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Abstract

We consider the problem of visual categorization with
minimal supervision during training. We propose a part-
based model that loosely captures structural information.
We represent images as a collection of parts characterized
by an appearance codeword from a visual vocabulary and
by a neighborhood context, organized in an ordered set of
bag-of-features representations. These bags are computed
in a local overlapping areas around the part. A seman-
tic distance between images is obtained by matching parts
associated with the same codeword using their context dis-
tributions. The classification is done using SVM with the
kernel obtained from the proposed distance. The experi-
ments show that our method outperforms all the classifi-
cation methods from the PASCAL challenge on half of the
VOC2006 categories and has the best average EER. It also
outperforms the constellation model learned via boosting,
as proposed by Bar-Hillel et al. on their data set, which
contains more rigid objects.

1. Introduction

We consider the problem of generic visual categoriza-
tion: Given an image, categorize it into one of the con-
sidered visual categories according to its semantic content.
The training is performed on unsegmented images with sig-
nificant clutter. No information about object location, size,
or pose is available. The only information provided is the
category label of the image.
Current part-based methods can be roughly divided into

1) pure appearance methods that discard all shape informa-
tion, but are fairly flexible and computationally efficient[19,
17, 18, 9, 20]; 2) methods that incorporate shape either as
a generative model of locations of parts [7, 6, 1] or by ge-
ometric correspondence search [2, 13]. These models are
close to rigid, computationally expensive, and some require
a bounding box during training [15, 23]. As was noted by

many authors [7, 5, 6, 12], the geometric information is im-
portant and should not be ignored. However, because shape
usually varies a lot, it is easier to discard it than model it
[20].
In this work we consider a compromise between the two

opposing views and propose modeling the structural infor-
mation in a loose manner. This is done by augmenting a
bag-of-features [3] with loose spatial information. We rep-
resent images as a collection of parts characterized by an
appearance codeword from a visual vocabulary and by a
neighborhood context, organized in an ordered set of bag-
of-features representations. These bags are computed in
four overlapping areas in the local coordinate system of
each part. We call these representations context distribu-
tions. The semantic distance between images is obtained
by matching parts associated with the same codeword using
context distributions. The matching is polynomial in the
number of parts. The average weight of the matching yields
the distance between the images, which is small when they
correspond to the same category. The proposed distance
can be easily incorporated in different discriminative clas-
sifiers. In this work we convert it into a kernel and use it in
the SVM classification. Our method is robust to translation,
scale, and some degree of rotation; thus it can be applied to
images with clutter and pose variations. The experiments
show that our approach outperforms state-of-the-art appear-
ance based algorithms and loose shape methods on a very
challenging VOC2006 [4] data set, which contains different
views of 10 categories of objects with a lot of clutter. We
also show that the proposed loose shape approach performs
much better than the constellation type models (such as [1])
on the dogs vs. animals test [1], despite the similar pose of
the dogs in this data set, which allows learning the spatial
relation between parts.

1.1. Related Work
It was noted recently that augmenting a bag-of-features

representation with some spatial information might be more
efficient than the existing approaches to shapemodeling dis-
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cussed above. [13, 22] incorporated pairwise relation be-
tween neighboring local features in a bag-of-features ap-
proach. A step forward in this direction is the work of
Lazebnik et al. [14]. They propose to repeatedly divide
an image into sub-regions and compute histograms of local
features in each sub-region. The resulting spatial pyramids
are matched using an adaptation of the pyramid matching
scheme proposed by [9]. Themethod of Lazebnik et al. [14]
incorporates the information about the spatial arrangement
of features in a global coordinate system of the image (the
sub-regions are fixed). Thus the representation is not in-
variant to geometrical transformation. [21] suggests incor-
porating appearance, shape, and context in a discriminative
model based on textons that jointly capture local shape and
texture. The method allows variation in pose, because the
structural information is learned locally. Kushal et al. [12]
propose a more flexible model that represents objects as a
collection of “partial surface models” that obey loose local
geometric constraints. This approach also allows variation
in viewpoint.

2. Our Approach
Our goal is to construct a semantic distance between im-

ages that is small when the images come from the same
category and large when they belong to different categories.
Measuring the distance between bags-of-features obtained
from full images doesn’t work well if the images contain
similar scenes with different types of objects. This is true
especially when the objects are small – cars and bikes in
an urban scene, for example. Dividing the image into
sub-regions and matching bags-of-features from these sub-
regions (as was done in [14]) partially solves the problem,
but it doesn’t allow much variation in pose. To handle more
variation, the bags of features should be constructed locally
around each part of the object. Such a representation can be
viewed as context distribution. Next we discuss the details
of the image representation and the matching procedure.

2.1. Image Representation

We build a visual vocabulary similar to [3]. The low-
level features are represented using histograms of gradi-
ent directions [16] computed at interest points found by the
Saliency detector [10]. The codebook is constructed using
the K-means clustering algorithm. The codebooks are built
for each class separately and then concatenated into a single
codebook.
Following the bag-of-features approach, we classify low-

level features intoN types corresponding to the visual words
in the codebook. Features sampled close to each other in
the image usually correspond to the same codeword. This
can be explained by similar gradients in the neighboring
regions. Interest operators usually find a large number of

Figure 1. Construction of the context distribution for one part: a,
features are shown as colored crosses and parts are shown as col-
ored squares. The black cross lines indicate the local coordinate
system of the part for which we show the construction of the con-
text distribution; b, regions associated with the part; c, context dis-
tribution obtained by concatenation of four bags-of-features, com-
puted in the top, bottom, right and left regions of the part. The
contribution of the features to the histogram is weighted according
to their distance to the origin of the local coordinate system.

patches, many of which overlap or are in proximity. As a
result, features belonging to the same codeword tend to ap-
pear in clusters, as shown in Figure 1a. We replace these
clusters with parts. Specifically, we group features that are
associated with the same codeword and appear in spatial
proximity in the image. The average location of the fea-
tures within the group is set to be the coordinates of the part
(Figure 1, a).
We represent images as a collection of parts. Each part

is characterized by the location in the image, by the ap-
pearance type corresponding to the codeword, and by the
context distribution, defined as an ordered set of four bags
of features constructed in the overlapping regions around
the part (as shown in Section 2.2). Even though a bag-of-
features is orderless representation, the context distribution
captures structural information in a loose way, because it
computes bags in the local neighboring regions and orga-
nizes them in a specific order.

2.2. Building Context Distributions
We place a local coordinate system at the part and divide

the image around it into 4 overlapping areas: top, bottom,
left and right. All the features located above the local x-axis



are considered to be in the top area. All the features below
the local x-axis contribute to the bottom region. The left
and the right regions are set in a similar way (Figure 1). A
context distribution is formed by concatenating the bags-of-
features computed in the top, bottom, right, and left areas of
the part and normalizing the resulting vector of size 4N (N
is the size of the codebook) to unit sum (Figure 1).
To make the context information local, we weight the

features in the histograms according to their distance to the
origin of the local coordinate system. The weight is maxi-
mal inside a certain radius around the origin and decays fast
outside the radius (see Section 3.1 for details). The idea be-
hind the weighting is to assign greater weight to the features
in the neighborhood that might correspond to the same ob-
ject and less weight to the distant parts of the image. Since
we do not know in advance the size of the object, we cannot
set the radius for the weighting in advance. Thus we create
image representations for a range of radiuses corresponding
to different scales and apply multi-scale matching.

2.3. Calculating the Distance between Images

Consider a matrix that contains all context distributions
for all parts in an image. Such a matrix will always have 4N
columns – the length of the context distribution. The num-
ber of rows, however, will depend on the number of parts
per codeword. Since images may contain a different num-
ber of parts of different types, their representation matrices
will have different sizes. Thus we cannot use the Euclidian
distance or any other metric for comparison.
We assume that semantically similar parts are likely to be

associated with the same codeword and have similar con-
text distributions. We propose to match parts of the same
codeword using the χ2 distance between their context dis-
tributions. For each codeword we extract the corresponding
parts in both images and organize them in a bipartite graph
where each side represents an image. The weights on the
edges are χ2 distances between the context distributions as-
sociated with the parts (see Figure 2). We want to match the
maximum number of parts between the two images with
minimum weight among all possible maximum matchings.
This matching problem can be formulated as maximum bi-
partite matching with minimal cost and can be solved in
polynomial time by applying a variation of the Hungarian
algorithm [11]. Our experiments show that the number of
parts per type is usually quite small (less than 6) and, with
the polynomial algorithm, the matching is very fast.
The average distance between thematched parts will rep-

resent the distance between the images associated with the
current codeword (Figure 2). We repeat the matching pro-
cedure for each codeword and form a vector of distances of
the size of the codebook. We set the magnitude of the vector
to be the semantic distance between the two images. Since
not all the codewords appear in each image, the algorithm

Figure 2. The matching of parts corresponding to codeword 9
(shown in orange): a, three parts associated with this codeword
(left-hand image), shown with blue, red, and green local coordi-
nate systems, and two parts (right-hand image) associated with
this codeword, shown with blue and red coordinate systems; b,
bipartite graph with nodes corresponding to the parts from both
images. The weights on the edges are χ2 distances between the
context distributions of the parts. Bold edges show the maximum
match with the minimal cost. The average weight from the match
represents the distance between the parts corresponding to code-
word 9. Vector v contains distances for all the codewords. The
magnitude of the vector measures the semantic distance between
the images.

considers two special cases in the distance calculation:

• When a certain codeword is missing in both images,
the distance for this codeword is set to zero. This can
happen when the codeword doesn’t belong to the cat-
egories represented in the images. If the images come
from the same category, the choice of zero distance is
optimal. If the images belong to different categories,
the choice is arbitrary.



• When only one image contains parts corresponding to
a certain codeword and the other doesn’t, the distance
is set to a constant denoting the maximum distance.

It can be shown that the resulting distance is positive and
symmetric. These properties allow it to be incorporated into
various classifiers.

2.4. Classification Using Kernel SVM
The proposed image distance can be employed in differ-

ent classifiers. In this paper we convert it to a kernel and
apply Support Vector Machine.
Any kernel can be seen as a measure of similarity. For

example, the Gaussian RBF kernel is based on the Euclid-
ian distance. If we substitute the Euclidian distance with
our new distance D(x, y), we will obtain a measure of im-
age similarity: Kim(x, y) = exp

³
−D(x,y)

2σ2

´
. In order to

use it as a kernel in SVM, we should ensure that the simi-
larity function is a valid kernel. Specifically, Kim must be
symmetric positive (semi)definite.
Since D(x, y) is symmetric, the matrix Kim is symmet-

ric as well. SinceD(x, x) = 0 and D(x, y) > 0 for x 6= y,
thus Kim(x, x) = 1, and all off-diagonal elements of Kim

are smaller than 1. Although these conditions are not suf-
ficient to ensure that the matrix Kim is positive definite,
in practice, by choosing the best σ for discrimination, we
make the off-diagonal elements much smaller than 1. Thus
the matrix we obtain is symmetric, diagonally dominant
with diagonal elements equal to 1. These conditions im-
ply that the matrix is positive definite [8]. We checked the
kernel matrix on training sets of many different categories,
and all these matrices were positive definite. Since training
and test data are usually sampled from the same distribu-
tion, the sigma that we choose using training data fits the
test data, and the kernel is valid.

3. Experimental Results
The following experiments show that our method, which

captures structural information in a loose way, shows excel-
lent performance on different kinds of categories, including
structural objects and objects with large deformations and
viewpoint variation.

3.1. Implementation Details
It is reasonable to expect that different categories will

need different size codebooks. However, this requires too
much tuning. Thus, in all experiments, we created code-
books with 35 codewords per class.
Spatial grouping of features into parts was done using

morphological operators with seeds proportional to the size
of the image. In future work we plan to implement hierar-
chical clustering for grouping of features.

The following weighting function was used in the con-
struction of the context distributions:

f(R) = { 0.7 d < R
1/d1/5 d > R,

where d is the distance from the feature to the center of the
local coordinate system and radius R is a parameter. The
form of the weighting function was chosen empirically, al-
though a simple step function worked almost as well. Con-
text distributions were computed using the weighting func-
tion with four radiuses: 100, 200, 300 400 pixels.
The resulting four-level representations were matched

using the implementation of the Munkres algorithm from
[24]. The obtained distances were converted to the kernel
shown in Section 2.4.

3.2. The VOC 2006 Dataset
We tested our method on the VOC2006 set from the

PASCAL Visual Object Classes Challenge 2006 [4]. It in-
cludes images provided by Microsoft Research Cambridge
and “flickr.” The data contains views of bicycles, buses,
cats, cars, cows, dogs, horses, motorbikes, people, and
sheep, in arbitrary pose, a total of 5,304 images annotated
with ten categories. All the images contain a lot of clutter.
Each category is divided into training, validation, and test
sets. We used the training set for codebook creation and the
validation set for kernel SVM training. Using separate data
for codebook construction helped reduce overfitting. The
categorization tests were conducted on the test set.
The classification part of the Challenge tested twenty-

one state-of-the-art visual categorization methods. The
winners of the classification part of the competition (de-
pending on the category) were different variations of bag-
of-features representations that discard shape information
(QMUL-HSLS [4], INRIA-NOWAK [17], XRCE [19]),
and the best average performance was shown by QMUL-
LSPCH[4], which applies a two-layer SVM classifier on the
pyramid representations introduced in [13]. We conducted
our experiments on the data used in the challenge, because
it provides a benchmark on the state-of-the-art pure appear-
ance methods and the approaches that go beyond bag-of-
features (QMUL-LSPCH, [21]).
Table 1 compares the recognition performance of our ap-

proach with the winners of the challenge in each category.
The results show that our method outperforms all the meth-
ods on half of the categories and is close to the best in the
rest. It also achieves the best average EER.
We emphasize that our approach uses only one type of

low-level features, while others combine different types of
features. The codebooks used in our method are small and
constructed using K-means. The codebooks proposed in the
other methods ([19, 17]) are much larger and are obtained
using more powerful tools. Even though our appearance



Our method VOC 2006 Winner
Bicycle 0.920 0.870 (QMUL-LSPCH)
Bus 0.932 0.940 (QMUL-HSLS)
Car 0.910 0.921 (INRIA-Nowak)
Cat 0.850 0.866 (QMUL-LSPCH,QMUL-HSLS)
Cow 0.875 0.863 (QMUL-LSPCH,QMUL-HSLS)
Dog 0.820 0.800 (QMUL-HSLS)
Horse 0.840 0.850 (QMUL-LSPCH)

Motorbike 0.901 0.897 (QMUL-LSPCH,QMUL-HSLS,INRIA-Nowak)
Person 0.820 0.780 (QMUL-LSPCH)
Sheep 0.865 0.882 (XRCE)

Average recognition rate 0.873 0.863(QMUL-LSPCH)
Table 1. Categorization performance, corresponding to the EER. See [4] for the description of QMUL-LSPCH, QMUL-HSLS, XRCE,and
INRIA-NOWAK methods.

Dogs vs. easy animals Dogs vs. hard animals
Our method 0.837 0.968

Bar-Hillel at al. [1] 0.79 0.654
Table 2. Recognition rate, corresponding to the EER in dogs vs. animals experiments

model is very simple, the proposed approach shows excel-
lent performance due to incorporation of loose shape infor-
mation. In future work we plan to improve visual vocabu-
lary, as was done in [19]; and we expect that it will further
improve recognition.

3.3. Comparison to the Part-Based Shape Models

Next we test our method on more structured objects and
compare the results to a constellation type of model that
captures the location and scale relation between parts. The
method introduced in Bar-Hillel et al. [1] learns a gener-
ative model in a discriminative way using a boosting algo-
rithm and shows better performance than other constellation
models [7].
We test our method on the database of dogs and animals

presented in [1]. The dog set contains 460 images of dogs
of different breeds and sizes with varying amount of back-
ground. The pose in all images is almost the same. This
allows very good modeling of geometric information. We
follow the experimental setup of [1]. The images of animals
are divided into two sets: “hard animals” and “easy ani-
mals.” The “hard animals” set contains 460 images of an-
imals, with 50% quadrupeds – structurally similar to dogs,
such as horses, cows, bears, and elephants, and 50% other
animals such as birds, rabbits, monkeys, and insects. The
“easy animals” set contains 460 images of animals that are
not similar to dogs. We conducted two tests (as in [1]): dogs
vs. “hard animals” and dogs vs. “easy animals.” In both ex-
periments the training set included 230 images of dogs, and
230 images of animals from the corresponding set. We used
the training set for both codebook creation and kernel SVM
training. The test set included the 230 remaining images

of dogs and 230 images of animals from the corresponding
set. Table 2 presents the EER obtained in these experiments.
Even though the dogs in this data set appear in almost the
same pose, our method, which allows flexibility in shape,
significantly outperforms [1], which explicitly models the
locations of parts.

Our results in the “hard animals” test significantly out-
perform [1] and are even better than the result in the “easy
animals” test. This may seem unintuitive, because the ani-
mals from the “easy” set don’t look like dogs. Lower recog-
nition performance in the “easy animals” test can be ex-
plained by overfitting due to lack of training data – up to
ten images per animal.

We do not compare the performance of our method to the
bag-of-features representations on Bar-Hillel’s set, because
of possible differences between the implementations. How-
ever, we performed an experiment that illustrates the ben-
efits of local bags over bags of features computed globally
from the entire image. Figure 3 shows the average distances
between dogs (in red) and the average distances between
dogs and other animals (in blue). Our local bag approach
has a much larger margin between within-class distances
and between-class distances than the global approach.

In summary, the experiments show that the proposed
approach outperforms the state-of-the-art pure appearance
methods from ([4]), the methods that explicitly model spa-
tial configuration of parts ([1],[7]), and intermediate models
that augment bags of features with some spatial information
(QMUL-LSPCH in [4], [21]).



Figure 3. The red line shows the average distance between 100
dogs and the blue line shows average distance between 100 dogs
and 100 other animals. The distances in the left plot were cre-
ated by the proposed method, which matches local bags of fea-
tures. The right plot shows distances computed between bags cre-
ated from full images. Our distance is considerably better because
the within-class distances are much lower than the between-class
distances.

4. Conclusions

This paper presented a model that captures structural in-
formation in a loose manner by dividing the neighborhood
of each part into an ordered set of regions and computing
weighted bags of features in these regions. Since the lo-
cal bags are organized in a specific order, the representation
captures structural information. The regions are overlap-
ping, which allows for the shifting of parts that can result
from change of pose or other deformations. Our model also
allows variation in scale.
We have shown that the proposed representations can be

compared by matching (in polynomial time), which yields
a semantic distance between images. The distance is small
when the images correspond to the same category and large
otherwise. The distance was converted to a kernel and used
in SVM.
The experiments on objects with different levels of struc-

tural stability have demonstrated that our method showed
excellent performance in all cases. The benefit of a loose
shape approach can be explained by the fact that structural
information exists even in very flexible objects; modeling
this information in a loose way assists in recognition. Fur-
thermore, even objects with very stable structure can still
vary enough to break rigid models.
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