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Abstract

In this paper, we propose a novel framework for video-
based facial expression recognition, which can handle the
data with various time resolution including a single frame.
We first use the haar-like features to represent facial ap-
pearance, due to their simplicity and effectiveness. Then
we perform K-Means clustering on the facial appearance
features to explore the intrinsic temporal patterns of each
expression. Based on the temporal pattern models, we fur-
ther map the facial appearance variations into dynamic bi-
nary patterns. Finally, boosting learning is performed to
construct the expression classifiers. Compared to previous
work, the dynamic binary patterns encode the intrinsic dy-
namics of expression, and our method makes no assumption
on the time resolution of the data. Extensive experiments
carried on the Cohn-Kanade database show the promising
performance of the proposed method.

1. Introduction

Automatic facial expression recognition is an impor-
tant topic in the communities of computer vision and pat-
tern recognition due to its potential applications in human-
computer interface, multimedia, surveillance, and so on.
The previous work can be categorized into two classes: im-
age based methods and video based methods [8] [19] [30].
Image based methods take only mug shots as observations
which capture characteristic images at the apex of the ex-
pression, and recognize expressions according to appear-
ance features [20] [2] [18] [21]. However, a natural facial
event is dynamic, which evolves over time from the onset,
the apex, to the offset. Therefore, image based methods ig-
nore the dynamic characteristics of facial expressions, and
could not perform well in the practice systems. However,
video based methods analyze the dynamics of facial expres-
sion to do recognition. Extensive experiments have demon-

strated the importance of the facial dynamics for recogni-
tion [3] [26] [4] [10] [22] [28], including psychology ex-
periments [13] [1].

There are two key issues in the video based facial ex-
pression recognition in practice. One is the temporal
segmentation of facial expression events from the input
video [16] [14]. Another is how to represent the dynamics
of the facial expression for recognition. In this paper, we
focus on the latter. Black and Yacoob did pioneering work
on the dynamic analysis of facial expressions [3]. They
used the parametric motion models to describe the facial
dynamics, and recognized the expression according to the
parameters of local motion models. Torre [23] used con-
densation to track the local appearance dynamics with the
help of subspace representation. In [5], the dynamics are
represented by key point tracking, which is based on Ac-
tive Shape Model [6]. All these methods are dependent on
low-level image feature representation to some extent, and
they are sensitive to noise. In [12] [17], manifold learning
was employed to explore the intrinsic subspace of the fa-
cial expression events. [12] used the Leipschitz embedding
to build a facial expression manifold, and [17] used multi-
linear models to construct a non-linear manifold model. The
manifold methods can not work well in practice due to noise
and the complicated facial appearance variations of differ-
ent subjects.

Recently, volume features [29] attract much attention in
capturing the dynamics of action including facial events, in
which the image sequence is modelled as a volumetric data.
Volume features take the advantage that combine tempo-
ral dynamics and the spacial appearance together. In [10],
the volume LBP features were proposed for facial expres-
sion, and achieved much success. Similar features are pro-
posed for video based face recognition in [11]. The volume
haar-like features obtained an encouraging performance on
the pedestrian detection and action analysis in [25]. Simi-
lar to the volume features, [27] designed the ensemble of
the haar-like features in the temporal domain and combined
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Figure 1. Some examples of smile events from different subjects and different cameras.

them with a coding scheme for facial expression recogni-
tion. However, the volume features have a prerequisite that
the sequence length and motion speed mush keep same in
both training and testing data. However, it is hard to satisfy
this prerequisite in practical systems. For example, different
cameras have different capture rate, and they produce the
videos at different time resolutions. Even when using the
same camera, different subjects and different environments
also have an impact on the time resolution of facial expres-
sions. Figure 1 illustrates an example. All these video se-
quences represent smile events from the onset to the apex,
but they have different time resolutions due to different sub-
jects or cameras. Thus, a time warping strategy should be
performed before volume feature extraction, and it is in-
evitable that the recognition performance will be influenced
by the time warping operation.

In this paper, we propose a new framework for video-
based facial expression recognition, in which the new dy-
namic binary patterns are developed and they are indepen-
dent of the time resolution. The structure of the proposed
framework is illustrated in Fig. 2. We use the haar-like fea-
tures to represent facial appearance due to their simplicity
and effectiveness [24], and we obtain a set of facial ap-
pearance features in the spatio-temporal domain on each
sequence. Then we perform the K-Means clustering algo-
rithm on the facial appearance feature sets to build the in-
trinsic temporal pattern models of facial expressions. Based
on the temporal pattern models, we further map the fa-
cial appearance variations into dynamic binary patterns that
are independent on the time resolution. Finally boosting is
adopted to learn some discriminating dynamic binary pat-
terns to construct the expression classifiers. In the testing
phase, we first extract the haar-like features, and then map
them into the dynamic binary patterns for the boosting clas-
sifier. We test the proposed method on the Cohn-Kanade
database, and the extensive experimental results show its
encouraging performance.

Figure 2. The structure of our approach.

2. Our Work

In this section, the representation of the facial appear-
ance is first introduced, then we discuss how to cluster the
intrinsic temporal patterns of the facial expression, and ad-
dress how to map the facial appearance variations into the
dynamic binary patterns according to the intrinsic pattern
models. Finally the construction of expression classifiers is
described.

2.1. Haar-like Facial Appearance Representation

Facial expression is behaved by the facial appearance
variations, so we should represent facial appearance first.
Since the haar-like features have achieved much success in
face detection as facial appearance descriptors [24], they
were successfully applied in face recognition [9] and facial



expression recognition [27]. In this paper, we also use them
to represent facial appearance.

There are thousands of haar-like features in one image.
We denote Hi = {hi,j}, j = 1, 2, ..., M as the haar-like
features of the image Ii, where the subscript j means the
jth haar-like feature in Ii, and M is the number of the fea-
tures. For one image sequence with N frames, S = {Ii},
i = 1, 2, ..., N , we extract the haar-like features from each
frame Ii respectively, so we get a set of the haar-like fea-
tures, SH = {Hi}, i = 1, 2, ..., N . In SH , given a
haar-like feature uj at position j, we define its temporal
variations {hi,j}, i = 1, 2, ..., N , as a dynamic feature.
The analysis of facial dynamics is based on all the uj ,
j = 1, 2, ..., M along the temporal domain.

2.2. Clustering Intrinsic Temporal Patterns

An expression is a dynamic event, which evolves over
time and can be decomposed into the onset, the apex, and
the offset. For simplicity, we only take the dynamics of ex-
pression from the onset to the apex into account. We can
assume that each expression process is comprised of sev-
eral intrinsic states (patterns) along the temporal domain.
Since it is difficult to make clear definitions of these intrin-
sic patterns, in this paper, we adopt an alternative scheme to
represent these intrinsic patterns. We cluster each dynamic
feature unit uj into five levels: start, middle(-), middle, mid-
dle(+) and apex, according to its variation of the feature val-
ues, and use the five-level models of all the feature units to
represent the intrinsic patterns of expression.

Because each expression has its special intrinsic pat-
terns, without loss of generality, in the following we dis-
cuss how to build the five-level models for an expression
E. Given the training data, we perform the K-Means al-
gorithm on each dynamic feature unit uj , and its five-level
clusters are obtained by setting K = 5 for the K-Means.
We model the five clusters as a Gaussian distribution re-
spectively, Nk

j {µk
j , σk

j }, k = 1, 2, ..., 5, where µ and σ rep-
resent the mean and the variance respectively. Thus, for
the expression E, we obtain an ensemble of the five-level
models as follows (1), which implicitly enrich the intrinsic
patterns of the expression . For convenience, we call this
ensemble the temporal pattern models of the expression E.

E =




N1
1 (µ1

1, σ
1
1), N2

1 (µ2
1, σ

2
1), ..., N5

1 (µ5
1, σ

5
1)

N1
2 (µ1

2, σ
1
2), N2

2 (µ2
2, σ

2
2)..., N

5
2 (µ5

2, σ
5
2)

...
N1

M (µ1
M , σ1

M ), N2
M (µ2

M , σ2
M )..., N5

M (µ5
M , σ5

M )
(1)

2.3. Dynamic Binary Pattern Mapping

As we mentioned in Section 1, in practice, the expres-
sion sequences we get often have different time resolutions

due to various reasons. In order to handle this issue, we
design the dynamic binary patterns to normalize the expres-
sion sequences and embed the dynamics of the expression
into the feature representation. Given an expression se-
quence with N frames, {Ii}, i = 1, 2, ..., N , we first extract
the haar-like features hi,j , j = 1, 2, ..., M , for each frame
Ii. With the help of the temporal pattern models described
above, we can find a good matching from its corresponding
five-level Gaussian models for each haar-like feature hi,j ,
and we convert it into a five-dimensional binary vector, i.e.,
hi,j −→ bi,j = (vk), where k = 1, 2, ..., 5. bi,j is computed
by the Bayesian rule as:

vk =

{
1 if k = argmax

c
P (hi,j |Nc

j ), c = 1, 2, ..., 5;

0 otherwise.

(2)
where P (hi,j |N c

j ) means the probability of hi,j given the
model N c

j . So for the binary feature bi,j , there is only one
dimension which is 1, and the other four dimensions are 0.
It means each haar-like feature can be projected into one of
its corresponding five clusters.

We map all the haar-like features to the five-dimensional
binary feature vectors for each frame of the sequence. In-
spired by the idea in [7], we compute the histogram of all
the binary feature vectors over the whole sequence for each
feature, and do the normalization as:

ϕj =
N∑

i=1

bi,j

N
, j = 1, 2, ..., M. (3)

where ϕj is still a five-dimensional vector. Based on equa-
tion 3, the sequence is represented by M five-dimensional
feature ϕj , and ϕj is independent of the time resolution of
the sequence. We call ϕj the dynamic binary pattern. As
in [10], we convert the binary patterns into decimal values,
and we use them to construct the expression classifier. Fig-
ure 3 shows an example of the dynamic binary pattern.

2.4. Boosting Classifier for Expression Recognition

Any sequence can be represented by the dynamic binary
patterns, and the number of the dynamic binary patterns is
fixed. However, the number of the dynamic binary patterns
is still large, since it is equal to the number of the haar-
like features in one image. Moreover, for each expression,
there are only some local facial components with distinct
response, which means only a subset of dynamic binary pat-
terns are discriminative for expression recognition. It is well
known that the Adaboost learning is a good tool to select
some good features and combine them together to construct
a strong classifier [24]. Therefore we adopt Adaboost to
learn a set of discriminant dynamic binary patterns and use
them to construct the expression classifier. In this paper, we
take six basic expressions into account, so it is a six-class
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Figure 3. The process of extracting dynamic binary pattern.

recognition problem. Since the Adaboost is used typically
for discriminating two classes, we use the one-against-all
strategy to decompose the six-class issue into multiple two-
class issues. For each expression, we set its samples as the
positive samples, and the samples of other expressions as
the negative samples. Algorithm 1 summarizes the learning
algorithm.

Algorithm 1 Learning procedure

1: Give training image sequences (xi, yi),...,(xn, yn),
yi ∈ {1, 0} for specified expression and other expres-
sions respectively.

2: Initialize weight Dt(i) = 1/N .
3: Calculate the dynamic features on each image se-

quence.
4: Code the dynamic features based on the corresponding

temporal binary model, and get ϕi,j . Build one weak
classifier on each coded dynamic binary pattern.

5: Use Adaboost to learn the strong classifier H(xi).

3. Experiments

We conducted our experiments on the Cohn-Kanade fa-
cial expression database [15], which is widely used to eval-
uate the facial expression recognition algorithms. This
database consists of 100 students aged from 18 to 30
years old, of which 65% were female, 15% were African-
American, and 3% were Asian or Latino. Subjects were
instructed to perform a series of 23 facial displays, six of
which were prototypic emotions mentioned above. For our
experiments, we selected 300 image sequences from 96 sub-
jects. The selection criterion was that a sequence could be
labeled as one of the six basic emotions. We randomly se-
lected 60 subjects as the training set, and the rest of subjects
as the testing set. The face is detected automatically by Vi-
ola’s [24] face detector and it is normalized to 64× 64 as in
Tian [22] based on the location of the eyes. Figure 4 shows

some examples.

Figure 4. Examples of six basic expressions.(Anger, Disgust, Fear,
Happiness, Sadness and Surprise)

In order to efficiently evaluate the performance of the
dynamic binary patterns, we compare it with the haar-like
volume features [25]. For simplicity, we denote our method
as DBP and the haar-like volume features as 3D haar. We
also investigate the robustness of the proposed method if
the training samples and the testing samples have different
length. We adopt two different sampling strategies on the
original sequences to simulate this case. One is uniform
sampling, and another is non-uniform sampling. We use
the ROC curve as the measurement tool to evaluate the per-
formance, because it is more general and reliable than the
recognition rate.

3.1. Comparison to 3D Haar-like Features

Similar to the 3D haar, the DBP integrates the dynamics
into the appearance, but the DBP is not sensitive to the time
resolution. To demonstrate this, we compare the DBP to the
3D-haar first. For fair comparison, we compare them un-
der the same framework, and the training samples and the
testing samples have the same length, because this is an as-
sumption of the 3D haar based method. Since the sequences
in the Cohn-Kanade facial database have different lengths,
we use a fixed-length window to slide over the sequences
to produce the fix-length samples. In this experiment we
fix the training samples with 7 frames and 9 frames respec-
tively. Figure 5 reports the ROC curves of the comparison
experiments , and table 1 reports the area below the ROC
curves. We can see that the performance of the DBP is bet-
ter than that of the 3D haar. There are two reasons: 1) the
dynamic binary patterns are encoded based on the statistics
and the Bayesian rule, so it is robust to some noise; 2) the
samples generated from the fix-length window should have
different active speeds, while the DBPs are insensitive to
active speeds.

We also investigate how much the two methods are af-
fected, if we use different capture ratios to record the orig-
inal video. We use different sampling schemes to simulate
this case. We take the samples generated with the 7-frame
window as the original sequences, and we perform the sam-
pling operator on them to produce the training and testing
sets. For simplicity, we note the original sequence with 7
frames as XXXXXXX in the following, and X0X0XXX
means that we throw off the second and the fourth frames
and keep the other five frames. Figure 6 shows the ROC



Table 1. The Area under the ROC curves (3D haar-like feature and DBP)
Expression 9(xxxxxxxxx) frames 7(xxxxxxx) frames

3D Haar DBP 3D Haar DBP
Angry 0.934 0.977 0.893 0.970
Disgust 0.822 0.973 0.769 0.956
Fear 0.697 0.920 0.830 0.980
Happiness 0.977 0.999 0.978 0.998
Sadness 0.758 0.917 0.875 0.921
Surprise 0.974 0.999 0.982 0.999
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3D Haar 7 frames(xxxxxxx)
3D Haar 9 frames(xxxxxxxxx)
DBP 7 frames (xxxxxxx)
DBP 9 frames (xxxxxxxxx)

(d) (e) (f)

Figure 5. ROC curves of six expressions in table 1

curves, and the areas under the ROC curves are given the
table 2. We can see the variance of the 3D haar results is
large, while the variance of the DBP is stable in a sense.
This implies that different capture ratios have great influ-
ence on the performance of volume feature representation.
From the experiment results reported in the [10], we can
also see the influence of the volume length on the perfor-
mance of the volume local binary pattern features.

3.2. Robustness Analysis

In the above experiments, we have compared the per-
formances of the DBP and the 3D-haar. We know that the
DBP has another advantage against the 3D-haar: it has no
requirement on the length of the samples. In the following,
we will analyze its robustness if the training samples and

the testing samples have different lengths. We first fix the
training samples with the same length, but the length of the
testing samples is variable. Table 3 reports a group of ex-
perimental results, where the length of testing samples from
12 to 1 and the sampling is uniform. Here the testing im-
ages are the ones around the apex if the window size is less
than 5. Table 4 shows the results where the sampling is
non-uniform. We can see that our method is insensitive to
the length variance of the testing samples. The large win-
dow size has better performance, because the large window
captures much dynamics of the expressions.

We also investigate the case that both the training and the
testing samples are variable. We randomly select training
samples, whose length changes from 12 frames to 5 frames
with different sampling scheme. For each original train-



Table 2. The Area under the ROC curves (Different sampling strategies)
Expression Train on Train on Train on

(x0x0x0x) (xx000xx) (x0x00xx)
3D Haar DBP 3D Haar DBP 3D Haar DBP

Angry 0.883 0.978 0.899 0.963 0.921 0.981
Disgust 0.772 0.901 0.782 0.894 0.765 0.912
Fear 0.804 0.972 0.877 0.980 0.860 0.962
Happiness 0.982 0.995 0.980 0.995 0.986 0.998
Sadness 0.866 0.917 0.843 0.923 0.821 0.922
Surprise 0.976 0.999 0.979 0.999 0.977 0.999
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Figure 6. ROC curves of six expressions in table 2

ing image sequence, we randomly select one kind of tem-
plates from the 9 templates(xxxxxxxxxxxx, x0x0x0x0x0x0,
xxxxxxxxxx, xx00xx00xx, xxxxxxxx, xxxxxxx, x0x0x0x,
xxxxx, x0x0x) to create the training image sequences. The
testing samples are also varied from 12 frames to 5 frames
which are the same as the ones in table 4. Table 5 illus-
trates the results of the non-uniform sampling on the testing
samples. Figure 7 shows the mean and standard variance
of the table 3, 4 and 5. We can see that the performance is
still stable in this case that both the training and the testing
samples are variable.

4. Conclusions

This paper presented a novel approach for video-based
facial expression recognition, in which the dynamic binary
patterns are developed to represent the dynamics of the ex-
pression. Compared to previous work, our method is robust
to the time resolution of the expressions. We first extract
the haar-like features to represent the facial appearances,
and then we perform the K-Means clustering to generate the
temporal pattern models of the expressions. Based on the
temporal pattern models, the haar-like features in the spatio-
temporal domain are mapped to the dynamic binary pat-
terns. The expression classifiers are built by the Adaboost
learning. Experiments on the well-known Cohn-Kanade fa-
cial expression database show the power of the proposed



Table 3. The Area under the ROC curves (Training on 7(xxxxxxx) frames)
Angry Disgust Fear Happiness Sadness Surprisee

xxxxxxxxxxxx 0.989 0.955 1.000 1.000 0.992 1.000
x0x0x0x0x0x0 0.991 0.953 1.000 1.000 0.989 1.000
x0x0x0x 0.969 0.941 0.982 0.998 0.926 0.999
xxxxxxx 0.970 0.962 0.980 0.998 0.921 1.000
x00x00x 0.965 0.954 0.978 0.998 0.920 0.999
x00000x 0.956 0.949 0.980 0.998 0.918 0.999
x000x 0.952 0.961 0.970 0.996 0.905 0.999
x0x0x 0.958 0.961 0.967 0.996 0.909 0.999
xxxxx 0.958 0.960 0.967 0.996 0.909 0.999
0xxx0 0.955 0.957 0.956 0.995 0.910 0.999
00x00 0.946 0.955 0.954 0.994 0.888 0.999
xxx 0.956 0.991 0.983 0.997 0.888 0.998
x0x 0.958 0.987 0.967 0.998 0.884 0.998
0x0 0.933 0.989 0.990 0.996 0.875 0.998
x 0.938 0.984 0.955 0.997 0.881 0.998
mean 0.959 0.964 0.975 0.9973 0.9144 0.9991
standard variance 0.016 0.016 0.015 0.002 0.035 0.001

Table 4. The Area under the ROC curves (Training on 7(xxxxxxx) frames)
Angry Disgust Fear Happiness Sadness Surprise

xxx00xxxx0xx 0.990 0.950 1.000 1.000 0.995 1.000
x0xxx0xxxxx0 0.990 0.917 1.000 1.000 0.991 1.000
xxxxx0x 0.966 0.953 0.981 0.997 0.926 1.000
x000xxx 0.974 0.952 0.983 0.998 0.918 0.999
xxxx00x 0.963 0.943 0.981 0.997 0.924 1.000
x0x000x 0.962 0.961 0.975 0.998 0.919 0.999
0xx0x 0.961 0.953 0.962 0.996 0.908 0.999
xx0x0 0.952 0.951 0.963 0.996 0.909 0.998
mean 0.970 0.947 0.980 0.998 0.936 0.999
Standard variance 0.013 0.013 0.014 0.001 0.035 0.001

Figure 7. The mean and variance of results in table 4, 5 and 3

method.
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