern the change of a fluid’s den-
sity and flow over time. In fact, they have been used ex-
tensively in synthesizing images of general stable fluids in
computer graphics [3, 4, 14], since they have been shown to
effectively model both the spatial and temporal coherence
of the FDT. In Eq (2), we present the vector form of these
equations.

{
(E1) : ∂ρ

∂t = − (~u.∇) ρ + κ∇2ρ + S
(E2) : ∂~u

∂t = − (~u.∇) ~u + ν∇2~u + ~F
(2)

where ρ, ~u, κ and ν are the density, flow, diffusion rate and
viscosity of the fluid respectively. S represents the auxil-
iary sources of fluid density, while ~F represents the exter-
nal forces applied to the fluid. In developing the proposed
model, we assume S = 0 and ~F = ~0, thus rendering a
source-free uncompressed fluid, with 0 ≤ ρ ≤ 1.

We discretize these differential equations as shown in Eq
(3). Time derivatives are replaced by differences and spatial
derivatives are replaced by suitable derivative filters to ren-
der the transition arrays BT , Sx

t , Sy
t , ~sx

t , and ~sy
t . We used

~hx and ~hy as the first order derivative filters in the x and y

directions respectively. Similarly, we define Hxx = HT
yy as

the second order derivatives. We choose these basic filters
so that the transition matrices (Bt, Sx

t , and Sy
t ) are sparse.

Note that Bt is a function of ~ut and κt, while Sx
t , and Sy

t

are functions of ν. Also, denote the vectorized version of
ρt (x, y) by ~ρt and that of ~ut (x, y) by ~ut, where the x com-
ponents are stacked on top of the y components.



(E1) : ~ρt+1 = Bt~ρt

(E2) : ~ut+1 (x, y) =

[
~uT

t Sx
t ~ut + ~uT

t ~sx
t

~uT
t Sy

t ~ut + ~uT
t ~sy

t

]

~hx = ~hT
y =

 −1
0
1

 ; Hxx =

 1 −2 1
1 −2 1
1 −2 1


(3)

Below, we propose a method to separate the background
from the FDT (i.e. compute {~ρt}F

t=1), as well as estimate
the FDT appearance (D) and the background (B). Eqs (1)
and (3) are the premises for building the joint probability
model in Section 3.

3. Proposed Model
In this section, we embed the model of Section 2 into a

probabilistic framework to incorporate the noise that might
arise. In Figure 2, we illustrate the graphical representa-
tion of this framework. It is in the form of a continuous
hidden Markov model (HMM), where (1) the generation
probability conforms to the convex matting constraint of Eq
(1) and (2) the transition probability is based on the dis-
cretized Navier-Stokes equations of Eq (3). For now, the
hidden state is xt = {~ρt, ~ut}.

Figure 2. Graphical representation of our proposed model. The
hidden state xt encodes the FDT’s temporal variations. Given the
current state xt, B, and D, the current video frame It is indepen-
dent of all other frames.

Using the Markovian property and the independence
of {ρt}F

t=1 and D, we formulate the joint probability of
this model as in Eq (4). Let ~it, ~b, and ~d be the vector-
ized versions of It, B, and D respectively. Here, K =



P (B)P (D)P (x1) due to the joint independence of B and
D. Assuming uniform priors on B, D, and x1, K is a con-
stant with respect to these variables.

P
(
{It}F

t=1 , {xt}F
t=1 ,B,D

)
=

K

[
F−1∏
t=1

P
(
~it|~ρt,~b, ~d

)
P (~ρt+1|~ρt, ~ut)P (~ut+1|~ut)

]
(4)

where P (~ut+1|~ut) =
∏

(x,y) P (~ut+1(x, y)|~ut). We model
the generation probability and the transition probabilities as
follows, where Λt = diag (~ρt) and A = diag

(
~d−~b

)
.

P
(
~it|~ρt,B,D

)
∼


N

(
Λt

~d + (I − Λt)~b, σ2
II

)
m

N
(
A~ρt +~b, σ2

II
)

P (~ρt+1|~ρt, ~ut, κt) ∼ N
(
Bt~ρt, σ

2
ρI

)
P (~ut+1(x, y)|~ut, ν) ∼ N

([
~uT

t Sx
t ~ut + ~uT

t ~sx
t

~uT
t Sy

t ~ut + ~uT
t ~sy

t

]
, σ2

uI

)
We propose to estimate {xt}F

t=1, B, D, and the model
parameters (κt, ν, σ2

I , and σ2
ρ) by maximizing the joint

probability in Eq (4) using coordinate ascent along these
variables (i.e. ICM). As we will see, this leads to a set of
update equations formulated as convex quadratic program-
ming (QP) problems. In what follows, we decouple the state
variables by keeping the flow variables {~ut}F

t=1 equal to
their initial estimates (i.e. these variables are not updated).
This allows for numerical stability, reduces computational
complexity, and removes the nonlinearity in the model.

3.1. Maximizing Eq (4)

In Eq (4), the background (~b), FDT appearance (~d), FDT
densities ({~ρt}F

t=1), FDT diffusion rate (κt), and the model
parameters (σI and σρ) are coupled, so maximizing the
joint probability renders a large-scale, non-linear, and non-
convex optimization problem. Consequently, we resort to
solving this problem suboptimally, using ICM, which will
lead to a local maximum in general. In each ICM iteration,
the estimate of an individual variable is computed by maxi-
mizing the joint probability with all other variables fixed. In
Section 3.2, we describe how we initialize these variables.
Here, we note that we refrained from using a complete EM
formulation because it adds considerable computational ex-
pense with limited performance improvement.

Let~b(k), ~d(k),
{

~ρ
(k)
t

}F

t=1
, κ

(k)
t , σ

(k)
I , and σ

(k)
ρ be the es-

timates at the kth iteration. By minimizing the negative log-
arithm of the joint probability, we can derive the following
update equations.

Update Model Parameters and κt: Setting α
(k)
t (x, y) =

ρ
(k)
t+1(x, y) − ρ

(k)
t (x, y) + ~ut(x, y)T∇ρ

(k)
t (x, y) and

β
(k)
t (x, y) = ∇2ρ

(k)
t (x, y), we compute the ML estimates

of σ
(k+1)
I , σ

(k+1)
ρ , and κt as follows.

σ
(k+1)
I =

√√√√ 1
F

F∑
t=1

||A(k)~ρ
(k)
t +~b(k) −~it||2 (5)

σ(k+1)
ρ =

√√√√ 1
F

F−1∑
t=1

||~ρ(k)
t+1 −Bt~ρ

(k)
t ||2 (6)

κ
(k+1)
t =

~αT
t

~βt

||~βt||2
(7)

Update Background: We update the background by
solving the QP below, where l1(j) = min 1≤t≤F it(j),

L
(k)
2 = diag

(
~l
(k)
2

)
=

∑F
t=1

(
I − Λ(k)

t

)2

, and ~l
(k)
3 =∑F

t=1

[(
I − Λ(k)

t

) (
Λ(k)

t
~d(k) −~it

)]
.

~b(k+1) = arg min
~0≤~z≤~l1

[
~zT L

(k)
2 ~z + 2~zT~l

(k)
3

]
(8)

Since L
(k)
2 is diagonal, the above QP is equivalent to

MN scalar QP’s, which can be solved in closed form:

b(k+1)(j) = min
(

max
(
− l

(k)
3 (j)

l
(k)
2 (j)

, 0
)

, l1(j)
)

.

Update FDT Appearance: A similar QP is formulated

for ~d(k+1), where L
(k)
2 = diag

(
~l
(k)
2

)
=

∑F
t=1

(
Λ(k)

t

)2

,

and ~l
(k)
3 =

∑F
t=1

[
Λ(k)

t

((
I − Λ(k)

t

)
~b(k) −~it

)]
. Con-

sequently, the closed form solution is d(k+1)(j) =

min
(

max
(
− l

(k)
3 (j)

l
(k)
2 (j)

, 0
)

, l1(j)
)

.

Update FDT Densities: Here, we update ~ρ
(k)
t sequentially

∀t = 1, · · · , F . Let α1 = I{t6=1} and α2 = I{t6=F} be the
indicators for the first and last frames. The update equation
for the FDT density at a particular time t becomes

~ρ
(k+1)
t = arg min

~0≤~z≤~1

1
2σ2

I
||A(k)~z +~b(k) −~it||2

+
1

2σ2
ρ

(
α2||~ρ(k)

t+1 −B
(k)
t ~z||2 + α1||~z −B

(k)
t−1~ρ

(k)
t−1||2

)
which is equivalent to Eq (9). Here, we define L

(k)
2 =

(A(k))2

σ
(k)2
I

+ α2B
(k)T
t B

(k)
t +α1I

σ
(k)2
ρ

and ~l
(k)
3 =

A(k)(~b(k)−~it)
σ

(k)2
I

−



α2B
(k)
t ~ρ

(k)
t+1+α1B

(k)
t−1~ρ

(k)
t−1

σ
(k)2
ρ

. Since L
(k)
2 is sparse and L

(k)
2 � 0,

the resulting problem is convex and can be solved efficiently
via suitable QP solvers (e.g. active set or interior point
methods). In our implementation, we use a basic active set
method, whose fundamental step requires the solution of a
sparse linear system using preconditioned conjugate gradi-
ents. To speed up the update process, we initialize the solu-
tion of the linear system corresponding to frame t with the
final solution of frame t− 1.

~ρ
(k+1)
t = arg min

~0≤~z≤~1

[
~zT L

(k)
2 ~z + 2~zT~l

(k)
3

]
(9)

3.2. Initialization

Since the original optimization problem is non-linear and
non-convex, the solution we obtain from the previous up-
date scheme will be a local minimum, in general. There-
fore, initializing the variables with meaningful values is cru-
cial. We propose to use spectral matting [7] to initialize the
FDT densities and a phase-based optical flow method [6] to
determine the FDT flow vectors. Furthermore, we assume
that during the entire sequence the background solely ap-
pears (i.e. with zero FDT density) at least once at every
pixel. This is a valid assumption because, in the absence of
a background appearance model, no feasible estimate exists
for the true intensity of a background pixel, which does not
solely appear in a sequence at least once.

3.2.1 Determine {~ut}F
t=1

To initialize the fluid flow, we can choose any optical flow
algorithm from the large set of generic algorithms or those
specific to fluid flow [9, 18]. In [6], a phase-based algo-
rithm is proposed to estimate the optical flow fields of an
image sequence by tracking contours of constant phase over
time. In this paper, we use this method to estimate the flow
vectors between every pair of consecutive frames in the se-
quence.

3.2.2 Determine
{

~ρ
(0)
t

}F

t=1

To compute the initial FDT densities, we estimate the α
matte for every individual frame in the sequence, using
spectral matting defined in [7]. This method is chosen,
since it is unsupervised and is proven to be optimal under
certain conditions. To make the paper self-contained, we
briefly review this method and then modify it for our pur-
poses. For each frame It, the above method decomposes it
into a convex combination of K layers: It =

∑K
i=1 αiFi.

Each matte ~αi is a linear combination of the eigenvectors
of the Laplacian matrix (Lt) corresponding to the graph
formed from the pixels of It (i.e. ~αi = E (Lt) ~yi). The

authors define a pairwise cost between two α mattes as:
wt(i, j) = ~αT

i Lt~αj . The foreground matte is determined as
the sum of a subset of the extracted α mattes ({~αi}K

i=1) that
minimizes C =

∑
i,j∈S wt(i, j) with a lower bound on the

percentage of pixels labeled as background and foreground.
The authors perform an exhaustive search over all 2K sub-
sets to find S. The computational complexity of this search
grows exponentially in the number of layers, so we pro-
pose to form an equivalent min-cut problem, which can be
solved sub-optimally yet efficiently. The equivalent prob-
lem is formulated in Eq (10). We have relaxed the binary
constraint on ~z to take on real values with ||~z||2 = K. a1

and a2 are defined as the minimum and maximum percent-
ages of allowable foreground pixels. We use a simple gra-
dient descent method to find a local minimum of this QP,
which is then discretized using kmeans (k = 2) on ~z∗t . The
discretized ~z∗t selects the set of α mattes that form the fore-
ground matte, which in turn determines ~ρ

(0)
t . From the ini-

tial density estimates, we compute κ(0) and σ
(0)
ρ using Eqs

(5,6,7).

~z∗t =arg min
[
~zT Wt~z + 2~zT Wt

~1
]

s.t.

{
||~z||2 = K

(2a1 − 1)MN ≤ ~1T~z ≤ (2a2 − 1)MN
(10)

3.2.3 Determine~b(0)

After computing
{

~ρ
(0)
t

}F

t=1
, we determine the initial back-

ground estimate at each pixel as the image intensity at that
pixel corresponding to the frame that contains the minimum
density of that pixel over time (i.e. b(0)(j) = it0(j), where
t0 = arg mint ρ

(0)
t (j)). From this initial estimate, we com-

pute ~d(0) using the FDT appearance update equation. Then,
we initialize σI , using Eq (5).

4. Experimental Results

We conducted a set of experiments to verify the correct-
ness of our formulation and the proposed algorithm. We
collected FDT sequences from various sources: the MIT
temporal texture dataset [16], the Dyntex dataset [10], and
online sources. All these video sequences include an FDT
moving infront of a static background. They show signifi-
cant variations in the nature of the FDT (e.g. sparse foun-
tain water and thick exhaust smoke) and the complexity of
the background (e.g. highly textured or constant intensity
regions). In order to compute the initial α matte of each
frame within 60 seconds, we crop out the spatial support of
the FDT from the initial video and resize it (if necessary)
to a maximum size of 120 × 120 pixels. We use K = 30



layers, a1 = 0.3, and a2 = 0.7 to initialize the FDT den-
sities. The experiments were executed using MATLAB on
a 2.8 GHz, 2GB RAM PC. We allowed 2-3 ICM iterations
for each video sequence, where the execution time of each
iteration ranged from 15-60 seconds per frame. The major-
ity of this time is taken by updating the FDT density of a
given frame. In Section 4.1, we show an example of how
the estimated variables evolve with the ICM iterations. In
Section 4.2, we give a quantitative comparison between the
information exchange method of [11,12] and our own, when
applied to a synthetic sequence. Finally, Section 4.3 illus-
trates how our generative model can be used to synthesize
novel FDT sequences with varying appearance and/or back-
ground.

4.1. ICM Iterations

During each ICM iteration, we update each variable
to the value that maximizes the joint probability with all
other variables fixed. This leads to incremental improve-
ment in the estimation of each variable. In Figure 3, we
show the results of applying our algorithm to two smoke
sequences: smoke2 ( [10]) and smokeMIT ( [16]). The
first three and last three images of the first row smoke2

and smokeMIT respectively. In the second row, we show
the initial background (columns (a) and (c)), initial FDT
appearance (columns (b) and (e)), and initial FDT density
(columns (c) and (f)) estimates, while the third row shows
their corresponding final estimates. The appearances of the
two FDT’s are of high intensity and spatially close to con-
stant, except in regions where the FDT only appears in a few
frames (i.e. regions of low temporal persistence). Similarly,
the background estimates incur errors at regions where the
FDT density is high and temporally persistent. Since the
FDT model enforces spatial and temporal coherence, fitting
it to the observed frames significantly improves the initial
estimates of all the variables. In fact, this coherence is cru-
cial for individual FDT densities, since some initial esti-
mates include considerable errors. This is the case for the
smokeMIT sequence, where even though the initial density
estimate is inverted (column (f) of 2nd row ), our algorithm
rectifies it (column (f) of 3rd row). For visual comparison,
we supply the median images of the two sequences in Fig-
ures 3(g) and (h), respectively. Clearly, the median filter
fails to capture the background correctly. In Figures 3(i)
and (j), we plot the estimated diffusion rates (κt) of each
sequence. These values are positive and show minor tem-
poral variations. This indicates a nearly constant outward
diffusion from the fluid source, which correctly supports the
underlying dynamics of each sequence.

4.2. Comparative Analysis

In this section, we perform a quantitative comparison be-
tween our proposed method and the information exchange

separation method used in [11, 12]. Given two images
formed from linear combinations of two layers, the informa-
tion exchange method attempts to extract these two layers
by iteratively minimizing the structural correlation between
the two original images. So, to implement this method on
an FDT sequence, we first extract its median image and then
sequentially apply the method on each frame and the me-
dian image, as done in [11]. We applied both the infor-
mation exchange method and our own to a synthetic FDT
sequence (2nd row of Figure 4), whose ground truth FDT
densities and background are known beforehand. These
densities were acquired from a chimney smoke sequence
(1st row of Figure 4), where the FDT moves in front of
a black background and has a constant spatial appearance.
The synthetic sequence contains 250 frames, each of which
is 68 × 128 pixels in size. We executed the information
exchange method using a 5 × 5 pixel window and a max-
imum of 30 iterations. As recommended by [11], we per-
formed a coarse to fine analysis to incorporate the spatially
varying FDT densities. For our algorithm, we used 2 ICM
iterations. Figure 4(a) plots the `2 norm of the absolute
difference between the estimated and ground truth densi-
ties, while Figure 4(b) plots their corresponding normalized
correlations. It is clear that our algorithm outperforms the
other method. Here, we mention that the information ex-
change method produced negative pixel intensities, which
were suppressed in our experiment. Also, this method does
not enforce temporal coherence between layers over time,
so, for example, the first layer at time t may not correspond
to the first layer at t + 1. Hence, to choose the estimated
density layer from the two possible layers, we select the
one closest to the ground truth density at that frame.

4.3. FDT Synthesis

Our generative model enforces statistical independence
between the three components of the video sequence (the
FDT appearance, FDT dynamics, and the background). So,
after learning each of these components, we can readily
synthesize novel FDT sequences, by varying each compo-
nent separately. For example, in Figure 5, we show sample
frames produced by transferring the FDT densities learned
from three original video sequences (1st, 3rd, and 5th rows)
to a new background and/or appearance.

5. Conclusion and Future Work

In this paper, we have presented a novel method to simul-
taneously separate a fluid dynamic texture (FDT) from its
static background and learn a generative model of the tex-
ture’s spatiotemporal characteristics. The proposed model
combines the FDT’s temporal density variations and spatial
appearance with the static background model in a continu-
ous HMM framework. We learn these variables by maxi-
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Figure 3. The first row shows frames from the original smoke2 (first three) and smoke2 (last three) FDT sequences. The second row shows
the initial estimates of B in columns (a) and (d), D in (b) and (e), and the density (~ρt) of a sample frame for both sequences respectively.
This density corresponds to the first frame of each sequence, shown in the first row. The third row shows the final estimates of the previous
variables in the same order. Figures (g) and (h) show the median images of both sequences. Figures (i) and (j) plot the estimated diffusion
rates respectively.

mizing their joint probability using ICM. We validate our
method by applying it to real and synthetic sequences, as
well as, comparing it to a current dynamic layer separation
method. Furthermore, we exploited the generative nature
of the learned model to produce synthetic FDT sequences.
In the future, we plan to extend this work to learn the FDT
local flow model ({~ut}F

t=1), which was held constant here.
This will make non-repetitive extrapolation of synthetic se-

quences possible. Furthermore, we aim at extending the
current work to non-static background models and using it
to build an FDT recognition system.
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Figure 4. Compares our algorithm to the information exchange
separation method of [11], when applied to the synthetic sequence
(2nd row). 4(a) plots the `2 norm of the error between the ground
truth FDT densities (1st row) and those estimated by each method.
In 4(b), we plot the normalized correlation between these values.
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