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Abstract

This paper proposes a new object representation,
called Connected Segmentation Tree (CST), which captures
canonical characteristics of the object in terms of the pho-
tometric, geometric, and spatial adjacency and contain-
ment properties of its constituent image regions. CST is
obtained by augmenting the object’s segmentation tree (ST)
with inter-region neighbor links, in addition to their recur-
sive embedding structure already present in ST. This makes
CST a hierarchy of region adjacency graphs. A region’s
neighbors are computed using an extension to regions of the
Voronoi diagram for point patterns. Unsupervised learning
of the CST model of a category is formulated as match-
ing the CST graph representations of unlabeled training
images, and fusing their maximally matching subgraphs.
A new learning algorithm is proposed that optimizes the
model structure by simultaneously searching for both the
most salient nodes (regions) and the most salient edges
(containment and neighbor relationships of regions) across
the image graphs. Matching of the category model to the
CST of a new image results in simultaneous detection, seg-
mentation and recognition of all occurrences of the cate-
gory, and a semantic explanation of these results.

1. Introduction

Physical objects in 3D world are finite and cohesive,
having characteristic photometric and geometric properties,
such as contrast, size, and shape. They also possess charac-
teristic visual structure which may be hierarchical, reflect-
ing the containment and spatial layout of structure of the
matter comprising them. Finally, they occupy distinct po-
sitions in space. Real world images are 2D projections of
real world objects, giving rise to 2D objects in images. The
images also exhibit a structure that mimics the real world
structure: (1) The 2D regions occur in a certain spatial con-
figuration, or spatial layout. (2) The hierarchical structure
of 3D, physical objects appears as recursive embedding of

subregions within the object region. (3) 2D regions com-
prising a subimage occupied by an object have certain pho-
tometric and geometric properties. Most prior work on 2D
image/object representation uses only (3), or a combination
of either (1)+(3) or (2)+(3). This paper proposes an object
representation that simultaneously captures all three aspects
of image structure, namely, (1)+(2)+(3), and demonstrates
the advantages of this more comprehensive object represen-
tation over the existing approaches in category modeling
and recognition.

Specifically, we extend the segmentation tree (ST) repre-
sentation, used previously in [19, 3], which models (2)+(3)
of regions that occur in a multiscale segmentation of im-
ages, by representing regions as nodes and their embedded
regions as the node’s children. Like other strictly hierar-
chical representations, ST can only help one infer some as-
pects of (1) from the information explicitly stored in it via
(2, 3), e.g., the centroid locations and orientations of sub-
regions. However, ST cannot distinguish many different
ways in which the same set of subregions may be spatially
distributed within the parent region, giving rise to signif-
icantly different visual appearances (Fig. 1a), while their
properties (2,3) remain fixed. Consequently, STs for many
visually distinct objects are identical. The extended model
we propose in this paper addresses this problem by includ-
ing new information about (1) – namely, information about
2D spatial adjacency among the regions – while retaining
the information about their recursive embedding structure
already present in ST. The new model augments ST with
region adjacency graphs, one for the children of each ST
node. A neighbor edge is added between two sibling nodes
in ST if the corresponding two regions are neighbors in
the image. This transforms ST into a graph, consisting of
two distinct sets of edges – one representing the original,
parent-child hierarchy, and the other, consisting of lateral
links, representing the newly added neighbor relationships
(Fig. 1). The neighbor relationships between any nonsi-
bling nodes in CST can be easily retrieved by examining
the neighbor relations of their ancestor nodes. To high-
light the presence of the complementary, neighbor informa-
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tion modifying the segmentation tree, the new representa-
tion is referred to as connected segmentation tree (CST),
even though it is strictly a graph. Both nodes and edges of
CST have attributes, i.e., they are weighted, where the node
(edge) weight is defined in terms of properties of the cor-
responding region (spatial relationship between regions).
Thus, CST generalizes ST to represent images as a hierar-
chy of region adjacency graphs. As multiscale regions may
be viewed as a basic vocabulary of object categories, the
CST may be seen as a basis for defining general purpose
image syntax, which can serve as an intermediate stage to
isolate and simplify inference of image semantics.

Since different spatial distributions of the same set of
regions result in significantly different 2D objects, model-
ing the region adjacency distribution captured in property
(1) above is important. However, formalizing this distribu-
tion is difficult, in part, because there is not even a clear
intuitive notion of neighbors among regions. For exam-
ple, it is not clear which of the many compact regions in
Fig. 1a should be called neighbors. Most prior work consid-
ers only contiguous regions that share borders as neighbors.
As the second major contribution of this paper, we propose
an approach to defining a region’s neighbors, as well as the
strength of their neighborliness. Specifically, we generalize
the Voronoi diagram, conventionally used for point patterns,
to define region neighbors. Our generalized Voronoi dia-
gram partitions an image into polygons, each containing a
region, representing its area of influence around it. Regions
having neighboring polygons define simple neighbors, and
the polygon properties determine their neighborliness. This
definition has yielded perceptually valid neighbors in most
cases in our informal evaluation (not presented in this pa-
per) on a large collection of image regions. The neighbors
and the strengths of their neighborliness are encoded by lat-
eral links and associated weights in CST.

As the third major contribution of this paper, we pro-
pose a new algorithm for learning CSTs. The max-clique
based algorithm for learning STs [19, 3] cannot be used for
CSTs, because a clique is defined only for graphs with un-
weighted edges. We resolve this by treating the weighted
edges in CST as a new set of weighted vertices, disjoint
from the set of nodes representing regions. Given the CST
representations of training images, our new algorithm dy-
namically optimizes the model structure by simultaneously
searching for nodes (regions) and edges (neighbor relation-
ships) with the highest weights across the images. The re-
sulting model may, at one extreme, degenerate into a pla-
nar graph, encoding only the region adjacency, or at an-
other extreme, into a strict tree, encoding only the recursive
embedding of regions. Consequently, CSTs, due to their
richer coverage of object structure, are expected to more
accurately model a broader variety of 2D categories than
the existing approaches based on capturing either (2)+(3) or

(1)+(3). While the literature discusses whether (1)+(3) or
(2)+(3) is more important for modeling objects, we present
the first empirical evaluation of advantages of jointly mod-
eling (1)+(2)+(3) vs. modeling either (1)+(3) or (2)+(3).

By adding (1) to aspects (2) and (3) of the image
structure already captured by ST, CSTs either retain or
strengthen the following desired characteristics of category
recognition based on them: (I) Efficient training under vary-
ing degrees of supervision, including unsupervised settings,
and on training sets of sizes very small to arbitrarily large;
(II) Providing for both object recognition and segmentation
that is invariant to translation, in-plane rotation, object artic-
ulation, partial occlusion, background clutter, and a certain
degree of scale changes; and (III) Providing for a seman-
tic explanation of object recognition in terms of the learned
object structure captured in the representation.

Given a set of training images, the three main steps of
the CST based approach to object learning and recognition
are illustrated in Fig. 1b. Step 1: A CST is obtained for
each image. Step 2: The training images need not all con-
tain examples of the unspecified category(ies) contained in
the training set which we want to learn. The category occur-
rences are discovered by searching for subimages within the
training images that are more similar to each other with re-
spect to (1)+(2)+(3) than to any other objects. This is done
by matching CSTs, and finding their common subgraphs.
Each set of matched subgraphs represents all occurrences of
one discovered category. The subgraphs within each such
set are then fused into a single graph-union which consti-
tutes the canonical model of the category. Step 3: Given the
CST of a new image, it is matched with the learned model
to simultaneously detect, recognize and segment all cate-
gory occurrences in the image. This matching also identi-
fies object parts along with their containment and neighbor
relationships present, which can be used as an explanation
of why each object is recognized. These steps parallel the
corresponding steps that would be followed if an ST were
used as in [19]; however, CST based processing involves
cyclic graphs instead of trees which significantly changes
the nature and complexity of the associated algorithms.

Section 2 reviews prior work; Sections 3 and 4 describe
Steps 1 and 2; and Sec. 5 presents experimental evaluation.

2. Prior Work and Our Contributions

There is a wide agreement in the literature that modeling
the spatial information along with (3) (i.e., photometric and
geometric properties) of regions is beneficial. However, dif-
ferent approaches advocate different representations of this
spatial information. Methods that account only for (1) (i.e.,
object’s spatial layout) and (3) simplify the object’s inte-
rior structure to a flat layout of regions, and compensate for
the missing information about (2) (i.e., containment or com-
positionality) by developing complex models of (3). This



(a) STs vs. CSTs (b) Block-diagram of our approach using the actual results of our algorithms

Figure 1. (a) Segmentation trees (STs), like other strict hierarchical models, do not directly encode the spatial layout of parts, but have to
infer this from the intrinsic part properties explicitly stored in STs, e.g., part orientation and centroid location relative to the object. Parts
of objects A and B have the same centroid locations and orientations. Therefore, the structure of two STs representing objects A and B
is identical. In contrast, the connected segmentation tree (CST) adds lateral edges to ST that link neighboring parts, thus significantly
reducing the modeling ambiguity about their spatial layout. Indeed, the two CSTs representing objects A and B differ in neighbor links
marked bold. (b) Our approach: Training images containing faces are represented by CSTs which capture the recursive containment (black
edges) and neighbor relationships (red edges) of regions. Similar common subgraphs of the CSTs (faces), are registered and fused into the
category model G. CST of a new image is matched with G to simultaneously detect, recognize, segment, and explain face occurrences.
“Explanation” refers to the ability to recursively backtrace the results of recognition to the recognition of constituent facial parts (which
objects in their own right) and their spatial relationships.

usually leads to infeasible learning and inference, forcing
these approaches to resort to restrictive assumptions about
(1). For example, the constellation [10] and k-fan [8] mod-
els have a pre-specified, small number of parts, configured
in a pre-specified planar-graph structure. The hierarchical
models of, e.g., [4, 13, 11, 18, 15, 9] capture only (1)+(3),
by allowing an object part to appear alternatively as a set of
subparts. The hierarchy underlying these models is usually
constrained for tractability, e.g., by assuming a fixed num-
ber of object parts, depth, or branching factor. The (1)+(3)
based model of [6], and (2)+(3) based model of [19, 3] relax
the restrictive assumptions of their peer models; however,
either approach misses to jointly encode (1) and (2), i.e.,
the complete spatial information about object’s structure.

Only a few approaches recursively decompose an ob-
ject into parts while retaining lateral relations among the
parts themselves. For example, the And-Or graph [7] speci-
fies a context sensitive grammar that uses both Markov tree
and Markov random fields to arrange user-specified tem-
plates. Also, the model used in [14] captures the object-
characteristic blobs and their containment, and subse-
quently their pairwise contiguity relationships. In contrast,
our definition of neighbors allows even non-contiguous re-
gions as neighbors, and we simultaneously identify object-
characteristic regions, and their containment and neighbor
relationships.

CSTs inherit a number of attractive properties from STs
[19, 3]. Since region boundaries coincide with object con-
tours, the use of CST results in simultaneous object recog-
nition and segmentation. The use of regions and their two
types of relationships by CST helps efficiently model the

natural properties of real-world objects, such as spatial co-
hesiveness and relative locations. The exact learning of
CSTs is computationally feasible. The requirement for un-
supervised learning is that the training images should con-
tain frequent occurrences of a category, although not neces-
sarily in every training image.

3. From Image to CST

This section presents Step 1 of our approach (Sec. 1).
The CST is derived from the ST of the image. ST captures
the recursive embedding of smaller regions within larger
ones, obtained from the multiscale segmentation algorithm
of [2]. In ST, the total number of nodes (≈50), branching
factor, and depth (≈10) are all automatically determined
by the image at hand. The ST is transformed into CST
by introducing lateral edges connecting neighboring sibling
nodes under every node in ST. Below, we first present our
algorithm for the computation of region neighbors and their
strengths, and then review the region properties associated
with nodes in CST which completes the representation.

3.1. Neighbors of a Region

While many approaches have been proposed to de-
fine neighbors of points in a point pattern [1], the defi-
nition of neighbors for nonpoint objects has received lit-
tle attention in the literature. To define a region’s neigh-
bors as well as the strength of their neighborliness, we
generalize the Voronoi diagram for point patterns to re-
gions. The Voronoi diagram of a point pattern S asso-
ciates with each point P∈S a cell VP which is the re-



gion closer to P than to any other point Q∈S , VP =
{T :T∈Rn, ∀Q∈S , d(Q,T )>d(P, T )}. Thus, for any non-
degenerate distribution of points, the Voronoi diagram tes-
sellates the space into a set of cells. For the 2D case here,
the cells belonging to the interior of S are convex poly-
gons, each containing exactly one of the points in the pat-
tern. The points at the boundary of S have incomplete
cells, extending to infinity in the directions of no neighbors.

The intuition underlying our extension of the Voronoi di-
agram to regions is that regions are exposed to each other
through their nearby boundary segments. If parts of the
borders of two regions are visible to and near each other,
and are sufficiently far from other region boundaries, then
the two regions are called neighbors. Thus, the exposure
of one region to another here means more than just line-of-
sight connectivity. Neighbors are derived from the Voronoi
relationships among the individual pixels along the region
boundaries. Given a set of regions, we first compute the
point based Voronoi tessellation for all pixels along the re-
gions’ boundaries (Fig. 2). Then, for each region v, we
find the union of the Voronoi polygons of pixels along its
boundary, thus obtaining a generalized Voronoi polygon of
the region Vv that defines the area of influence of v in the
image. Generalized here means that the line segments con-
necting the vertices of Vv are a sequence of short line seg-
ments, in general, not aligned with each other, thus resulting
in a jagged edge between the vertices. Any such sequence
of line segments between two vertices of Vv represents a
shared border with another adjacent polygon, e.g., Vv′ be-
longing to region v′, which means that v and v′ are neigh-
bors (Figs. 2). The relative degrees of exposure of a region
to all its neighbors are used as measures of the strengths
of its neighborliness to these neighbors. The neighborli-
ness is in general asymmetric, by definition. Specifically,
given that v and v′ are neighbors, the neighborliness seen
by v is defined as the length of their shared Voronoi edge
divided by the perimeter of Vv . A value closer to 1 indi-
cates a stronger neighborhood relationship than that closer
to 0. The Voronoi diagram can be computed very efficiently
(for n points, complexity is O(n log n)).

3.2. Characterization of Nodes and Edges in CST

As for STs in [3], a vector of region properties ψv , e.g.,
contrast, area, perimeter, etc., is associated with each node v
in CST, where the properties are specified relative to v’s par-
ent, to allow scale and rotation-in-plane invariance. Thus,
images are represented by CSTs, h=(V,E, ψ, φ), where V
andE are the sets of nodes and edges, and ψ and φ are func-
tions that assign ψv to v∈V , and weights φe to e∈E. For
ascendant-descendant edges, φe∈{0, 1} indicates the ab-
sence/presence of region embedding. For a directed lateral
edge from node v to node v′, φe∈[0, 1] equals the strength
of their neighbor relationship seen by v.

Figure 2. A generalized Voronoi polygon (red) is the union of
Voronoi polygons of all pixels along the region’s boundary (blue);
regions are called neighbors if their generalized Voronoi polygons
touch. It is correctly captured that the two relatively close regions
that can “see” each other only through a narrow gap C-D are not
neighbors, and that the two more distant regions are neighbors
since they share the Voronoi segment AB. If the two small regions
that are not neighbors come closer to each other along segment
CD, the neighborliness of the two elongated regions decreases.

4. Learning Object Categories

This section presents Step 2 of our approach mentioned
in Sec. 1 that discovers category occurrences in the train-
ing set H={h1, . . .hM}, and then learns their models. To
this end, the common subgraphs of all pairs of CSTs
(h, h′)∈H×H are found as described below.

4.1. Matching CSTs

We here present a new matching algorithm that general-
izes the max-clique approaches [19, 12, 20, 16]. Our algo-
rithm achieves robustness by pairing regions whose prop-
erties (1)+(2)+(3) (defined in Sec. 1) match, and the same
holds for their neighbors, and these two conditions recur-
sively hold for their embedded subregions. In view of the
lateral connections to neighbors, our matching is context
sensitive, unlike is the case in [19] which involves con-
text free matching. Like [19], we also account for splits
within regions, or, the opposite, mergers between low-
contrast, contiguous regions, both of which may occur due
to changes, e.g., in illumination, viewpoint, and object ori-
entation as images are being acquired. This may cause a
node in one CST to split into multiple nodes at multiple
levels. These potential structural changes of CSTs across
the images are addressed by considering matches of all de-
scendants under a node, even when its direct children cannot
find a good match. Fig. 3 illustrates our matching algorithm.
Given two CSTs, they are first transformed into unweighted
CSTs, and then matched. Before we can present the algo-
rithm, we need the following five definitions.
Def. 1. Unweighted CST, h̃, is obtained from CST, h, by
inserting between any two connected nodes v1, v2∈h a new
nodew, deleting the original edge e=(v1, v2), and associat-
ing weight φe withw, ψw=φe. h̃ preserves the original con-



nectivity among nodes in h, replacing the weighted edges
(v1, v2) in h with unweighted paths (v1, w, v2) (Fig. 3).
Def. 2. Saliency rv of node v in h̃ is defined as follows.
If v is a node inserted according to Def. 1, then rv�ψv ,
which is the weight of the edge between the corresponding
regions in h. If v is the original node (i.e., region) from h
then rv�‖ψv‖1.
Def. 3. (Consistency “∼”) Let h̃ and h̃′ be unweighted
CSTs, and nodes v1, v2∈h̃ and v′1, v

′
2∈h̃′. (v1, v2) is con-

sistent with (v′1, v′2), (v1, v2)∼(v′1, v′2), if: (i) v1 and v′1 are
exclusively regions, or containment relationship, or neigh-
bor relationship, in the original CSTs h and h′, and the same
holds for v2 and v′2; AND (ii) there is a directed path be-
tween v1 and v2, and the same holds for v′1 and v′2.
Def. 4. (Consistent subgraph isomorphism) Let
h̃=(Ṽ , Ẽ, ψ̃) and h̃′=(Ṽ ′, Ẽ′, ψ̃′) be unweighted CSTs,
and f :Ũ→Ũ ′ be a bijection between two subsets of nodes
Ũ⊆Ṽ and Ũ ′⊆Ṽ ′ in h̃ and h̃′. f is consistent subgraph iso-
morphism if for any (v1, v2)∈Ũ connected with a directed
path holds (v1, v2)∼(f(v1), f(v2)).
Def. 5. (Matching algorithm) Given two unweighted CSTs,
h̃ and h̃′, the matching algorithm finds a consistent sub-
graph isomorphism f , which maximizes their similarity
measure Sh̃h̃′ , defined as

Sh̃h̃′ � max
f

∑
(v,v′)∈f(2 min(rv, rv′ )−max(rv, rv′)+1).

(1)
From (1), the algorithm seeks consistent matches among
both regions and their relationships whose saliencies are
high, and whose cost of matching (differences in saliency)
is small. To satisfy the consistency constraints (Def. 3), the
algorithm matches regions with regions, and separately re-
gion relationships with corresponding relationships, while
preserving the original topology of h and h′. This is
done by constructing an association graph A=(VA, EA, s),
where VA=Ṽ×Ṽ ′ is the set of node pairs (v, v′) from h̃
and h̃′, representing all possible region matches or rela-
tionship matches. EA is the set of edges connecting only
consistent vertices EA={(a, b):a �=b∈VA, a∼b}. Note that
while constructing A, we account for structural changes in
CSTs, since EA connects all descendants under a visited
node, and thus allows their matching. s assigns weight
svv′=2 min(rv, rv′)−max(rv, rv′)+1 to each (v, v′)∈VA.
Given A, the next theorem fully specifies the algorithm.

Theorem 1. The maximum similarity, consistent, subgraph
isomorphism f between h̃ and h̃′ is equivalent to the maxi-
mum weight clique of A.
Proof: Follows directly from the construction of A. �

To compute the maximum weight clique of A, we use
the well-known replicator dynamics approach of [16]. The
resulting maximally matching subgraphs g̃⊂h̃ and g̃′⊂h̃′
can be easily transformed into the corresponding weighted
subgraphs g⊂h and g′⊂h′, by replacing the previously in-

Figure 3. Matching algorithm: edges of CST are represented by
new nodes in the resulting unweighted CST, and then regions and
their relations that preserve the original topology are matched.

serted nodes with weighted, directed edges. Complexity of
matching is O((|V |+|E|)2), and a MATLAB implementa-
tion takes about 10s on a 2.8GHz, 2GB RAM PC for two
CSTs with approximately 50 nodes each.

4.2. From Category Instances to their Model

To extract category occurrences from the training set H,
we match all pairs of CSTs (h, h′)∈H×H using the algo-
rithm of Sec. 4.1. Specifically, we match all subgraphs hv

and h′v rooted at regions (v, v′)∈h×h′, and thus compute
the similarity measure Svv′ , given by (1), of every region
pair (v, v′)∈H×H. Since S measures the similarity of re-
gions in terms of (1)+(2)+(3), the S values of matches be-
longing to a category are expected to be more similar than
the S values of matches belonging to different categories.
Therefore, categories and their occurrences can be discov-
ered by clustering region pairs (v, v′)∈H×H with respect to
their associated Svv′ values. The choice of a suitable clus-
tering algorithm for this purpose depends on the degree of
supervision available in training. In our experiments, we
use the standard N-cuts clustering algorithm, since the total
number of categories present in H is known. In case this in-
formation is unknown, one can use any other algorithm that
does not require the number of clusters as an input parame-
ter, but requires the level of sensitivity to inter-cluster (i.e.,
inter-category) differences. Each cluster of matching sub-
graphs of CSTs, G={g1, . . ., gN}, represents a discovered
category, defined by the cluster properties.

The cluster G may contain complete views of category
instances, but it may also contain partial views, because:
some parts of the category are occluded, or because some
of the regions split or merge due to segmentation instabili-
ties, causing structural changes in CSTs (e.g., due to splits
or mergers of low-contrast regions under different lighting
or viewing conditions). A minimum-size model, that rep-
resents the entire category and with which both entire and
partial object views can be registered, is the union of graphs
in G. To find the union of G, G=(VG , EG , ψ, φ), and thus



derive the category model, we use an approach similar to
that presented in [19]. The main difference is that their al-
gorithm learns an unweighted, acyclic tree-union, whereas
our graph-union is cyclic and contains weighted edges cap-
turing the strength of both containment and neighbor rela-
tionships among nodes in G. We construct G sequentially.
Namely, in each iteration τ , G(τ) is constructed by matching
G(τ−1) with a new graph g∈G, and then by adding and ap-
propriately connecting the unmatched nodes to G(τ−1). For
matching g and G(τ−1), we use the algorithm of Sec. 4.1.
In the resulting G(τ), multiple parent nodes may share the
same children, as illustrated in Fig. 1.

As in [3], the vectors ψv associated with nodes v∈G are
defined as ψv�median{ψv′} of all nodes v′∈G that got
matched with v∈G. Similarly, for all edges e in G, we define
φe�median{φe′} of all edges e′∈G that got matched with
e. The result of learning are graph-union models that cap-
ture the canonical properties (1)+(2)+(3) of regions defining
each category present in the training set.

5. Results

Experimental evaluation presented in this section
demonstrates that the proposed CST model possesses the
desired characteristics (I), (II), and (III), stated in Sec. 1, and
quantifies the performance gains of modeling (1)+(2)+(3)
vs. (2)+(3) and (1)+(3) for the tasks of object recognition
and segmentation. We consider 14 categories from four
datasets: 435 faces, 800 motorbikes, 800 airplanes, 526
cars (rear) from Caltech-101; 328 Weizmann horses; 1554
images queried from LabelMe to contain cars, trees, and
buildings together; and 200 images with 715 occurrences
of cows, horses, sheep, goats, camels, and deer from UIUC
Hoofed Animals dataset. Caltech-101 images contain only
a single, prominently featured object from the category, ex-
cept for images of cars (rear) containing multiple, partially
occluded cars appearing at different scales, with low con-
trast against textured background. The Weizmann dataset
contains sideviews of walking/galloping horses of differ-
ent breeds, colors and textures, with different object artic-
ulations in their natural (cluttered) habitat. LabelMe is a
more difficult collection of real-world images which contain
many other object categories along with the queried ones,
captured under different lighting conditions, and at varying
scales. The Hoofed Animals dataset presents the mentioned
challenges, and has higher complexity as it contains multi-
ple instances of multiple very similar animal categories per
image, requiring high inter-category resolvability.

The Caltech-101 and Weizmann categories are learned
one category at a time on the training set that consists of
Mp randomly selected examples showing the category, and
Mn≥0 images from the background category in Caltech-
101 (M=Mp+Mn). The LabelMe and Hoofed Animals
categories are all learned together by randomly selecting

Figure 4. Samples from Hoofed Animals (left) and LabelMe
(right). Segmentation results of CST are overlaid on the original.
Different colors denote recognized categories. CST successfully
resolves small differences between the categories sheep and goats.

M images from the corresponding dataset. To recognize
and segment any category occurrences in a test image, the
learned category model is matched with CST of the im-
age. The matched subtrees (i.e., detections) whose simi-
larity measure is larger than a threshold are adjudged as de-
tected objects. Results shown in tables and figures are ob-
tained for the threshold that yields equal error rate. We use
the following definitions of detection (DE), and segmenta-
tion (SE) errors. Let D denote the area that a detection cov-
ers in the test image, and G denote the ground-truth object
area. Then, DE�D∩G

D∪G , and SE�XOR(D,G)
D∪G . A detection is a

false positive if DE<0.5, otherwise it is a true positive (TP).
Recognition is evaluated only on TP’s by visual inspection.

Qualitative evaluation – Segmentation: Figs. 4–5 demon-
strate high accuracy of simultaneous object detection and
segmentation in images from LabelMe and Hoofed Ani-
mals datasets, using M=50 training images. Each TP in
the figures is correctly recognized. CSTs outperform STs in
both object detection and segmentation, especially in cases
of partial occlusion (e.g., cars and cows in Fig. 5), and for
objects defined rather as a region spatial layout than con-
tainment (e.g., spotted cows in Fig. 5). In these cases, mod-
eling of the region adjacency by CSTs proves advantageous.
Segmentation is good even in cases when object boundaries
are jagged and blurred (e.g., trees in Fig. 4), and when ob-
jects from the same category occlude each other, forming a
complex region topology with low-intensity contrasts (e.g.,
cars in Fig. 4). Objects that are not detected, for the most
part, have low intensity contrasts with the surround, and
thus do not form category-characteristic subgraphs within
CSTs that can be matched with the category model.

Qualitative evaluation – Model: Fig. 6 illustrates the
model G obtained for the category horses, learned on six,
randomly selected images D from the Weizmann dataset.
Nodes v in G, depicted as rectangles, contain regions from
D that got matched with v during learning. As can be
seen, the structure of G correctly captures the recursive con-
tainment and neighbor relations of regions occupied by the
horses in D. For example, nodes head, neck, and mane are
found to be children of node head&neck, and they are all



(a) original image (b) STs (c) CSTs

Figure 5. CSTs outperform STs in both detection and segmentation
on samples from Hoofed Animals (top) and LabelMe (bottom).
Undetected image parts are masked out.

Figure 6. CST-based model of Weizmann horses.

identified as neighbors. Also, it is correct that head&neck
and tail are not neighbors. Similar background regions that
co-occur with horses in D may also be included in the model
(e.g., nodes corresponding to fence). Typically, the percent-
age of background nodes out of the total number of model
nodes is small (3-5%).
Quantitative evaluation: Fig. 7 (left) presents the recall-
precision curves (RPC) of detection for the Caltech-101
categories using CSTs and STs. Detection performance in
the presence of occlusion is tested by masking out a ran-
domly selected rectangular area in the image, and replac-
ing this area with a patch from the background category
of Caltech-101. CST increases the area under the RPC of
ST by 6.5 ± 0.3%, and by 3.1 ± 0.2% in the presence of

the occluding patch covering 20% of the image. Invariance
to in-plane rotation is tested by randomly rotating test im-
ages, as illustrated in Fig. 1b. Performance on these rotated
images is the same as the one presented in Fig. 7. Mea-
suring the strength of neighborliness using the generalized
Voronoi diagram improves performance over the case when
the weights of links in CST are set to take only values 1
or 0, referred to as CST-unweight. CST increases the area
under the RPC of CST-unweight by 2.3 ± 0.3%. Fig. 7
(right) shows recognition accuracy of CST and ST. A small
increase in Mn does not downgrade the accuracy. As Mn

becomes larger, objects belonging to other categories start
appearing more frequently, and thus get learned, making
the training set inappropriate. Increasing Mp yields smaller
recognition error. CST outperforms ST in recognition, and
longer maintains high accuracy with the increase of Mn. In
general, the number of nodes in the model quickly reaches
saturation as new positive examples are added to the train-
ing set, and continues to very slowly increase, in part, due
to chance repetitions of background regions.

Table 1 summarizes detection recall, and segmentation
and recognition errors obtained for the equal error rates on
LabelMe and Hoofed Animals datasets. For Hoofed Ani-
mals, CST outperforms ST in detection recall by 7.5%, seg-
mentation by 10.7%, and recognition by 8.6%. For compar-
ison, we obtained SE=6.5% on a relatively simple UIUC
(multiscale) car dataset, using the same set-up as in [11],
while their result is SE=7.9%. The other hierarchical ap-
proaches cited here use non-benchmark datasets, or report
a single retrieval result for the entire Caltech-101, beyond
the focus of this paper. Non-hierarchical approaches that
model objects using image segments obtained at only one
pre-selected scale, report the following state-of-the-art re-
sults: [17] – SE=47% for buildings, and SE=79% for cars
of LabelMe; [21] – SE=7% for Weizmann horses; and [5]
– SE=18.2% for Weizmann horses. In comparison with
these approaches, Table 1 indicates that the CSTs yield bet-
ter, or, in only a few cases, very similar performance. Re-
garding recognition accuracy, Fig. 7 shows that we outper-
form by 1.8 ± 0.3% the recognition rate of 94.6% of [5]
on the four Caltech-101 categories. Other approaches cited
here use a different, less demanding recognition evaluation
based on classifying either the entire images or bounding
boxes around objects.

The presented results demonstrate that our approach is
invariant with respect to: (i) translation, in-plane rotation
and object articulation, since CST itself is invariant to these
changes; (ii) certain degree of scale changes, since match-
ing is based on relative properties of regions; (iii) occlusion
in the training and test sets, since graph-union registers the
entire (unoccluded) category structure from partial views of
occurrences in the training set, while subgraphs of visible
object parts in the CST of a test image can still be matched



LabelMe Trees LabelMe Buildings LabelMe Cars Weizmann Horses Horses Cows Deer Sheep Goats Camels

Recall 47.6±6.9 92.6±6.9 67.6±6.9 91.9±5.2 81.2±10.3 78.4±4.2 88.1±6.9 81.2±5.3 78.2±8.6 89.9±7.2

Seg. error 41.6±7.9 34.6±13.4 32.5±8.2 7.2±2.5 15.9±5.3 17.1±4.6 11.1±8.4 24.8±7.2 20.1±8.1 11.5±5.1

Rec. error 19.7±3.8 11.6±2.9 12.9±4.8 7.9±4.1 7.8±4.2 6.5±6.2 7.7±3.4 7.8±4.1 12.2±5.4 3.2±3.9

Table 1. Detection recall, segmentation and recognition errors (in %) using the same number of training and test images as in [17, 21, 5].

Figure 7. (left) Detection recall-precision curves: “CST-unweight”
means that edges in CST are not weighted. 20% is the size of a
rectangular occlusion w.r.t. the image size. Mp=10, Mn=10. ST
is the method of [19]. (right) Recognition accuracy of CST and
ST for the varying ratio of Mp and Mn in the training set.

with the model; (iv) minor depth rotations of objects caus-
ing their shape deformations, because structural instability
of CSTs (e.g., due to region splits/mergers) is accounted for
during matching; and (v) clutter, since clutter regions are
not frequent and thus not learned.

6. Conclusion

We have presented what we believe is the first attempt
to jointly learn a canonical model of an object in terms
of photometric and geometric properties, and containment
and neighbor relationships of its parts. As other funda-
mental contributions, the paper proposes: (1) A generalized
Voronoi diagram over regions, which is used for finding a
region’s neighbors, and measuring the strength of region
neighborliness; and (2) A new max-clique based algorithm
for matching graphs with weighted edges and nodes.1
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