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Abstract

Color information can be used as a basic and crucial
cue for finding correspondence in a stereo matching algo-
rithm. In a real scene, however, image colors are affected
by various geometric and radiometric factors. For this rea-
son, the raw color recorded by a camera is not a reliable
cue, and the color consistency assumption is no longer valid
between stereo images in real scenes. Hence the perfor-
mance of most conventional stereo matching algorithms can
be severely degraded under the radiometric variations. In
this paper, we present a new stereo matching algorithm that
is invariant to various radiometric variations between left
and right images. Unlike most stereo algorithms, we explic-
itly employ the color formation model in our framework and
propose a new measure called Adaptive Normalized Cross
Correlation (ANCC) for a robust and accurate correspon-
dence measure. ANCC is invariant to lighting geometry, il-
luminant color and camera parameter changes between left
and right images, and does not suffer from fattening effects
unlike conventional Normalized Cross Correlation (NCC).
Experimental results show that our algorithm outperforms
other stereo algorithms under severely different radiometric
conditions between stereo images.

1. Introduction

1.1. Motivation

In the last several decades, there has been considerable
progress in stereo matching algorithms. To date, there are
numerous stereo algorithms that perform well for the test
bed stereo images provided in [1]. However, most al-
gorithms are based on a common assumption that corre-
sponding pixels have a similar color value called color-
consistency. Meltzer et al. [19] showed that the globally
optimal disparity map obtained by even the powerful tree
reweighted message passing (TRW) was not perfect due to
the incorrect modeling of the energy functional. This moti-
vated us to study the modeling of more correct data cost for
MAP-MRF framework in real situations.

(a) left image (b) right image

(c) SAD + GC (d) proposed method
Figure 1. The comparison of conventional SAD+GC method and
proposed method for illumination varying stereo images. (a) and
(b) are the left and right Aloe image with varying illumination. (c)
is the result using SAD+GC method for images (a) and (b), and
(d) is the result of proposed method for images (a) and (b).

In a real scene, there are many factors that prevent two
corresponding pixels from having the same value. One ma-
jor factor is the radiometric changes including lighting ge-
ometry and illuminant color and camera device changes be-
tween stereo images [9, 14]. The same scene viewed un-
der a different lighting geometry produces a different color
because the intensity at each point is determined by the
incident light direction and surface normal direction in a
Lambertian model. Fixing the lighting geometry, the ob-
ject viewed under different illuminant colors also produces
a different color. Moreover, a camera device or setting
changes such as gamma correction and exposure also in-
duce color changes. These situations are very common in
stereo images. For this reason, the raw color recorded by a
camera is not a reliable cue for matching, and the color con-
sistency assumption is no longer valid for stereo images in a
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real scene. Hence the performance of most stereo matching
algorithms can be severely degraded under such radiomet-
ric variations. On the contrary, the human visual system
has a color constancy process which is able to compute col-
ors irrespective of radiometric variations and estimate the
reflectance of the object under any illumination condition
[16]. However, unlike humans, almost all current stereo
matching algorithms do not consider this color constancy
process.

1.2. Related works

Recently, Hirschmuller and Scharstein evaluated differ-
ent cost functions for stereo matching on radiometrically
different images caused by light sources, camera exposure,
gamma correction and noise, etc [14]. They compared
Birchfield and Tomasi data cost (BT) [3], LoG filtered
BT, Mean filtered BT, BT after Rank transform [23], Nor-
malized Cross Correlation (NCC), and Hierarchical Mu-
tual Information (HMI) [13] under various conditions with
correlation-based method, semi-global and global method.
They used only the image intensity information not the
color for evaluating the costs. They concluded that all com-
pared costs were not very successful to strong local radio-
metric changes which were caused by the lighting position
changes. Wang et al. [22] presented a new invariant mea-
sure called light transport constancy (LTC) based on a rank
constraint for non-Lambertian surfaces. Their method re-
quired at least two stereo image pairs with different illu-
mination conditions to be available for making use of rank
constraint. NCC is a very popular and traditional measure
[5] for matching contrast varying images. It measures only
the cosine angle between matching vectors as normalization
make the matching vector to a unit length. However, NCC
is only suitable for matching affine-transformed values and
also suffers from the fattening effect that object boundaries
are not reconstructed correctly such as SAD and SSD. Kim
et al. [17] suggested the pixelwise data cost based on mu-
tual information using the Talor expansion. Ogale et al. [20]
also presented a contrast-robust stereo matching algorithm
using multiple frequency channels for local matching.

The method of using only intensity information is not
appropriate, because intensity depends only on the light di-
rection and surface normal direction which lacks surface
and light color and camera parameter informations. Hence,
color information is necessary for handling various radio-
metric factors. However, because most methods do not han-
dle the color formation process explicitly to find correspon-
dence, their performance is dependent on the radiometric
variation between input stereo images. For example, Fig.
1 shows that SAD with Graph-cut (GC) method fails under
severe radiometric variation while the proposed method is
more robust under severe radiometric changes between the
left and right images.

In this paper, we present a new stereo matching algo-
rithm that is invariant to lighting geometry, illuminant color,
and camera parameter changes. We explicitly modeled the
color formation process unlike other algorithms. From this
model, we extracted the invariant information and propose
the invariant measure called Adaptive Normalized Cross
Correlation (ANCC) to various radiometric changes.

2. Stereo Energy Formulation
We define our stereo matching as a minimization prob-

lem of the following energy :���������	��
������������������������������������
������������� � !#" ! ��� ! �$��������������%�����&� � !'�(�)+*�, !.-0/ ! ( ��� ! ��� ( �� (1)

where 1 � 23� is the neighborhood pixels of
2

, and
" ! ��� ! �

is
the data cost that measures the dissimilarity between pixel2

in the left image and pixel
2#�4� !

in the right image./ ! ( ��� ! ��� ( � is the smoothness cost that favors the piece-wise
smooth objects. Combining these costs, the optimal dispar-
ities can be found by minimizing the total energy in eq. (1).
To make data cost radiometric-invariant, we need to model
the color formation process explicitly.

3. Color Normalization Representation
There are two approaches for finding illuminant invariant

representation [6] : color constancy algorithms and color
invariant approaches.

Color constancy algorithms [18, 10, 16, 12, 8] attemp
to separate the illumination and the reflectance components
on images like the human visual system does. Retinex al-
gorithms calculate the lightness sensations not the physical
reflectances in a given image and effectively compensate
for non-uniform lighting [18, 16, 12]. The gamut-mapping
algorithm [10] and color-by-correlation algorithm [8] can
estimate the illuminant in given images. However, because
the color constancy problem is ill-posed, the estimation of
the illuminant is generally not an easy task [11].

The color invariant approach [9, 7] finds the function
which is independent from lighting conditions and imag-
ing devices. Among these color invariant approaches, chro-
maticity normalization and gray-world assumption are com-
monly used methods [15]. Chromaticity normalization is
usually used to remove lighting geometry effects, while
gray-world assumption is used to remove illuminant color
effects. However, neither chromaticity normalization nor
gray-world assumption can remove both lighting geometry
and illuminant color dependency simultaneously. Only a
comprehensive normalization method can remove both of
them iteratively [9] and non-iteratively [7].



3.1. Color image formation model

An image taken by a linear imaging device can be de-
scribed by the following equation [8] :5�67 � 8:9;����<%�>= 6 ��<%�>? 7 ��<%��@�<A�

(2)

where
5 6 7

is the B th sensor (color channel) response at a
point C in the scene, and

<
is the wavelength.

����<%�
is the

spectral power distribution of the incident illuminant at each
wavelength,

= 6 ��<%�
is the surface reflectance at a point C in

the scene, and
? 7 ��<%�

is the relative spectral response of theB th sensor. We assume the Lambertian reflectance model
and
? 7 ��<%�D� EF��<�GH< 7 �

, which is a Dirac delta function at
the wavelength

< 7
. Then eq. (2) becomes5�67 �I����< 7 �>= 6 ��< 7 �J

(3)

During image acquisition, the response of the device is lin-
ear. However, for the compression of dynamic range, image
data is transformed non-linearly prior to the storage pro-
cess. This is called gamma correction and it raises the value
of each RGB response to a power function of a fixed ex-
ponent K . Considering all the factors, we can represent the
color image formation model at pixel

2
as follows [7]:LMON � 23�P � 23�QR� 23�RSTVU LMXWN � 23�WP � 23�WQY� 23� ST � LM4Z � 23��[ N � 23��\Z � 23�>] P � 23��\Z � 23��^$QR� 23��\ ST � (4)

where each pixel
2

has its own individual brightness factorZ � 23�
which is dependent on the angle between the light di-

rection and the surface normal at that point. If we change
the light illumination color while fixing the lighting geom-
etry, then the responses in three color channels change by
the scale factor

[%��]
and
^
, respectively.

3.2. Color image normalization

Choromaticity normalization [15] is commonly used to
eliminate the effect of lighting geometry that is dependent
only on the surface normal vector and the light direction
in the Lambertian model. At pixel

2
, if we divide each ofWN � 23�$� WP � 23�

and
WQR� 23�

by the averages of them, then we can
obtain the

Z ��_ �
independent color representation as follows.L`M a , !.- �b , !.-dca , !.- , �b , !.- cfe�g�h , !.- cie�jlk , !.- c -a , !.- g�h , !.-dca , !.- , �b , !.- cfe�g�h , !.- cie�jlk , !.- c -a , !.- jlk , !.-dca , !.- , �b , !.- cfe�g�h , !.- cie�jlk , !.- c - S.mT� L`M �b , !.-dc, �b , !.- cie�g�h , !.- cie�jlk , !.- c -g�h , !.-dc, �b , !.- cie�g�h , !.- cie�jlk , !.- c -jlk , !.-dc, �b , !.- cie�g�h , !.- cie�jlk , !.- c - S.mT

J
(5)

On the other hand, an illuminant color independent rep-
resentation can be acquired by the gray-world assumption

[15]. By dividing each of
WN � 23�� WP � 23�

and
WQR� 23�

by its chan-
nel mean value, we can obtain

[%��]
and
^

independent ex-
pressions as follows.LMnZ � 23��[ N � 23��\Z � 23�>] P � 23� \Z � 23��^$QR� 23��\ SToU L``M a ,

!.- �b , !.-dcpb�q�r�s�ta , !.- g�h , !.-dcph q�r�s�ta , !.- jlk , !.-dcpk q�r�s�t S.mmT �
L``````M * a ,

!.- b , !.-dcuv$w$x a , !.- b , !.- c* a , !.- h , !.-dcuv$w$x a , !.- h , !.- c* a , !.- k , !.-dcuv$w$x a , !.- k , !.- c
S.mmmmmmT �WN ��y��z�� uv$w$x pb , !.-* � WP ��y��z{� uv$w$x ph , !.-* � WQ;��y��z�� uv$w$x pk , !.-* �

(6)
where 1 is the number of pixels in the image | . Note
however that neither chromaticity normalization nor gray-
world normalization can remove both of the dependency
of lighting geometry and lighting color at the same time.
Finlayson et al. proposed a comprehensive normalization
method which combines the two normalization methods
in one framework iteratively [9] and non-iteratively [7].
However, since their method needs the global image infor-
mation such as channel mean value, naive application of it
to stereo matching problem is not appropriate. For exam-
ple, in the gray-world normalization process in eq. (6), the
left and right

WN ��y��z
values are generally not the same, due

to the view changes in stereo images. That means the true
corresponding pixel values are still not the same between
stereo images after comprehensive normalization. Hence,
applying stereo matching algorithm to the pre-normalized
images by this method does not produce satisfactory results
as shown in our experiments.

4. Stereo Matching using ANCC

Let us assume that |.} � 23� and | b�� 2~�Y� ! � are correspond-
ing pixel values, where |���� N � P ��Q{� and |.} � 23� is the
value in the left image at pixel

2
and | b~� 2���� ! � is the value

in the right image at pixel
2���� !

in each color channel,
respectively. NCC [5] is a popular similarity measure be-
tween two pixels with neighbors that is defined by1���� ��� ! �&� u��� )�� � , !.-l���� )�� � , ! e�� v -�� � � , ��� -l�D�� � , !.-���� � � � , ��� -l�D�� � , ! e�� v -��� u� � w�� �F� v���� � � , ��� -l�D�� � , !.- � � � � u� � w�� �%� v���  v ��� � � , ��� -l�D�� � , ! e�� v - � � �

(7)
where ¡|$} � 23� and ¡| b�� 2���� ! � are the mean values of pixels in
the window ¢�} � 23� centered at

2
, and those in the window¢ b�� 2£�#� ! � centered at

2£�#� !
, respectively. This NCC has

invariant property to the following affine transformation of
image color values [5]:|$} U¥¤ }�|$} �§¦ } � | b U¨¤ b | b��§¦fb~J (8)



Note that there are two critical problems in simply apply-
ing this NCC directly in stereo matching of general im-
age pairs: According to eq. (4), two corresponding pixels
can have different K values, causing NCC to stop working.
Thus, naively applying NCC to raw stereo images does not
work well because it does not consider various radiometric
changes by

Z
,
[���]:��^

and K . Another problem is that the
appearances of the supporting windows in the left and right
image are not exact due to the view changes. Hence, NCC
usually produces fattening effects near the object boundary
similar to conventional window correlation-based matching
measures such as SSD or SAD.

In this work, to apply NCC for radiometric change in-
variant matching, we propose a new normalization scheme
that transforms the model in eq. (4) into an affine model
by using the logarithm of both images and the chromatic-
ity normalization concept [7]. Also to remove fattening
effects, we employ the adaptive weight scheme using bilat-
eral filter [21] to select the corresponding pixels between
left and right windows.

4.1. Chromaticity normalization

If the reflectance model is Lambertian, and the camera
response function is the Dirac delta function, then the image
is formed by eq. (4). When the left and right images have
different lighting geometries, illuminant colors, and cam-
era gamma functions, they can be represented as follows,
respectively :LM©N } � 23�P } � 23�Q } � 23�YST U LM4Z } � 23��[ } N \

�} � 23�Z } � 23�>] } P \ �} � 23�Z } � 23��^ } Q \ �} � 23�ªST �LM©N b�� 2«�§� ! �P b�� 2¬�§� ! �Q;b�� 2«�§� ! �YST U LM4Z b�� 2«�§� ! ��[�b N \ �b � 2«�§� ! �Z b~� 2¬�§� ! �>]b P \ �b � 2¬�§� ! �Z b~� 2«�§� ! ��^$bQ \ �b � 2¬�§� ! �ªST J
(9)

Without loss of generality, we only consider
N

channel
value. According to eq. (9), corresponding left and right
color values have a non-linear relationship due to different
gamma values, K®} and K b , respectively. To transform this
non-linear relationship to a linear one, we take the loga-
rithms of both images. Then, each color value can be repre-
sented byN£¯} � 23���±° ²+³ Z } � 23���H° ²+³�[ } � KF} ° ²+³ N } � 23��N£¯b � 2«�§� ! ��	° ²+³ Z b�� 2«�§� ! ���H° ²+³�[�b�� K b´° ²+³ N b � 2«�§� ! ��

(10)
where

Z ��_ �
term depends on each pixel position relating to

the lighting direction and surface normal. We can eliminate
this
° ²+³ Z ��_ �

term by simply subtracting the average of the
transformed color values in

N � P ��Q
channels (chromaticity

normalization) that is defined by¡| ¯} � 23�&� b�µ� , !.- eAh µ� , !.- eAk µ� , !.-¶�	° ²+³ Z } � 23����· ¸�¹ �$� g � j �¶ � \ � , · ¸�¹ b � , !.- h � , !.- k � , !.-º-¶ J
(11)

By subtracting the mean value ¡| ¯} � 23� at each pixel, each
color value becomesN£¯ ¯} � 23��� N£¯} � 23�»G ¡| ¯} � 23��±° ²+³ �$�¼½ �$� g � j � � KF} ° ²+³ b � , !.-¼¾ b � , !.- h � , !.- k � , !.-¿�	À } � KF}3Á�} � 23�J (12)

Similarly, the corresponding pixel value
NÂ¯ ¯b � 2{�Ã� ! � in the

right image is represented asN ¯ ¯b � 2«�§� ! � ¿�IÀÄb�� K b Á b~� 2«�§� ! �J (13)

The transformed values in other channels
P

and
Q

can be
similarly computed. Note that ÁR} � 23� and Á b~� 2H�©� ! �
are not dependent on

Z
,
[���]:��^

and K . If the correspond-
ing pixels are correct, ÁR} � 23� and Á b~� 2{�±� ! � must be the
same. And moreover, since

N�¯ ¯} � 23� and
N£¯ ¯b � 2{�Ã� ! � are the

affine transformed values of ÁR} � 23� and Á b~� 2��Â� ! � , respec-
tively, the matching of them is also invariant to radiometric
changes by NCC.

4.2. Adaptive normalized cross correlation

To reduce the fattening effect caused by outliers, we use
the weight distribution information. Each pixel Å in an ÆÈÇÆ window ¢ � 23� around the center pixel

2
has different

weights. The weight É � Å � is computed using bilateral filter
[21] as follows :É � Å �D�±Ê$ËFÌ���G�Í 2�G Å ÍÎÏ0Ð Î
 GOÍ | � Å �»G | � 23� ÍÎÏ0Ð Î� ��

(14)

where Í _ Í means the Euclidean distance. The first and sec-
ond terms in the exponent represent the geometric distance
and the color dissimilarity between the center pixel

2
and

the pixel Å in the window, respectively. This weight distri-
bution has an edge-preserving property unlike the isotropic
Gaussian weight. Bilateral filtered weighted sum

=�� 23�
for

the center pixel
2

is defined as=�� 23�&� �� )��R, !.- É � Å � | � Å �ÑÂ� 23� �
(15)

where
ÑÂ� 23�

is the normalizing constant. Note that the
weights are computed for the CIELab color images instead
of the raw RGB color images. Because CIELab color is per-
ceptually similar to human visual system, the weight distri-
butions still have reliable property after different radiomet-
ric changes due to the rank invariance [23, 6]. To reduce



the fattening effects, instead of subtracting the simple mean
value as NCC, we subtract the bilateral filtered weighted
sum value for each channel, thereby removing the

À
.N£¯ ¯ ¯} � Å ��� N£¯ ¯} � Å �»GH=�� 23��	À } � KF}3Á�} � Å �»G u� w�� � v���Ò , � - b�µ µ� , � -Ó , !.-�	À } � KF}3Á�} � Å �»G u� w�� � v�� Ò , � - ,�Ô � e \ �:Õ�� , � -º-Ó , !.-� KF} � Á�} � Å �»G u� w�� � v���Ò , � - Õ�� , � -Ó , !.- �J (16)

Let us denote the patch around pixel
2

in the left image
as 1D vector Ö+} � 23� and the corresponding weight vector
of each pixel in the window ¢ � 23� is ×} � 23� that are rep-
resented asÖ0} � 23�&��� N£¯ ¯ ¯} � Å�Ø �� N£¯ ¯ ¯} � Å Î ��.J J J � N£¯ ¯ ¯} � Å>Ù �>��×»} � 23����� É�} � Å�Ø �� É�} � Å Î ��.J J J � É�} � Å>Ù �>�� (17)

where Ú � ÆÛÇYÆ . Similarly, the corresponding patch
around

2«�§� !
in the right image is denoted asÖ b�� 2«�§� ! ����� N£¯ ¯ ¯b � Å�Ø �� N£¯ ¯ ¯b � Å Î ��.J J J � N£¯ ¯ ¯b � Å>Ù �>��× b~� 2¬�§� ! �&��� É b�� Å�Ø �� É b�� Å Î ��.J J J � É b�� Å>Ù �>�J (18)

Then the similarity between Ö+} � 23� and Ö b�� 2»�«� ! � is defined
asÜ 1���� b���� ! �&� ÝuÞ ß�à Ò � , � Þ - Ò � , � Þ - � b�µ µ µ� , � Þ -���� � b�µ µ µ� , � Þ -��á ÝuÞ ß�à:â Ò � , � Þ - b µ µ µ� , � Þ - â � � á ÝuÞ ß�à:â Ò � , � Þ - b µ µ µ� , � Þ - â � �

(19)
We define eq. (19) as Adaptive Normalized Cross Cor-
relation (ANCC) for the

N
channel.

Ü 1���� h ��� ! � and

Ü 1���� k ��� ! � for the Green and Blue channel can be sim-
ilarly computed. Note that ANCC does not vary with

Z
,

illuminant color (
[%��]i��^

) and camera gamma correction K .
Moreover, the fattening effect can also be reduced since the
spatial weight information is incorporated adaptively.

4.3. Global energy modelling

ANCC is a similarity measure that ranges from
G�ã

to�´ã
. To make a non-negative cost between pixel

2
and
2�¬� !

in the left and right image, respectively, we subtract ANCC
from +1. Now, we define our data cost

" ! ��� ! �
as follows :" ! ��� ! �&���ã�Gåä *~æ�æ � , � v - e ä *~æ�æ3ç3, � v - e ä *~æ�æ3è�, � v -¶ � J (20)

For the pairwise cost, we used a simple truncated quadratic
cost as / ! ( ��� ! ��� ( ���I<{_.é¬ê ë�� â � ! GH� ( â Î � /®ìí>î �J (21)

The total energy is defined by�������&�ðï ! " ! ��� ! ���ñï ! ï(�)+*�, !.- / ! ( ��� ! ��� ( �J (22)

We optimized this total energy using
À

-expansion algorithm
[4] to find the disparity map.

5. Experimental Results
In our experiments, we fixed all the parameters of the

proposed algorithm such that
<��òãfó0ô0õ®� / ��� 6 �¥ô , andÚ �ö��÷®ã Ç ÷®ãi�� Ð 
 �øã.ù�� Ð �±�ú÷®J û . For implement-

ing Graph-cuts (GC), we used the source code provided in
[2]. To evaluate and compare our algorithm with others, we
used various images such as the test bed images (Aloe, Art,
Moebius, and Dolls) in [1, 14] and aerial images. Each
data set in [1, 14] has three different exposures (indexed as
0,1,2) and three different configurations of light sources (in-
dexed as 1,2,3), a total of nine different images. Using these
data sets, we compared various stereo algorithms such as
BT [3], BT using 5x5 Laplacian of Gaussian (LoG) filtered
image (LOG+BT), BT (CN+BT) and Sum of Absolulte Dif-
ference (CN+SAD) using images preprocessed by the com-
prehensive normalization method (CN) [7], NCC (7x7 win-
dow), and ANCC. Fig. 2 shows that the proposed method
produced sharp and accurate results for the illumination2
and exposure2 images.

5.1. Light source changes

First, we fixed the exposure to 1 for all images and var-
ied only the illumination from 1 to 3. Fig. 3 (f)-(k) and
Fig. 4 (f)-(k) show the comparison of the results for the
test bed images [1]. Fig. 5 (a)-(d) show the error ratio of
unoccluded areas for all combination of illuminations. We
avoided the case of same illumination combination for left
and right images. For example, among the 1/3 (left/right
illumination) case and the 3/1 case, we only experimented
on the 1/3 case because 1/3 and 3/1 cases have symmetric
properties as shown in [14]. In our experiments, ANCC
showed very stable and low error rate, while other methods
were very sensitive to the lighting source changes. As de-
scribed above, the stereo matching using images with com-
prehensive normalization (CN+BT, CN+SAD) did not pro-
duce good results.

5.2. Camera exposure changes

Similarly to the case of lighting changes, we fixed the il-
lumination to 1, and only changed the exposure from 0 to 2
using the same data set as in section 5.1. Fig. 3 (l)-(q) and
Fig. 4 (l)-(q) show the comparison results for the test bed
images. Fig. 5 (e)-(h) show the error ratio of unoccluded
areas for all combination of exposures. ANCC was also



stable for camera exposure changes. However, it was unsta-
ble for the saturated color region which had (255,255,255)
or (0,0,0) RGB color values because the weight could not be
calculated correctly for those regions. CN+BT and CN+SAD
were more sensitive to camera exposure changes than light
changes.

5.3. Application to aerial image

Fig. 6 shows the stereo comparison for aerial images
which have been taken using one camera at different times.
Generally the colors of aerial images change due to the time
difference in taking pictures. Thus, the colors of aerial im-
ages can be affected by the complex factors including the
lighting color and position changes. Hence, aerial images
are more challenging data for stereo matching. For the test
aerial images shown in Fig. 6 (a)-(b), our algorithm pro-
duced sharper and more accurate results than others as de-
picted in Fig. 6 (c)-(f).

6. Conclusions
In this paper, we proposed a new stereo matching al-

gorithm that is invariant to various radiometric conditions
such as lighting geometry, illuminant color and camera pa-
rameter changes between left and right images. We explic-
itly considered the color formation process and proposed
a radiometric invariant measure called Adaptive Normal-
ized Cross Correlation (ANCC). Our method can recon-
struct disparity maps more accurately under severely dif-
ferent radiometric changes between stereo images and does
not suffer from fattening effects as NCC.
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(a) Aloe (b) Art (c) Moebius (d) Dolls
Figure 2. Results of the proposed method for illum 2 exp 2 left and right images .

(a) left illum1 exp 1 (b) right illum3 exp 1 (c) left illum1 exp 0 (d) right illum1 exp 2 (e) left GroudTruth

(f) BT+GC (g) CN+BT+GC (h) CN+SAD+GC (i) LOG+BT+GC (j) NCC+GC (k) ANCC+GC

(l) BT+GC (m) CN+BT+GC (n) CN+SAD+GC (o) LOG+BT+GC (p) NCC+GC (q) ANCC+GC
Figure 3. Results of test stereo algorithms on Aloe image pair with varying illumination and camera exposure. (f) - (k) are the results using
the image pair (a) and (b). (l) - (q) are the results using the image pair (c) and (d). (e) is the ground truth disparity map for the left image.

(a) left illum1 exp 1 (b) right illum3 exp 1 (c) left illum1 exp 0 (d) right illum1 exp 2 (e) left GroudTruth

(f) BT+GC (g) CN+BT+GC (h) CN+SAD+GC (i) LOG+BT+GC (j) NCC+GC (k) ANCC+GC

(l) BT+GC (m) CN+BT+GC (n) CN+SAD+GC (o) LOG+BT+GC (p) NCC+GC (q) ANCC+GC
Figure 4. Results of test stereo algorithms on Dolls image pair with varying illumination and camera exposure. (f) - (k) are the results
using the image pair (a) and (b). (l) - (q) are the results using the image pair (c) and (d). (e) is the ground truth disparity map for the left
image.
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(e) Aloe (f) Art (g) Moebius (h) Dolls
Figure 5. Quantitative comparison for illumination and exposure changes. (a)-(d) are the comparison results for the illumination changes.
(e)-(h) are the comparison results for the exposure changes.

(a) left aerial image (b) right aerial image (c) LoG+BT+GC

(d) LoG+SAD+GC (e) NCC+GC (f) ANCC+GC
Figure 6. Results of stereo algorithms on aerial image pair. (c)-(f) are the stereo results for the input image pair (a) and (b)


