
Abstract 

Inspired by Weber's Law, this paper proposes a simple, 

yet very powerful and robust local descriptor, Weber 

Local Descriptor (WLD). It is based on the fact that 

human perception of a pattern depends on not only the 

change of a stimulus (such as sound, lighting, et al.) but 

also the original intensity of the stimulus. Specifically, 

WLD consists of two components: its differential 

excitation and orientation. A differential excitation is a 

function of the ratio between two terms: One is the relative 

intensity differences of its neighbors against a current 

pixel; the other is the intensity of the current pixel. An 

orientation is the gradient orientation of the current pixel. 

For a given image, we use the differential excitation and 

the orientation components to construct a concatenated 

WLD histogram feature. Experimental results on Brodatz 

textures show that WLD impressively outperforms the 

other classical descriptors (e.g., Gabor). Especially, 

experimental results on face detection show a promising 

performance. Although we train only one classifier based 

on WLD features, the classifier obtains a comparable 

performance to state-of-the-art methods on MIT+CMU 

frontal face test set, AR face dataset and CMU profile test 

set.  

1. Introduction 

In this paper, we propose a simple, yet very powerful and 

robust local descriptor. It is inspired by Weber's Law, 

which is a psychological law [7]. It states that the change 

of a stimulus (such as sound, lighting, et al.) that will be 

just noticeable is a constant ratio of the original stimulus. 

When the change is smaller than this constant, human 

being would recognize it as a background noise rather than 

a valid signal. Motivated by this point, the proposed Weber 

Local Descriptor (WLD) is computed based on the ratio 

between the two terms: One is the relative intensity 

differences of its neighbors against a current pixel; the 

other is the intensity of the current pixel. 

Several descriptors have been proposed to represent 

textured regions in practical applications, such as texture 

classification [15], object recognition [11], and face 

detection [21] et al. Recently, Mikolajczyk and Schmid 

evaluate the performance of some descriptors computed 

for local interest regions in [14]. Several researchers have 

used Weber’s Law in computer vision, such as [2], et al. 

The rest of this paper is organized as follows: In Section 

2, we propose a local descriptor WLD. In Section 3 and 4, 

some experimental results are presented about the 

applications of WLD on texture classification and face 

detection, followed by conclusion in Section 5. 

2. WLD for Image Representation 

In this section, we review Weber's Law and then propose a 

descriptor WLD. 

2.1. Weber's Law 

Ernst Weber, an experimental psychologist in 19th century, 

observed that the ratio of the increment threshold to the 

background intensity is a constant [7]. This relationship, 

known since as Weber's Law, can be expressed as: 

I
k

I

∆
= , (1) 

where ∆I represents the increment threshold (just 

noticeable difference for discrimination); I represents the 

initial stimulus intensity and k signifies that the proportion 

on the left side of the equation remains constant despite of 

variations in the I term. The fraction ∆I/I is known as the 

Weber fraction.  

2.2 WLD 

Motivated by Weber’s Law, we propose a descriptor WLD. 

It consists of two components: its differential excitation (ξ) 

and orientation (θ). ξ is a function of the Weber fraction 

(i.e., the relative intensity differences of its neighbors 

against a current pixel and the current pixel itself). θ is a 

gradient orientation of the current pixel. 

2.2.1 Differential excitation 

We use the intensity differences between its neighbors and 

a current pixel as the changes of the current pixel. By this 

means, we hope to find the salient variations within an 

image to simulate human beings perception of patterns. 

Specifically, a differential excitation ξ(Ic) of a current pixel 

is computed as illustrated in Fig. 1, where Ic denotes the 

intensity of the current pixel; Ii (i=0, 1, …p-1) denote the 

intensities of p neighbors of Ic (p=8 here). 
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Fig. 1. An illustration of computing a WLD feature of a pixel. 

To compute ξ(Ic), we first calculate the differences 

between its neighbors and a center point:  

( )
diff i i i c

f I I I I= ∆ = − . (2) 

Hinted by Weber’s Law, we then compute the ratios of the 

differences to the intensity of the current point: 

( ) i

ratio i

c

I
f I

I

∆
∆ = . (3) 

Subsequently, we consider the neighbor effects on the 

current point using a sum of the difference ratios: 
1
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To improve the robustness of a WLD to noise, we use an 

arctangent function as a filter on fsum(٠). That is: 

( ) ( )arctan
=arctan

sum sum
f f f⋅ ⋅       . (5) 

Combining Eqs. (2), (3), (4) and (5), we have: 
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So, ξ(Ic) is computed as: 

( )
1

0

arctan
p

i c

c

i c

I I
I

I
ξ

−

=

  −
=   

   
∑ . (7) 

Note that ξ(Ic) may take a minus value if the intensities of 

neighbors are smaller than that of a current pixel. By this 

means, we attempt to preserve more discriminating 

information in comparison to using the absolute value of 

ξ(Ic). Intuitively, if ξ(Ic) is positive, it simulates the case 

that the surroundings is lighter than the current pixel. In 

contrast, if ξ(Ic) is negative, it simulates the case that the 

surroundings is darker than the current pixel. 

As shown in Fig. 2, we plot an average histogram of the 

differential excitations on 2,000 texture images. One can 

find that there are more frequencies at the two sides of the 

average histogram (e.g., [-π/2, -π/3] and [π/3, π/2]). It 

results from the approach of computing the differential 

excitation ξ of a pixel (i.e., a sum of the difference ratios of 

p neighbors against a central pixel) as shown in Eq. (7). 

However, it is valuable for a classification task. For more 

details, please refer to Section 2.2.4, Section 3 and 4. 

2.2.2. Orientation 

For the orientation component of WLD, it is computed as: 

 
Fig. 2. A plot of an average histogram of the differential 

excitations on 2,000 texture images. 

 

 
Fig. 3. The upper row is original images and the bottom is 

filtered images. 
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where θi is the angle of a gradient difference: 
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where Ii (i=0,1,…p/2-1) are the  neighbors of a current 

pixel; R(x) is to perform the modulus operation, i.e., 

( ) mod( , )R x x p= , (10) 

where p is the number of neighbors as mentioned in 

Section 2.2.1. Note that in Eqs. (8) and (9), we are only 

needed to compute half of these angles because there 

exists symmetry for 
i

θ s when i takes its values in the two 

intervals [0, p/2-1] and [p/2, p-1].  

For simplicity, θ’s value is quantized into T dominant 

orientations. Before the quantization, the value of θ is 

mapped into the interval [0, 2π] according to its value 

computed using Eq. (9) and the sign of the denominator 

and numerator of the right side of Eq. (9). Thus, the 

quantization function is as follows:  

Фt=φ(θ)=
2t

T
π , and 

1
mod ,

2 / 2
t T

T

θ

π

  
= +  

  
. (11) 

For example, if T=8, these T dominant orientations are 

computed as: Фt=(tπ)/4, (t=0, 1, …, T-1). In other words, 

those orientations located within the interval [Фt-(tπ)/8, Фt 

+(tπ)/8] are quantized as Фt. 

As ilustrasted in Fig. 3, we show some filtered images 

by the descriptor WLD, from which one could conclude 

that a WLD extracts the edges of images perfectly even 

with heavy noise (e.g., the middle column of Fig. 3). 
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Fig. 4. An illustration of a WLD histogram feature for a given image, (a) H is concatenated by M sub-histograms {Hm}(m=0, 1, …, M-1). 

Each Hm is concatenated by T histogram segments Hm,t (t=0, 1, …, T-1). Meanwhile, for each column of the histogram matrix, all of M 

segments Hm,t (m=0, 1, …, M-1) have the same dominant orientation Фt. In contrast, for each row of the histogram matrix, the 

differential excitations ξj of each segment Hm,t (t=0, 1, …, T-1) belongs to the same interval lm. (b) A histogram segment Hm,t. Note that if 

t is fixed, for any m or s, the dominant orientation of a bin hm,t,s is fixed (i.e., Фt). 

Table 1 Weights for a WLD histogram 

 H0 H1 H2 H3 H4 H5 

Frequency percent 0.2519 0.1168 0.1175 0.0954 0.0864 0.3268 

Weights (
m

ω ) 0.2688 0.0854 0.0958 0.1000 0.1021 0.3497 

 

2.2.3. WLD histogram 

Given an image, as shown in Fig. 4 (a), we encode the 

WLD features into a histogram H. We first compute the 

WLD features for each pixel (i.e., {WLD(ξj, θj)}j). The 

differential excitations ξj are then grouped as T 

sub-histograms H(t) (t=0, 1, …, T-1), each sub-histogram 

H(t) corresponding to a dominant orientation (i.e., Фt). 

Subsequently, each sub-histogram H(t) is evenly divided 

into M segments, i.e., Hm,t, (m=0, 1, ..., M-1, and in our 

implementation we let M=6.). These segments Hm,t are 

then reorganized as the histogram H. Specifically, H is 

concatenated by M sub-histograms, i.e., H={Hm}, m=0, 

1, ..., M-1. For each sub-histogram Hm, it is concatenated 

by T segments Hm={Hm,t}, t=0,1,…T-1. 

Note that after each sub-histogram H(t) is evenly 

divided into M segments, the range of differential 

excitations ξj (i.e., l=[-π/2, π/2]) is also evenly divided into 

M intervals lm (m=0, 1, ..., M-1). Thus, for each interval lm, 

we have lm=[ηm,l, ηm,u], here, the lower bound ηm,l = 

(m/M-1/2)π and the upper bound ηm,u =[(m+1)/M-1/2]π. 

For examples, l0=[-π/2, -π/3]. 



Furthermore, As shown in Fig. 4 (b), a segment Hm,t is 

composed of S bins, i.e., Hm,t={hm,t,s}, s=0, 1, …, S-1. 

Herein, hm,t,s is computed as:  
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where I(٠) is a function as follows: 

1 is ture
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Thus, hm,t,s means the number of the pixels whose 

differential excitations ξj belong to the same interval lm and 

orientations θj are quantized to the same dominant 

orientation Фt and that the computed index Sj is equal to s. 

We segment the range of ξ into several intervals due to 

the fact that different intervals correspond to the different 

variances in a given image. For example, given two pixels 

Pi and Pj, if their differential excitations ξi ∈ l0 and ξj ∈ l2, 

we say that the intensity variance around Pi is larger than 

that of Pj. That is, flat regions of an image produce smaller 

values of ξ while non-flat regions produce larger values. 

However, besides the flat regions of an image, there are 

two kinds of intensity variations around a central pixel 

which might lead to smaller differential excitations. One is 

the clutter noise around a central point; the other is the 

“uniform” patterns as shown in [15] (The term “uniform” 

means that there are a limited number of transitions or 

discontinuities in the circular presentation of the pattern.). 

Meanwhile, the latter provides a majority of variations in 

comparison to the former, and the latter can be 

discriminated by the orientations of the current pixels. 

Here, we let M=6 for the reason that we attempt to use 

these intervals to approximately simulate the variances of 

high, middle or low frequency in a given image. That is, 

for a pixel Pi, if its differential excitation ξi ∈ l0 or l5, we 

call that the variance near Pi is of high frequency; if ξi∈ l1 

or l4, or ξi ∈ l2 or l3, we call that the variance near Pi is of 

middle frequency or low frequency, respectively. 

2.2.4. Weight for a WLD histogram 

Intuitively, one often pays more attention to the variances 

in a given image compared to the flat regions. That is, the 

different frequency segments Hm play different roles for a 

classification task. Thus, we can weight the different 

frequency segments with different weights for a better 

classification performance. 

For weight selection, a heuristic approach is to take into 

account the different contributions of the different 

frequency segments Hm (m=0, 1, …, M-1). First, by 

computing the recognition rate for each sub-histogram Hm 

separately, we obtain M rates R={rm}; then, we let each 

weight /
m m ii

r rω = ∑  as shown in table 1. Simultaneously, 

as shown in table 1, we collect statistics of the percent of 

frequencies of each sub-histogram. From this table, one 

can find that these two groups of values (i.e., frequency 

percent and weights) are very similar. 

3. Application to Texture classification 

In this section, we use WLD features for texture 

classification and compare the results with that of the 

state-of-the-art methods. 

3.1. Background 

Several approaches for the extraction of texture features 

have been proposed in literature. Dorkó and Schmid 

optimize the keypoint detection and then use Scale 

Invariant Feature Transform (SIFT) for the image 

representation [3]. Jalba et al. present a multi-scale method 

based on mathematical morphology [8]. Lazebnik et al. 

present a probabilistic part-based approach to describe the 

texture and object [9]. Manjunath and Ma use Gabor filters 

for texture analysis [12]. Ojala et al. propose to use signed 

gray-level differences and their multidimensional 

distributions for texture description [16]. Urbach et al. 

describe a multiscale and multishape morphological 

method for pattern-based analysis and classification of 

gray-scale images using connected operators [20]. A recent 

comprehensive study about local features and kernels for 

texture classification please refer to [24]. 

3.2. Dataset 

Brodatz dataset [1] is a well-known benchmark dataset. It 

contains 111 different texture classes where each class is 

represented by one image. Some examples are shown in 

Fig. 5. Using the similar experimental set-ups as [8, 16, 

20], images of 640×640 pixels are divided into 16 disjoint 

squares of size 160×160. For each of these smaller images, 

three additional versions are created by one of the 

following transformations: 1) 90 degrees rotation, 2) 

scaling the 120×120 subimage in the center to 160×160, or 

3) a combination of 1) or 2). 

Note that for Brodatz dataset, experiments are carried 

out for ten-fold cross validation to avoid bias. For each 

round, we randomly divide the samples in each class into 

two subsets of the same size, one for training and the other 

for testing. The results are reported as the average value 

and standard deviation over the ten runs. 

  
Fig. 5 Some examples from Brodatz dataset 

(http://www.ux.uis.no/~tranden/brodatz.html). 

3.3. WLD Feature for Classification  

For texture representation, given an image, we extract 

WLD features as shown in Fig. 4. Here, we experientially 

let M=6, T=8, S=20. In addition, we also weight each 



sub-histogram Hm using the same weights as shown in 

table 1. 

For the classifier, we use K-nearest neighbor. In our case, 

K=3. To compute the distance between two given images 

I1 and I2, we first obtain their WLD feature histograms H
1
 

and H
2
. We then measure the similarity between H

1
 and H

2
. 

In our experiments, we use the normalized histogram 

intersection Π(H
1
, H

2
) as a similarity measurement of two 

histograms:  

1 2 1, 2, 1,

1 1

( , ) min( , ) /
L L

i i i

i i

H H H H H
= =

Π =∑ ∑ , (14) 

where L is the number of bins in a histogram.  

3.4. Experimental Results 

Experimental results on Brodatz textures are illustrated in 

Fig. 6. In this figure, we also compare our method with 

others on the classification task of Brodatz textures: Dorkó 

[3], Jalba [8], Lazebnik [9], Manjunath [12], Ojala [16] 

and Urbach [20]. Note that all the results by other methods 

in Fig. 6 are quoted directly from the original papers 

except Manjunath [12]. The approach in [12] is a 

“traditional” texture analysis method using global mean 

and standard deviation of the responses of Gabor filters. 

However, the results of Manjunath [12] are a little 

out-of-date. We use the results in [24] for a substitution. 

From Fig. 6, one can find that our approach works in a 

very robust way in comparison to other methods.  

4. Application to face detection 

In this section, we use WLD features for face detection. 

Although we train only one classifier, we use it to detect 

frontal, occluded and profile faces. Furthermore, 

experimental results show that this classifier obtains 

comparable performance to state-of-the-art methods. 

4.1. Background 

The goal of face detection is to determine whether there 

are any faces in a given image, and return the location and 

extent of each face in the image if one or more faces are 

present. Recently, many methods for detecting faces have 

been proposed [23]. Among these methods, learning based 

approaches to capture the variations in facial appearances 

have attracted much attention, such as [18, 19]. One of the 

most important progresses is the appearance of 

boosting-based method, such as [6, 10, 17, 21, 22]. In 

addition, Hadid et al. use Local Binary Pattern (LBP) not 

only for face detection but also for recognition [5]. Garcia 

and Delakis use a convolutional face finder for fast and 

robust face detection [4]. 

4.2. WLD Feature for Face Samples 

We use WLD features as a facial representation and build a 

face detection system. For the facial representation, as 

illustrated in Fig. 7, we divide an input sample into 
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Fig. 6. Results comparison with state-of-the-art methods on 

Brodatz textures, where the values above the bars are the 

accuracy and corresponding standard deviations. 

 

Fig. 7. An illustration of WLD histogram feature for face 

detection. 

overlapping regions and use a p-neighborhood WLD 

operator (here, p=8). In our case, we normalize the 

samples into w×h (i.e., 32×32) and derive WLD 

representations as follows:  

We divide a face sample of size w×h into K overlapping 

blocks (Here, K=9 in our experiments) of size (w/2)×(h/2) 

pixels. The overlapping size is equal to w/4 pixels. For 

each block, we compute a concatenated histogram H
k
, k=0, 

1, …, K-1. Herein, each H
k
 is computed as shown in Fig. 4. 

In addition, for this group of experiments, we 

experientially let M=6, T=4, S=3. Thus, each H
k
 is a 72-bin 

histogram (Note that for each sub-histogram k

m
H , we use 

the same weights as shown in table 1.). 
For each block, we train a Support Vector Machine 

(SVM) classifier using an H
k
 histogram feature to verify 

whether k
th

 block is a valid face block. If the number of the 

valid face blocks is larger than a given threshold Ξ, we say 

that a face exists in the input window. However, the value 

of Ξ varies with the pose of faces. For more details, please 

refer to section 4.4. 

4.3. Dataset 

The training set is composed of two sets, i.e., a positive set 

Sf and a negative set Sn. For the positive set, it consists of 

50,000 frontal face samples. They are then rotated, 



translated and scaled. After these preprocessing, we obtain 

the set Sf including 100,000 face samples. For the negative 

set Sn, it consists of 31,085 images containing no faces and 

they are collected from Internet. 

As for the test sets, we use three sets: The first one is the 

MIT+CMU frontal face test set, which consists of 130 

images showing 507 upright faces [18]. The second one is 

a subset from Aleix Martinez-Robert (AR) face database 

[13]. Here, we choose those images with occlusions (i.e., 

conditions of 8-13 from the first session, and conditions of 

21-26 from the second session). The resulting test set 

consists of 1,512 images. The third one is the CMU profile 

testing set [19] (441 multiview faces in 208 images).  

Note that the face samples are of the size 32×32. In 

order to detect some faces smaller or larger than the 

sample size, we enlarge and shrink each input image. 

4.4. Classifier Training 

As described in Section 4.3, the set Sf  is composed of a 

large number of face samples. Furthermore, we can also 

extract hundreds of thousands of non-face samples from 

the set Sn. Thus, it is extremely time consuming to train a 

SVM classifier using the two sets Sf and Sn. To tackle this 

problem, we use the resampling methods to train a SVM 

classifier. That is to say that we resample both the positive 

and negative samples during classifier training.  

For the positive samples, we first randomly pick out a 

sub-set Sf1 with the size Np (in our experiments, Np=3,000). 

Likewise, we also randomly crop out a sub-set Sn1 with the 

size Nn (in our experiments, Nn=3,000) from the non-face 

database Sn. Note that for the samples in Sn1, we normalize 

their sizes to w×h (i.e., 32×32). Subsequently, we extract 

WLD histogram features of both the face and non-face 

samples as shown in Fig.7. Using the extracted features of 

faces and non-faces, we train a lower-performance SVM 

classifier. Simultaneously, we obtain a support-vector set 

S
1
, which includes a face support-vector subset 1

f
S and a 

non-face support-vector subset 1

nS . 

Using the resulting lower-performance SVM classifier, 

we test it on the two training subsets (i.e., Sf and Sn) to 

collect Np misclassified face samples Sf2 and Nn 

misclassified non-face samples Sn2. Combining the 

newly-collected sample sets (i.e., Sf2 and Sn2) and the two 

support-vector subsets obtained last time(i.e., 1

f
S  and 1

nS ), 

we obtain two new training sets: ( 1

f
S +Sf2) and ( 1

nS +Sn2). We 

then train another SVM classifier with a better 

performance. After several iterations of the 

aforemensioned procedure, we finally train a well 

performed SVM classifier. 

Note that we actually train K sub-classifiers of SVM. 

Each sub-classifier corresponds to a block as shown in Fig. 

7. Combining these K sub-classifiers, we obtain a final 

strong classifier. 
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Fig. 8. A performance comparison of our method with some 

existing methods on MIT+CMU frontal face test set. Here, 

“SVM-Grey” denotes that we only use the grey intensities as 

input of SVM classifier, and other experimental set-ups are the 

same as “SVM-WLD”. 

Table 2. Performance of our method on AR test set. 

Detection rate False Alarms 

99.74% 0 

100% 3 
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Fig. 9. A performance comparison of our method with some 

existing methods on CMU profile testing set. 

4.5. Experimental Results 

The resulting final strong SVM classifier is tested on three 

testing sets described in Section 4.3. Experimental results 

are shown in Figs. 8, 9 and table 2, respectively. Herein, 

we also compare the performance of the resulting SVM 

classifier (we call it “SVM-WLD”) with some existing 

methods. Note that all the results by other methods in Figs. 

8 and 9 are quoted directly from the original papers except 

Hadid [5] (which is implemented by us following their 

idea). During testing on these sets, the parameter Ξ takes 

the different values as described in Section 4.2. For 

MIT+CMU frontal test set, AR test set, and CMU profile 

test set, Ξ is equal to 8, 7 and 6 respectively. 



 

 

 
Fig. 10. Some results of our detector on the MIT+CMU frontal 

test set (first row), AR database (second row) and CMU profile 

test set (third row). 

As shown in Figs. 8 and 9, we also compare the 

performance of our method with some existing methods. 

From these figures, one can find that SVM-WLD obtains a 

comparable performance to these methods. 
However, different criteria (e.g., training examples 

involved and the number of scanned windows during 

detection etc.) can be used to favor one over another, 

which makes it difficult to evaluate the performance of 

different methods even though they use the same 

benchmark data sets [23]. Some results of our detector on 

these three test sets are shown in Fig.10. 

5. Conclusion 

We propose a novel discriminative descriptor WLD. It is 

inspired by Weber’s Law, which is a law developed 

according to the perception of human beings. We organize 

WLD features to compute a histogram by encoding both 

differential excitations and orientations at certain locations. 

Experimental results clearly show that WLD illustrates a 

favorable performance on Brodatz textures compared to 

state-of-the-art methods. Especially for the face detection 

task, we train only one classifier but it can be used to 

detect the frontal, occluded and profile faces. Experimental 

results show that this detector works comparable to some 

existed methods. 
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