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Abstract

We perform shape matching by transforming the problem

of establishing shape correspondences into an image regis-

tration problem. At each vertex on the shape, we calculate

a shape feature and encode this feature as image intensity

at appropriate positions in the image domain. Calculat-

ing multiple features at each vertex and encoding them into

the image domain results in a vector-valued feature image.

Establishing point correspondence between two shapes is

thereafter treated as a registration problem of two vector-

valued feature images. With this shape representation, vari-

ous existing image registration strategies can now be easily

applied. These include the use of a scale-space approach

to diffuse the shape features, a coarse-to-fine registration

scheme, and various deformable registration algorithms.

As our validation shows, by representing shapes as vector-

valued images, the overall method is robust against noise

and occlusions. To this end, we have successfully estab-

lished 2D point correspondences of shapes of corpora cal-

losa, vertebrae, and brain ventricles.

1. Introduction
Establishing shape correspondences is important for sta-

tistical shape analysis and object retrieval applications. In

medical imaging, it helps us to analyze shapes for under-

standing diseases, develop probabilistic models and atlases,

and retrieve anatomical shapes in medical databases.

Most approaches frame shape matching as an optimiza-

tion that maximizes a similarity measure computed between

two shapes under proximity/neighborhood and spatial con-

straints. The similarity measure is often calculated base on

shape features, e.g. curvature, convexity, shape context [8].

In encoding proximity constraints, Xie and Heng [23] estab-

lished correspondences between segments before establish-

ing point correspondences on the matched segments, while

Myronenko et al. [15] imposed a motion coherence con-

straint over the deformation field from which correspon-

dences are derived. More explicit regularization can be

done with order-preserving assignment [19], or by minimiz-
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Figure 1. Pipeline of the proposed shape matching framework.

ing cost functions that either encourage the preservation of

“local structure” [5] as shapes deform or penalize transfor-

mations that do not preserve distances between neighbour-

ing points [25]. More recently, Kaick et al. [21] simultane-

ously enforced proximity and order-preservation constraints

by formulating the problem as a quadratic assignment.

Interestingly, the seemingly complicated task of enforc-

ing proximity constraints can be implicitly done in image

registration. Given two images, the fundamental goal of

registration is to find a spatial transformation T that maps

pixels in one image to corresponding pixels of another im-

age [7, 12]. The spatial transformation T is found by min-

imizing an energy function that measures the dissimilarity

between one image and another on which T is applied. This

function is often defined as a sum of an external (or im-

age fidelity) term that encourages transformations that align

pixels with similar intensity values and an internal (or reg-

ularization) term that measures the smoothness of T . The

former is analogous to dissimilarity between matched shape

descriptors, which are used to match similar vertices, while

the latter is analogous to the proximity constraints, which

are needed to ensure that neighbors map to neighbors.

Motivated by these similarities, we propose to treat shape

correspondence as an image registration problem. Given

shapes represented by points in 2D or 3D (e.g. contours or

surfaces), we extract shape features and encode them at ap-

propriate positions in the image domain. Extracting K sets

of different types of features thus forms a vector-valued fea-

ture image of K components. Performing the registration

of these feature images then allows us to derive point cor-

respondences from the displacement vector fields generated

from image registration. With appropriate choices of spa-

tial transformations, neighborhood constraints can be effec-
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Figure 2. Occluded shape (left), original shape (middle), and the

difference in their representations (right). Occlusions in shapes can

significantly affect their DT representations (top row). Conversely,

the impact of occlusions on the feature-based representation (bot-

tom) is localized and not as significant.

(a) (b) (c) (d)

Figure 3. (a) Two shapes that differ by a rotation of 40◦. (b)

Their DTs; note how the distinctive region of the shape is barely

visible. (c) Their feature-encoded representations, in contrast, have

varying values along the contour, thereby giving more meaningful

characterizations of the shapes. (d) The diffused feature images.

tively enforced. Fig.1 shows the pipeline of this framework.

The idea of matching shapes via image registration

first appeared in [16]. In that work, shapes were embed-

ded into images via signed Euclidean distance transforms

(DT), which are then registered by minimizing their sum of

squared differences. More recently in 2007, Munim and

Farag [14] represented shapes with vector distance func-

tions (or VDT) and matched shapes by registering these

functions. While their methods are promising, we recog-

nize that the use of VDTs or DTs has several problems.

First, they cannot always describe a shape sufficiently well

as they only represent shapes implicitly and do not encode

shape features. Second, they are sensitive to noise, so the

behavior of local registration of DTs is often unstable in

the presence of spurious structures [5, 6]. Third, they can-

not cope well with occlusions in shapes (Fig.2). Neither

can they represent symmetric shapes well as these shapes

have similar DTs [6], and so registration of these images

are prone to failure (Fig. 3).

In contrast, the use of features offers a more descriptive

and robust representation of the shapes. By constructing a

multi-scale space of feature images (see Fig.4a), such a rep-

resentation can be insensitive to noise and outliers. Thus,

performing registration on multiple levels, each of which

uses feature images that are diffused at the corresponding

scale, coarse and fine levels of registration will be bet-

ter driven by global and local shape features respectively,

thereby increasing the capture range and robustness of the

algorithm.

The proposed method not only exploits the power of

well-established image registration techniques and existing

shape descriptors, but it can be extended in several ways.

With the image space as the embedding space, it can be ap-

plied to match shapes of any dimensions and of any nature

(e.g. shapes that are open or closed; consist of organized or

unorganized points; have equal or unequal cardinality, etc.).

As each vertex is now characterized by both its features and

location, we can make use of both intrinsic features and

spatial information to represent a shape. By making use of

multiple complementary shape features, we can also charac-

terize each shape more descriptively. Registration of these

representations are now driven by shape descriptors, rather

than only from its contour (as encoded by DT). Addition-

ally, by maximizing a similarity metric computed between

two feature images with respect to appropriate spatial trans-

formations, the solution does not need to be constrained by

the finite space of the assignment permutations. Hence, an

outlier point is not required to match with any other point in

another shape. Lastly, because shapes are now represented

as images, this formulation allows for the borrowing of nu-

merous image registration and regularization methods that

can now be easily applied to enforce neighbourhood con-

straints in shapes.

We note that there exists several independent work on

registration of vector-valued images and of feature images,

albeit not for shape matching. In [18], multi-channel images

are registered using a similarity measure based on informa-

tion theory. While relevant, this work was not intended for

registration or matching of shapes. Zhang and Rangarajan

[24] performed affine registration of images containing pro-

jected features (i.e. scalar-valued), which can thus be re-

garded as one particular choice of features in our frame-

work. In addition to affine transformations, however, our

framework also can solve for other spatial transformations.

Furthermore, rather than employing one type of feature, our

method can combine different types of features that com-

plement one another (e.g. geometric and medial-based fea-

tures), thereby allowing for more informative descriptions

of the shape.

2. Methods

2.1. Overview

We establish shape correspondence through image reg-

istration. Given two shapes, we first extract shape features

for each point and encode each of these features as an image

intensity value of the pixel corresponding to the physical lo-

cation of the point. Thus, extracting multiple features gives

rise to two vector-valued feature images. Next, we apply



isotropic diffusion to these images and perform linear reg-

istration with few degrees of freedom. Linear registration

is then performed in a coarse-to-fine manner such that as

we go from one level to the next finer level, more local-

ized and less diffused features are used to solve for spatial

transformations, which also increase in degrees of freedom.

Nonlinear registration is used afterwards, wherein local dis-

placement of point locations are estimated. Similarly, as

registration proceeds from one level to the next, we apply

a lesser amount of diffusion to images which contain more

localized shape features to solve for the displacement vector

field that would bring each image pixel into alignment with

a corresponding pixel of another image. From the computed

vector field, correspondence is established by visiting each

point location in the displacement map and computing its

new location. With this location, pair-wise assignment can

be achieved by nearest-neighbour assignment.

2.2. Shape Features

We begin with a 2D shape that is represented with a set

of points P , each of which is represented as pi and is lo-

cated at (xi, yi). For each pi, we extract a set of K fea-

tures f1i
, f2i

, ..., fKi
. These can be geometric, topological,

and if available, appearance-based features (i.e. if the shape

is extracted from an underlying source image). We note

here that the optimal set of features to be extracted is data-

dependent and is indeed a research topic outside the scope

of this work. In this work, we chose a set of K features,

f1, f2, ..., fk, each belonging to a category listed in Table 1

(note the acronyms shown for the different features).

2.3. Shape representation as vector-valued feature
images

Given K sets of feature values, we normalize each set to

the range [0, 1] to prevent bias towards features with larger

ranges [1]. Specifically, if fk is found to be normally dis-

tributed, we normalize it according to:

f̃k = (fk − µfk)(6σfk)−1 + 1/2 (1)

where µfk
and σfk

are the mean and variance of fk respec-

tively. The additional shifting and rescaling guarantee that

99% of f̃k is in [0,1] and fewer out-of-range values will be

truncated [1]. If fk is not normally distributed, we simply

apply linear rescaling [1].

After normalization, we construct a vector-valued fea-

ture image by encoding each set of features into individual

feature components. In doing so, we assign f̃k of point pi

to the pixel corresponding to the nearest physical location

of the point. When dealing with sparse pointsets, we use

B-spline functions to interpolate new points between exist-

ing points. Repeating this encoding process for the source

shape ζs and target shape ζt results in two feature images,

Table 1. Features employed in this work.

Geometric Convexity (CONV) [11].

Curvature (CURV) [11].

Area integral invariant (AREA) [13].

Appearance Statistics on intensity values (RATIO): Ratio

between the average intensity values in the

circular region within and outside the contour.

Observed transport (AOT): An adaptation of [17]

to encode appearance information contextually.

Medial- Local feature size (LFS) [23].

based Skeletal points (SKEL) [4]: Skeletal points of the

shape are encoded as one component.

which we now denote as F and M (short for “fixed” and

“moving” images, which are terms commonly used in im-

age registration).

2.4. Registration of feature images

2.4.1 Linear registration

We first seek the transformation parameters T={t1, ..., tk}
that would create pixel-wise intensity correspondences be-

tween F and M . As T is optimal when it matches similar

features (i.e. intensity values), we hence minimize the mean

of squared differences measure S computed between F and

M :

S(F, M(T [x])) =
1

|Ω|
∫

Ω

√√√√ K∑
i=1

wk(Fk(x) − Mk(T [x]))2dx

(2)

where x ∈ Ω is a spatial location, Fk is the k-th component

of F and wk is the weight assigned to the k-th component,

with
∑K

k=1 wk = 1. More details on wk will be presented

in Section 2.5.

Image registration (and hence shape matching), entails

minimizing S with respect to T , so we investigated two op-

timization algorithms: a gradient descent-based algorithm

and a genetic algorithm (known as one-plus-one evolution-

ary optimization [7]). When the former method is used, we

differentiate S=S(F, M(T [x])) with respect to each of the

transformation parameters ti, i.e.:

∂S

∂ti
=

2

|Ω|
∫

Ω

(
k∑

i=1

wk(Fk(T ) − Mk)∇Mk(T )

)
∂T

∂ti
(3)

To decrease computation, we adopt the narrow-band ap-

proach [16] such that S is computed only over pixels that are

within distance R to the shape contour, thereby effectively

reducing the size of Ω to minimize the penalty introduced

by the additional dimension employed (i.e. 2D images for

1D contours, 3D images for 2D surfaces). The choice of R
will be discussed in Section 2.4.3.



2.4.2 Non-linear (deformable) registration

Numerous techniques have been developed to solve for the

local deformations between two images [7, 12, 20]. We il-

lustrate how two of such methods, namely parametric and

non-parametric, can be adapted for shape matching. In the

parametric method, images are incrementally deformed by

manipulating a regular lattice of control points according to

the tensor product of a third-order B-spline [7]. Through the

use of a B-spline control-point grid, a smoothness constraint

is implicitly enforced. Thus, this technique can model both

small and large deformations [7], support dense registra-

tion that is continuous, and is generally robust to noise [16],

thereby making it suitable for modeling the deformations of

the embedded shapes. In solving for the displacement pa-

rameters of each control point, we minimize S as defined

previously using a variant of the LBGS optimization algo-

rithm [7]. For this method, we employ a multi-resolution

control-point grid such that at each level of deformable reg-

istration, the spacing in x and y dimensions between the

control points is decreased by Gx, Gy . This multi-level

scheme, which is a common and successful practice in im-

age registration [7, 12], can avoid entrapment in local min-

ima and allows for stable deformations.

While effective, this method can be very expensive.

Accordingly, we have also investigated the feasibility of

Thirion’s [7] demons algorithm, a non-parametric method

that is less costly. This method computes a deformation

field D that describes the local displacement of each pixel

according to an optical flow equation [7]. To enforce an

elastic-like behaviour on D, we adopt Thiron’s [7] regu-

larization approach and smooth it with a Gaussian kernel

between iterations with decreasing scales (i.e. the standard

deviation of the kernel decreases from 4 to 1 pixel).

In short, these two methods differ in terms of how regu-

larization and proximity constraint are enforced, which ul-

timately govern how shapes can be deformed. As shown

in the literature, demons algorithm can be highly effective

for correcting small deformations. For shapes that differ by

large deformation, the parametric method will be superior.

Thus, the selection of either method should be made based

on the type of deformations exhibited in the shapes (i.e. the

type of regularization desired) and also on the type of corre-

spondences permitted (e.g. one-to-one correspondences, or

one-to-many correspondences, which may exist in medical

images or anatomical shapes).

2.4.3 Multi-level and multi-scale registration

We employ a scale-space approach to increase robustness

against noise and increase capture range of the algorithm.

To do so, we apply Gaussian smoothing, initially at a scale

σo, and perform registration in a coarse-to-fine manner (in L
levels). As we proceed from one level to the next, we solve
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Figure 4. (a) Two sets of feature images of corpora callosa shapes

with CURV. Coarse-to-fine registration with large-to-small scale

smoothing (starting at level 1) can gradually improve the capture

range of scale-space based optimization. (b) The metric value be-

tween the two shapes in Fig.3 as rotation varies. Note how the

heights of local minima have decreased when diffusion is applied.

Note too that the amount of diffusion (determined by σ) applied

has not affected the location of the global minimum.

for T with more degrees of freedom, solving each within a

smaller search space, and registering images that have been

smoothed at lower scales σ1, ..., σL−1, which are decreased

exponentially with decay γ. Fig.4a provides an example

of this scheme. This process of performing finer registra-

tion and incorporation of more local features from level to

level constitutes the core of our multi-feature, multi-scale,

and multi-level registration framework. Since the scale of

the kernel determines the level of detail at which the shape

should be represented, which in turn is task-dependent, the

choices of σo and γ were obtained empirically. We empir-

ically found that it is optimal to set σo to be one third of

the shape’s mean size and γ ∈ [.5, 1.1], depending on the

shape’s complexity, and set R (size of the narrow band) to

be twice the value of σl.

Note that diffusion of images not only generates a

smooth image gradient, but tends to convexify the objective

function, thereby increasing the capture range of the opti-

mization. This is reflected in Fig.4b wherein we see that the

heights of the local minima around the global minimum are

decreased when a large amount of diffusion is applied to the

images, implying a smoother optimization path.

2.5. Feature weights

The weightings in the metric calculation allow registra-

tion at a particular level to be tuned to a particular subset

of features. Expert or prior knowledge can be used to de-

termine the values of these weights. If a large set of ex-

pert training correspondences is available, one can set the

weight to be inversely proportional to the variance of the

feature values across points known to correspond in a train-

ing set. Machine learning may also be used, for instance,

as done by Ward et al. [22], to discover the discrimina-



tory features that correspond to human intuition of saliency

and determine the weights accordingly. In this work, we as-

sign weights so that medial-based features are emphasized

initially, then shift focus to more localized geometric fea-

tures, and finally, if available, to appearance-based features.

Coarse-to-fine registration is henceforth driven by informa-

tion pertaining to the global structure of the shape, to more

localized geometric features, and if available, to textural and

appearance-based features.

3. Results

We applied our method to establish point correspon-

dences in both synthetic and real data and present both

qualitative and quantitative validation results. In perform-

ing global alignment, we first seek the translation parame-

ters and subsequently the affine-transform parameters. We

then perform non-linear registration using the deformable

registration algorithms described previously. For all exper-

iments, we also performed B-spline-based registration us-

ing the shapes’ DTs to provide a comparison of our method

against another image-based shape matching method [16].

We began our investigation on synthetic shapes (Fig.3),

which occupy the image space of size 200 × 200. We ap-

plied known translation and similarity transformations to

these shapes to generate ground-truth correspondences. As

no non-rigid deformations were introduced, performance

is evaluated by calculating the mean Euclidean distances

(MED) between corresponding points after registration

has been performed. Table 2 summarizes the results of these

tests. In addition, results using the one-plus-one evolution-

ary and gradient-descent based optimization were compared

for solving for the optimal global transformation. From Ta-

ble 3, we can see that the use of gradient-based optimization

yielded higher success rates than the use of the one-plus-

one algorithm. However, the latter had faster convergence

and was less sensitive to the optimization parameters used.

Thus, when applying our method to more complicated sce-

narios (e.g. involving 3D shapes and/or images with much

larger resolution), one could employ the latter algorithm to

solve for initial alignment and use the gradient-based algo-

rithm for finer registration.

Next, we tested the overall method on anatomical shapes

extracted from real medical images. These include: a) mid-

sagittal contours of corpora callosa (CC) extracted from a

set of 20 MR images; and b) contours of brain ventricles

(BV) extracted from 14 MR images; and c) mid-axial con-

tours of thoracic vertebrae (TV) extracted from CT volumes

in 4 spinal studies. For validation based on ground-truth [9],

we performed 3 to 7 repeated trials of manual landmarking

on these datasets. The manually marked correspondences

were later used to quantify the method’s accuracy, which

Table 2. Results of using DT and feature-based representations for

synthetic shapes. Ten trials of random rotations [−40◦, 40◦] and

translations [−10, 10] were applied to the shape shown in Fig.3.

The scales of features are shown in parentheses (expressed as frac-

tion of the shape’s size). Success rate is the percent of trials where

the recovered translation parameters are within ±5 and the rota-

tion is within ±2◦.

Encoding method MED Success Rate

DT 3.79 75%

CURV (0.1, 0.16, 0.2) 2.87 92%

CURV, CONV, AREA (0.15) 3.11 87%

Table 3. Comparison of optimization methods. MED is the

mean Euclidean distances between corresponding points after reg-

istration. nitns is the average number of iterations taken using the

same number of levels and similar convergence criteria.

Method MED Success Rate nitns

One-plus-one 6.07 78% 154

Gradient-descent 4.55 83% 260

Table 4. Configuration of feature and weights used for each

dataset. Values in parentheses are the feature scales (expressed

as a fraction of image’s mean size). Non-linear registration starts

at second last level. The notation scale (a/b) and weight (c/d) indi-

cate that weight c was used for the feature extracted at scale a and

weight d was used for the feature extracted at scale b.

Features Weights at level l
l=1 l=2 l=3 l=4 l=5

CC SKEL .8 .5 0 0 0

AREA (0.2) .1 .5 .5 .5 .5

AOT .1 0 .5 .5 .5

BV SKEL .8 0 0 0 NA

CURV (0.2) .1 .5 .5 .5 NA

LFS .1 .5 .5 .5 NA

TV SKEL 1 0 0 0 NA

CONV (0.20/ 0.15) .5/ 0 .5/ 0 .25/ .25 .25/ .25 NA

AREA (0.25/ 0.20) .5/ 0 .5/ 0 .25/ .25 .25/ .25 NA

Figure 5. Two different CC contours overlaid on their source im-

ages. The appearance-based features, which are shown along the

contour in grayscale, provide rich descriptions when local geomet-

ric features do not (Fig.4a).

is defined as the target error ε of each correspondence1. A

computed correspondence is then considered correct if its

target error is lower than twice the corresponding variability

in the repeated trials of manually marked correspondences.

Robustness of the method is then calculated as the percent-

age of correct correspondences established.

For each dataset, we explored various schemes, each dif-

fered in terms of choice of K features, as well as values

1For each known correspondence pi �→ qi, and the established corre-

spondence, pi �→ qj , ε is the geodesic distance between qi and qj



of σo and γ (which together determine L, σ1, ..., σL) and

some critical registration parameters (e.g. Gx, Gy). Specif-

ically, we first examined the use of different geometric fea-

tures. We then included appearance-based features for the

registration of the CC data and found that this inclusion had

increased the accuracy of the established correspondences.

This is in accordance with [22], which showed how ex-

pert knowledge and appearance information can be used to

improve the accuracy of point correspondence. As Fig.5

shows, the top and bottom regions of the CC shape have

few meaningful geometric features, but contain descrip-

tive appearance-based information. However, inclusion of

appearance-based features for the BV data did not improve

accuracy. This is likely due to the similarity in the textural

properties around the contour of the ventricle shapes.

For some relatively more challenging cases (i.e. shapes

that differ by large stretches and/or bending), we added

medial-based features in the initial stages of global align-

ment so that registration is driven more by structural fea-

tures. Then, in subsequent levels, geometric features were

used to solve for local deformations. Fig.6 shows one con-

figuration of such setup for registering two TV shapes.

Based on these initial experiments, we completed valida-

tion on each dataset using the configurations shown in Table

4. Fig.7 and Fig.8 show some of the established correspon-

dences. Table 5 summarizes the performance of registra-

tion using DT and using our feature-based representation,

as well as the results of applying two non-linear registra-

tion methods (Sec. 2.4.2). Using the parametric non-linear

registration method yielded more accurate matching of CC

shapes. The geodesic distances to known ground-truth po-

sitions of 4 out of 5 target points were reduced and the over-

all reduction in the average geodesic distance dropped from

3.2 to 2.6 [9]. For the BV and TV shapes, our method es-

tablished more accurate correspondences on a subset of the

landmark correspondences. In some cases, our method may

have suffered from the low descriptive power of the features

we used for describing the BV shapes, and thus yielded

lower success rates. However, as we have only examined

few of the many shape descriptors established in the litera-

ture, we expect improved results with a richer set of features

and improved feature selection strategy.

To assess the sensitivity of the method to the weights,

we also repeated the experiments on the CC and TV shapes

using equal weights and results show that the use of un-

equal weights has generally led to faster convergence and

slightly higher accuracy, thus demonstrating the effective-

ness of employing complementary features.

Finally, to test the method’s robustness against noise and

occlusions, repeated trials of registration were performed

on the CC and TV shapes of which data points are either re-

moved or perturbed in the normal direction to the contour by

a distance drawn from a Gaussian distribution. In describ-

 (c)             (d)    

 (e)             (f )    

 (a)             (b)    

Figure 7. Landmark correspondences between different pairs of

CC shapes (ζs in red; ζt before global registration in green, af-

ter global registration in yellow, and after non-linear registration

in blue). Result using (a) feature-based and (b) DT-based registra-

tion. (c) and (d) show result of the same pairs with established cor-

respondences. As DT does not encode saliency of feature points,

its solution converged to local minimum, leading to inexact cor-

respondences (highlighted by arrow). (e) and (f) result of another

pair of shapes using feature-based registration.

Figure 8. Point correspondences established for some BV and TV

shapes.

(a) (b)

(c) (d)

Figure 9. (a) The difference between the DT of the original shape

and the DT of its noisy version dominated the entire image domain.

(b) Profiles of AREA along the contour of the original shape and its

noisy version. (c) Feature image describing the original shape. (d)

Feature image describing its noisy version. Note the consistency

in the images despite the presence of noise, and so its impact on

registration is suppressed.

ing these polluted shapes, we extracted AREA at different

scales. Due to its insensitivity to noise, this feature allows

for a faithful description of the original shape. As Fig.9b de-

picts, the intensity profiles of this feature along the contour

extracted before and after noise was added are fairly con-

sistent. Thus, the impact of noise on the generated feature
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Figure 6. Scheme of linear registration for TV shapes. Each row i corresponds to the feature images used at level i. The thickness of the

outlining boxes reflects the weight assigned to the k-th feature. Thus, initial stage of registration is driven by SKEL. Subsequent stages

then focus on local geometric features (i.e. CURV and AREA) extracted at different scales.

Table 5. Quantitative evaluation of the established correspon-

dences of landmark points p1 to p5. τ is the mean geodesic dis-

tance between the assigned point and ground-truth correspond-

ing point. Non-linear registration was done with the parametric

method (marked with B) or the demons algorithm (marked with

D). The feature images (denoted as FI) consist of components

shown in Table 4.
Method τ Overall Success

used p1 p2 p3 p4 p5 τ rate

CC DT+B 2.4 2.5 3.0 2.9 4.2 3.0 87%

FI+B 1.8 2.1 2.9 2.3 5.1 2.6 85%

FI+D 2.1 3.2 3.0 3.2 4.7 3.2 91%

BV DT+B 1.3 5.5 7.1 0.9 - 3.7 89%

FI+B 2.6 4.8 6.7 1.8 - 4.0 74%

FI+D 4.1 4.6 7.1 1.1 - 4.2 72%

TV DT+B 1.5 2.0 2.9 9.1 2.3 3.6 77%

FI+B 0.8 2.6 5.1 7.3 5.9 4.3 79%

FI+D 2.5 2.6 2.7 8.4 8.5 4.2 68%

image is insignificant (Fig.9d). On the other hand, the im-

pact of noise on the DT representation is apparent (Fig.9a).

Consequently, the use of DT resulted in lower success rates

(88% vs. 91% for CC and 97% vs. 83% for TV). When

occlusions are present, the use of DT yielded 79% and 89%

success rates for CC and TV shapes, respectively, while the

use of feature images yielded 80% and 83% success rates

for the respective shapes.

In this preliminary study, we started with the matching

of anatomical shapes, which motivated this work, but have

begun to match shapes from MPEG7 and other standard

datasets [9]. Some qualitative results are shown in Fig.10

and Fig.11. Validation results using these databases will be

reported in future work.

4. Conclusion
We have shown how point correspondence can be estab-

lished via the registration of features images. To illustrate

the effectiveness of our method, we began with a simple se-

lection of features. Future work include examining: 1) the

use of more robust shape descriptors (e.g. (geodesic) shape

context [8]; 2) possible training procedures for choosing the

best set of features and weights; 3) the application of differ-

ent transformation models developed in the literature, e.g.

TPS [12], fluid [20], and poly-affine [2]; 4) the method’s

sensitivity to the feature set, weights, and the amount of

smoothing applied; and 5) the robustness of the method

when applied to match shapes from standard datasets (e.g.

[9]). With further improvement in these areas, we anticipate

improved results.

While one might argue that the increased dimensional-

ity is costly, the additional computational expense is less

than expected thanks to the adoption of the narrow-band

approach. The advantages, in turn, are plenty. By encod-

ing spatial and structural, geometric, textural and topologi-

cal information as vector-valued images, we benefit from a

much richer description of shapes that can be robust against

noise and missing data, as we have shown in our experi-

ments. Through the use of an embedding space and appro-

priate spatial transformation models, proximity or neigh-

bourhood regularization can be easily enforced. The overall

method can also be applied to match shapes of any nature

and any dimension. Additionally, as we have demonstrated

in the paper, we now have convenient access to rich libraries

of tools on image registration (e.g. ITK, VTK, etc.) that can

now be easily adopted for shape matching. In fact, as im-

age registration is still an active research topic, advances in

volumetric image registration will have a direct impact on

shape matching as a result of the proposed formulation.

At a high level, the proposed framework introduces a

new perspective to examining shape matching and leads

to several possible extensions: 1) the use of articulated

registration [10] and other procedures [3] to align locally

rigid shapes or recover large deformations; 2) the adop-

tion of groupwise registration [2] of feature images so that
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Figure 10. Matching of shapes from a benchmarking dataset [9].

(a) (b) (c)

Figure 11. Preliminary results of shape matching in 3D. (a) Vol-

ume rendering of Fi of a 3D feature image (Fi embeds Gaussian

curvatures and is shown with a ‘warm’ colormap). (b) Fusion of Fi

and Mi before registration (Mi shown with a ‘green’ colormap).

(c) Result of global registration.

our method can be used to establish dense correspondences

across all shapes in a training set for statistical model con-

struction; and 3) application to multi-modal medical image

registration wherein the images involved are acquired from

different imaging devices and hence, would benefit if regis-

tration can be driven by image features that are more consis-

tent and/or meaningful than the raw image data. Ultimately,

the work aims to fulfill a more ambitious goal of unifying

the framework for the matching of shapes and of images.
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