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Abstract

This paper explores how shape, motion, and lighting in-
teract in the case of a two-frame motion sequence. We con-
sider a rigid object with Lambertian reflectance properties
undergoing small motion with respect to both a camera and
a stationary point light source. Assuming orthographic pro-
jection, we derive a single, first order quasilinear partial
differential equation that relates shape, motion, and light-
ing, while eliminating out the albedo. We show how this
equation can be solved, when the motion and lighting pa-
rameters are known, to produce a 3D reconstruction of the
object. A solution is obtained using the method of char-
acteristics and can be refined by adding regularization. We
further show that both smooth bounding contours as well as
surface markings can be used to derive Dirichlet boundary
conditions. Experimental results demonstrate the quality of
this reconstruction.

1. Introduction

Moving objects change their appearance in complex
ways: object points may change both their image location
as well as their intensity values from one video frame to
the next, owing to a respective change in both object loca-
tion relative to the camera as well as its surface orientation
relative to a light source. A fundamental task in computer
vision, therefore, is to provide derivations to describe how
motion and lighting interact with shape to produce a motion
sequence. This can potentially lead to novel reconstruction
and matching algorithms that make full utilization of image
information. This paper introduces such a derivation for the
case of a two-frame motion sequence of a rigid object with
lambertian reflectance properties.

To illustrate the interplay between motion and shading
information, consider the case of a lambertian sphere with
smoothly varying albedo that undergoes pure rotation. In
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this case motion cues extracted with the brightness con-
stancy assumption would generally be incorrect. In par-
ticular, if the sphere has constant albedo no motion would
be observed at all. At the same time, unless the albedo is
known, reconstruction with shape from shading methods
would not be feasible. Photometric stereo methods too are
irrelevant both because lighting is stationary and because
the object is moving. Nevertheless, if the lighting and mo-
tion parameters are known it should be possible to recon-
struct the sphere by combining motion and lighting cues.
Our formulation below achieves exactly that.

This paper addresses the case of a rigid object with Lam-
bertian reflectance properties that undergoes small motion
with respect to both the camera and a light source. We fur-
ther assume the object is illuminated by a single, stationary
distant point source and is observed by a stationary ortho-
graphic camera. Under such conditions, we derive expres-
sions that relate the brightness values in two frames, and by
eliminating albedo we arrive at a single, first order quasi-
linear partial differential equation (PDE) that relates shape,
lighting, and motion. We then discuss solution methods by
which the shape of the object can be recovered when light-
ing and motion parameters are supplied. We further explore
ways to construct boundary conditions, particularly in the
case of objects with smooth bounding surfaces. Experimen-
tal results demonstrate the utility of our formulation.

The paper is divided as follows. Section 2 discusses pre-
vious work. Section 3 derives the main PDE and discusses
solution methods and boundary conditions. Experimental
results are shown in Section 4.

2. Previous work

A large number of studies in vision utilize either shading
or motion cues for reconstruction, but only few consider
both cues simultaneously. Shading cues serve for shape
recovery from either a single image (“Shape from shad-
ing” [6]) or from multiple images of a static scene under
mere changes in lighting (“photometric stereo” [26]). In
contrast, motion algorithms frequently utilize the bright-
ness constancy assumption [7, 11] or use sparse feature
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points [14, 24, 23], which are somewhat robust to differ-
ences in lighting.

Some recent methods attempt to combine shading and
motion in various ways. Shading information has been in-
troduced into stereo reconstruction [3, 4] to handle static
scenes where brightness constancy (or a slightly more re-
laxed constraint) still applies. In this work shape from
shading algorithms applied to any of the stereo pair are
used to recover depth in regions between feature points.
Generalizations of the brightness constancy assumption that
locally model differences due to lighting were proposed
in [1, 18, 5]. Finally, a number of recent reconstruction
methods account for both motion and lighting cues, but in
a multiframe setting [2, 9, 15, 16, 17, 22, 25, 27, 10]. For
example, [22, 10] use at least four frames to determine for
each hypothesized correspondence whether or not it is con-
sistent with some lighting.

Our approach is related to a recent method proposed
in [16], which also combines motion and intensity cues to
recover shape. (A similar approach was suggested by the
same authors in the context of bilateral symmetric objects
in [21]). This approach, given three images of a moving
object, uses a propagation process to determine shape. In
this process a point correspondence across the three frames
determines the surface normal at a point, and the surface
normal in turn determines the next correspondence. The
setting is general, and can be used under large motion, per-
spective projection, and changes in lighting between the
frames. However, it requires at least three images (or uni-
form albedo). Our method, in contrast, applies in a more re-
stricted setting (small motion, orthographic projection, and
stationary lighting), but it requires only two views, and per-
haps most significantly, it provides a succinct mathematical
formulation of the problem in the form of a single differ-
ential equation. This clarifies the structure and numerical
properties of the problem, suggests effective solution meth-
ods, and provides new ways to derive boundary conditions.

3. Two-Frame Analysis

We consider a rigid object with Lambertian reflectance
properties undergoing small motion with respect to both the
camera and a stationary light source. In what follows we de-
rive expressions that under these conditions relate motion,
lighting, and shape in two frames. We further discuss solu-
tion methods to recover the shape of the object when both
motion and lighting parameters are given. Note that knowl-
edge of the parameters of the rigid motion is not sufficient
to determine the shape of the object, since the magnitude
of motion at every point depends on the depth of that point.
Our method therefore uses both lighting and motion cues to
determine the magnitude of motion, and hence the shape of
the object.

3.1. Preliminaries

Given an image pair I(x, y) and J(x, y) of a rigid, lam-
bertian object we begin by associating a coordinate frame
with the images so that they differ by a mere rotation about
the Y -axis. This is achieved in a process similar to that pre-
sented in [20]. Assume the motion of the object is known,
under the orthographic (or weak perspective) projection a
point P ∈ <3 whose projection onto I is given by p would
be found at q = sR̃P + t in J , where s > 0 is a uniform
scaling factor, R̃ is a 2 × 3 matrix containing the top two
rows of a 3D rotation matrix R, and t is a 2-vector of trans-
lation. We define our coordinate frame by first translating
J by −t. (Alternatively, we can eliminate translation by
identifying a pair of corresponding points p0 and q0 with
the origin of I and J respectively.) Next we eliminate s by
scaling J by a factor of 1/s. Finally, we rotate both images
so as to make their epipolar lines parallel to the horizontal
axis. This can be done by factoring the rotation R into a
product of three consecutive axial rotations, about the Z,
Y , and Z axes, i.e., R = Rz(ψ)Ry(θ)Rz(φ). Rotating I
by an angle φ and J by an angle −ψ rectifies the epipolar
lines. Following this operation J is related to I by a mere
3D rotation of angle θ about the Y -axis:

Ry(θ) =




cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 .

Since we assume this rotation to be small we use below a
first order approximation with sin θ ≈ θ and cos θ ≈ 1.

Note that this change of coordinates merely serves to
simplify notations. Similar expressions to the ones intro-
duced below can be derived also for non-rectified images.

3.2. Main derivation

Denote the object’s surface (in the coordinate frame of I)
by z(x, y). The surface normal at each point is expressed by

n(x, y) = 1/
√

z2
x + z2

y + 1(−zx,−zy, 1)T , where zx =

∂z/∂x and zy = ∂z/∂y. We assume the object is illu-
minated by a single point source at infinity (“directional
source”) and express the direction of the light source by a
vector l = (l1, l2, l3)T . The image intensities determined
by the Lambertian law are given by I = ρlT n, written ex-
plicitly as:

I(x, y) =
ρ√

z2
x + z2

y + 1
(−l1zx − l2zy + l3) , (1)

where we use ρ(x, y) to denote the surface albedo scaled by
light intensity.

Following a rotation about the Y -axis, a point (x, y) in
I appears at a new location (x′, y) in J , and its surface nor-
mal rotates as well. The intensities in J can then be ex-
pressed as a dot product of the light with the rotated nor-
mal, or equivalently as a dot product of the original normals



with the light source rotated in the opposite direction, i.e.,
J(x′, y) = ρlT (Ry(θ)n) = ρ(RT

y (θ)l)T n. Using the first
order approximation to Ry(θ) and dropping any higher or-
der terms this is written explicitly as:

J(x′, y) =
ρ√

z2
x + z2

y + 1
(−(l1 + l3θ)zx − l2zy − l1θ + l3) .

(2)
Subtracting (1) from (2) we obtain

J(x′, y)− I(x, y) = − ρθ√
z2
x + z2

y + 1
(l3zx + l1) . (3)

Next, by combining (3) with (1) we can eliminate both the
albedo and the norm terms, obtaining a relation between
shape, motion and lighting

(−l1zx−l2zy+l3)(J(x′, y)−I(x, y)) = −(l3zx+l1)θI(x, y).
(4)

The relation above is still unsatisfactory since I and J
are evaluated at different points, requiring a solution to the
correspondence problem, which itself depends on the sur-
face z(x, y). Notice that due to the first order approxima-
tion to Ry(θ) we have that x′ ≈ x − θz. Therefore, in the
case of small motion we can replace J(x′, y) with a Taylor
series:

J(x− θz, y) =
∞∑

k=0

1
k!

∂kJ(x, y)
∂xk

(−θz)k. (5)

In this paper we use a first order Taylor expansion:
J(x′, y) ≈ J(x, y)−θzJx(x, y) (as is commonly done also
with constant brightness [7, 11]), but the same derivations
can be provided with any number of terms of 5. A higher
order Taylor expansion can be necessary, for example, to
handle high frequencies in albedo.

This approximation will be accurate when the difference
|x′−x| ≈ |θz| is small, which is satisfied in particular when
both the rotation angle θ and the depth value z are small, or
when θ is small and z is bounded. Notice that under the
orthographic projection z = 0 is the depth of the centroid
of the object, and so we can expect z to be small under the
usual orthographic assumptions, i.e., whenever the object is
far from the camera relative to its size.

Plugging this into (4) we obtain

(−l1zx − l2zy + l3)(J(x, y)− zθJx(x, y)− I(x, y)) =
−(l3zx + l1)θI(x, y). (6)

This is our final relation, which can be written succinctly
as a PDE in z(x, y) with coefficients that depend on depth,
lighting, and motion

azx + bzy = c, (7)

where

a(x, y, z) = l1(Iθ − zJx)− l3I

b(x, y, z) = l2(Iθ − zJx)
c(x, y, z) = −l3(Iθ − zJx)− l1I,

and Iθ = (J − I)/θ.

3.3. Solution by Characteristics Curves

Eq. (7) is a first order partial differential equation in
z(x, y). Such an equation is called quasilinear since it is
linear in the derivatives of z, while its coefficients depend
on z. A useful interpretation of this equation can be ob-
tained [28] by writing (7) in the form of a scalar prod-
uct, (a, b, c)(−zx,−zy, 1)T = 0. This form implies that
at every point the vector of coefficients is perpendicular to
the surface normal, and so it must lie in the tangent plane
to the surface z(x, y). Consequently, the field of coeffi-
cient vectors traces curves on the sought surface. These are
the characteristic curves, which in the case of a quasilinear
equation lie in 3D. The characteristic curves are defined by
(dx, dy, dz)T×(a, b, c)T = 0, where (dx, dy, dz)T is an ar-
bitrary infinitesimal vector parallel to the coefficient vector,
and can be constructed by solving the following system of
ordinary differential equations dx

ds = a, dy
ds = b, dz

ds = c,
where s is a dummy variable representing parametrization
along the characteristics.

While the characteristic curves lie in 3D, in the case
of (7) each characteristic traces a planar curve on the sur-
face, and this family of characteristic curves lie in parallel
planes. This can be verified by checking that

l1l2a− (l21 + l23)b− l3l2c = 0 (8)

for all (x, y, z), implying that all vectors of coefficients
(a, b, c)T are perpendicular also to the constant vector
(l1l2,−(l21 + l23),−l3l2)T . Note that in general the fam-
ily of planes traced by the characteristics will not coincide
with the epipolar planes, unless l2 = 0.

With the appropriate Dirichlet boundary conditions
Eq. (7) can be solved using the method of characteristics.
In particular, let (x0, y0) denote a point on the boundary
whose (known) depth value is given by z0(x0, y0). Then,
using (x0, y0, z0), the coefficients (a0, b0, c0) at (x0, y0)
can be computed. Moving from the boundaries slightly in
direction (a0, b0, c0), i.e., to (x1, y1, z1) = (x0, y0, z0) +
γ(a0, b0, c0), where γ > 0 is a small constant, brings one to
a new point that, to a first order approximation, lies on the
surface. At this new point new coefficients, (a1, b1, c1), can
be computed. This process can be repeated for each charac-
teristic until the entire surface is reconstructed. Due to (8),
intersections of different characteristics are not common.

Solutions with the method of characteristics have the dis-
advantage that each characteristic is solved independently,
leading to greater sensitivity to errors. One way to address
this problem is by introducing regularization. In our ex-
periments below we show reconstructions obtained with the
method of characteristic without using additional regular-
ization.



Figure 1. The figure shows the projection of the rim of the shape
onto the image plane. Normal vectors at the rim points have the
same directions as normals vectors to the bounding contour in the
image plane

3.4. Boundary conditions

Solutions with characteristics require Dirichlet boundary
conditions, with an initial depth value z(x, y) specified at
some point along each characteristic. One way to obtain
depth values for boundary conditions is by detecting dis-
tinctive surface markings. Such markings will generally be
robust to changes in illumination, and so their locations in
the image can be identified across frames. But even if the
object lacks sufficiently many markings, depth values can
also be obtained along the bounding contours of a smooth
shape by further exploiting the particular form of (7).

For smooth objects the bounding contour is the projec-
tion of the rim of the shape (Figure 1). Under the ortho-
graphic projection the surface normal at the rim is paral-
lel to the image plane and its orientation coincides with
the normal to the projected bounding contour. Using a
spherical coordinate representation for the surface normal:
n = (cos β sinα, sin β sinα, cosα) we have α = π/2 on
the boundary and therefore n = (cos β, sin β, 0).

For the points at which nz = 0 zx and zy diverge, but
their ratio is finite and satisfies zy/zx = tan β. Equation (7)
therefore takes the simpler form: azx + bzy = 0.

Replacing in (7) the ratio zy/zx by tanβ we obtain:
a cos β + b sin β = 0.

Writing the explicit expressions for a and b and rearrang-
ing we obtain a simple linear equation in z which can be
solved almost everywhere

z =
(l1Iθ − l3I) cos β + l2Iθ sinβ

(l1 cosβ + l2 sin β)Jx
. (9)

Despite the elegance of (9) using it to obtain an estimate
of depth at the boundary is tricky. The intensity values of
the rim points are not directly accessible since points on the
rim face perpendicularly from the camera. Moreover, some
of the points that lie on the rim in I may face away from
the camera after rotation, making the estimation of Iθ and

Jx problematic. One way to overcome this problem is by
extrapolating the desired intensity values from nearby ob-
served values, as in [19]. An alternative method is presented
below.

Figure 2. Computing boundary conditions. The figure shows a
surface (left) viewed from above (right). The rim of the surface
forms the “theoretical boundary,” but intensities are only visible in
internal points. We assume that by moving within the image into
the inside of the shape we reach surface points whose normal is
coplanar with their respective point on the rim.

To specify boundary conditions we assume the object is
smooth and use intensities near the silhouette in the spirit
of (9). Since we cannot directly access the intensities of
silhouette points we use instead the following method. We
make the simplifying assumption that if we move within
the image from a boundary point in a direction opposite to
the surface normal at the point (i.e., in the direction π + β
relative to the X-axis) and inspect the surface at nearby
points then the normal vectors of such points take the form:
n = (cos β sin α, sin β sin α, cos α) with the same β as on
the “theoretical boundary”. (In other words, we assume that
the normal vectors at such nearby points will be coplanar
with the normal at the respective boundary point, see Fig-
ure 2.) We select the nearest visible point to the boundary,
and use the standard lambertian equation to determine n:

I = ρln = ρ(l1 cos β sin α + l2 sin β sinα + l3 cosα).
(10)

This equation now has two unknowns, ρ and α (since β
is determined by the boundary orientation). To obtain an
estimate of these two values we first compute for every
value of α in the range π/3 ≤ α ≤ π/2 a correspond-
ing value of albedo, and choose ρ to be the mean of these
values. Using the estimated albedo we then recompute α.
Once α is estimated the derivatives of z are determined,
zx = − cos β tanα and zy = − sin β tanα, and by plug-
ging them into (7) we obtain a linear equation in z:

Az = B, (11)

where
A(x, y) = Jx(l1zx + l2zy + l3)
B(x, y) = Iθ(l1zx + l2zy + l3)− I(l3zx + l1).

Due to the noise present in images, direct solution of (11)
may lead to errors. So instead of solving (11) directly we
solve a minimization problem with the cost function:



F (x, y, z,
∂z

∂~u
) = (Az −B)2 + λ(

∂z

∂~u
)2, (12)

with a regularizing constant λ > 0. Here ~u is the tangent
direction of the boundary contour, and ∂z/∂~u is the direc-
tional derivative of z.

3.5. Special case: frontal lighting

A particularly simple formula is obtained in the case of a
frontal light source, e.g., in flash photography. In this case
lighting can be expressed in the form of l = (0, 0, 1)T , and
the coefficients in (7) become a = −I , b = 0, and c =
−Iθ + zJx. As a consequence, all quasilinear terms vanish,
and (7) transforms to a system of linear ordinary differential
equations (ODEs), each along a different epipolar line

Izx + Jxz = Iθ. (13)

This system can be solved [28] by introducing an integrat-
ing factor µ(x, y) = exp(

∫ x

x0
(Jx/I)dx). Dividing both

sides of (13) by I and multiplying by µ we obtain

d

dx
(zµ) =

Iθ

I
µ. (14)

Integrating with respect to x and dividing by µ we obtain

z =
1
µ

(∫
Iθ

I
µdx + C

)
. (15)

The value of the constant C is determined by the boundary
conditions.

4. Experiments

We have conducted several simulations and real experi-
ments to demonstrate the utility of our formulation for shape
reconstruction. In all experiments an object was rotated
with respect to both a camera and a light source. The light
source orientation and the rigid transformation were either
set (in simulations) or measured (in the real experiments)
manually. 3D shape was recovered by solving (7) using the
method of characteristics (Section 3.3). In case of frontal
lighting structure was recovered by solving (13) directly by
the method of integrating factors (15). No regularization or
smoothing was applied. Once the shape was recovered we
returned to (1) to also recover the albedo.

4.1. Simulations

In the first set of experiments we applied our method to
a lambertian sphere with both constant and spatially vary-
ing albedo. In the case of a constant, uniform albedo we
used only one image, since any rotation of the sphere would
not modify the image. We can therefore apply our method
to this image with any small rotation. Figure 3(left) shows
the original image and the 3D reconstruction obtained. We
show in addition a subset of the characteristic curves and

recovered depth on the boundary. It can be noticed that all
characteristics lie in parallel planes, as is predicted by (8).
Figure. 3(right) shows the application of our formulation to
a pair of images of a sphere with non-uniform albedo. For
albedo we used ρ(x, y) = 0.1 + (x2 + y2)/2. Shape from
shading methods would require in this case that the albedo
would be provided. Our method, in contrast, exploits the
second image to eliminate albedo and to recover the sur-
face. The reconstruction error, measured by ‖ẑ−z‖22/‖z‖22,
where ẑ(x, y) denotes the estimated depth values and ‖.‖2
denotes the l2 norm of a function, was 4.13% for the uni-
form sphere and 3.75% for the non-uniform sphere.

Figure 3. Reconstruction of a synthetic sphere with uniform
(left) and non-uniform smooth (right) albedo. Light directions are
[-0.3, 0.2, 0.93] and [0.5, -0.3, 0.8] respectively. Top: an image
used for reconstruction (one of two in the case of the non-uniform
albedo) and characteristic curves; Second row: 3D reconstruction
with a characteristics solution; Bottom: recovered depth along the
boundary.

In a sequence of additional experiments we recon-
structed the shape of a camel toy (Figure 4). We used a
model obtained using a handheld laser scanner. The first
experiment shows the camel (with uniform albedo) illu-
minated by frontal lighting. To recover the shape of the
camel from this image we used the derivation presented in
Section 3.5 and solved a set of linear ordinary differential
equations (13) using the method of integrating factor (15).
The next three experiments show recovery with light source
at generic directions, with the final experiment albedo is
painted on the camel. The ground truth shape is present
for comparison. These figures demonstrate that overall a
faithful reconstructions is obtained.

For comparison, we applied a conventional stereo
method described in [13] to these images (Figure 4) and
the error of reconstruction was 38.5% at best, due to the
brightness constancy assumption (compared to 5-10% with
our method).

4.2. Experiments with real images

In the next experiments we reconstructed the shape of a
hippo toy, a whistler, and a Pinocchio doll. While the hippo
and Pinocchio have complex shapes, the whistler is rugged



Figure 4. Four synthetic reconstructions of a camel toy. Top: a uni-
form albedo camel illuminated with frontal lighting and the recon-
struction obtained using the integrating factor method described
in Sec. 3.5. The error of the reconstruction is 5%. The next two
rows show the same camel illuminated with generic lighting (light
directions respectively are [0.3; 0.1; 0.95] and [-0.2; 0.4; 0.89]).
The errors of these reconstructions respectively are 9% and 10%.
The following row shows a camel with non-uniform albedo illu-
minated from [0.5; 0.3; 0.8]; the error of the reconstruction is 8%.
The bottom row shows the albedo pattern used in the last experi-
ment and the ground truth shape (laser scan was taken from [12] ).

and has a complex albedo pattern. To measure rotation we
placed the objects on a turn-table and marked rotations at 1
degree spacing. We used in these experiments rotations of
up to 6 degrees. To determine the light source direction we
took a picture of a ball with uniform albedo. Light source
direction was indicated by the peak location in this image.
In all cases we reconstructed the shapes by relying only on
gray level image pairs. Once the shapes were reconstructed
we used the color images to recover the albedo in the red,
green, and blue channels separately. Similar results were
obtained when we repeated these experiments with small
mis-estimations of lighting direction and rotation angle.

Figure 5. Real experiment with a hippo toy (rotation angle is 5 de-
grees; estimated light direction is [0.1; -0.2; 0.97]). From top to
bottom: The first of two images used for reconstruction and char-
acteristic curves; two views of the reconstructed shape, without
and with the recovered albedo.

Figure 6. Real experiment with ceramic whistle (rotation angle is
3 degrees; estimated light direction is [-0.3; -0.2; 0.93]). From
top to bottom: The first of two images used for reconstruction and
characteristic curves; and two views of the reconstructed shape,
without and with the recovered albedo.

5. Conclusion

We have examined the interplay between shape, light-
ing, and motion in the case of a rigid, lambertian object that
undergoes a small motion with respect to both a stationary
camera and a light source. Under these conditions we de-
rived a single, quasilinear partial differential equation in the
depth values that can be used, given motion and lighting pa-



Figure 7. Real experiment with Pinocchio toy (rotation angle is 1
degree; estimated light direction is [-0.2; 0.2; 0.95]). From top
to bottom: The first of two images used for reconstruction and
characteristic curves; the reconstructed shape, without and with
the recovered albedo, and a zoom in into the recovered head of
Pinocchio.

rameters, to recover the shape of the object from an image
pair. We further discussed solution methods by using char-
acteristic curves, and used our formulation to derive bound-
ary conditions at or near the object’s bounding silhouette.

Our approach relies on several limiting assumptions, re-
quiring advance knowledge of both motion and lighting.
One particular difficulty is the requirement to provide the
angle of out-of-plane rotation (denoted throughout this pa-
per by θ), as it is known that the angle of out-of-plane ro-
tation cannot be recovered from a mere two orthographic
images of an object [24, 8, 20]. Despite these limitations,
we believe that the simplicity of this formulation can serve
to better understand how lighting and motion interact with
shape to produce an image. We hope our work will fur-
ther facilitate research to generalize this formulation to han-
dle realistic settings such as perspective projection, non-
stationary camera or light source, multiple light sources,
and specular reflectance, and to develop new methods to
recover motion and lighting parameters under realistic con-
ditions.
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