
 

 

Abstract 
In this paper, we describe a novel type of feature for fast 

and accurate face detection. The feature is called Locally 
Assembled Binary (LAB) Haar feature. LAB feature is 
basically inspired by the success of Haar feature and Local 
Binary Pattern (LBP) for face detection, but it is far beyond a 
simple combination. In our method, Haar features are 
modified to keep only the ordinal relationship (named by 
binary Haar feature) rather than the difference between the 
accumulated intensities. Several neighboring binary Haar 
features are then assembled to capture their co-occurrence 
with similar idea to LBP. We show that the feature is more 
efficient than Haar feature and LBP both in discriminating 
power and computational cost. Furthermore, a novel efficient 
detection method called feature-centric cascade is proposed 
to build an efficient detector, which is developed from the 
feature-centric method. Experimental results on the 
CMU+MIT frontal face test set and CMU profile test set show 
that the proposed method can achieve very good results and 
amazing detection speed. 

1. Introduction 
In the past decade, we have witnessed the vigorous 

development on face detection techniques. More and more fast 
and accurate face detection systems are developed by different 
research or commercial organizations for various practical 
applications such as visual surveillance, robotics, image 
retrieval, and intelligent human computer interfaces.  

Before introducing the developments and problems in face 
detection we first give the concept of face detection which is 
quoted from reference [1]: Given an arbitrary image or an 
image sequence, the goal of face detection is to determine 
whether or not there are any faces in the image, and if present, 
return their image locations and extents. 

In general scenario faces in images change with different 
lighting conditions, persons, poses, expressions etc. All of 
these factors make face detection challenging. To cope with 
the changes, it is well accepted by researchers [2, 3, 4] that 
proper features and effective learning methods should be 
designed or adopted to model ‘faces’. More generally 
speaking, this is actually the key problem for all pattern 
classification problems. 

Many different types of features are proposed based on 
various physical properties of human faces. These features 

include intensity, color, texture, edge and figure [2, 3, 4, 5, 6]. 
Some features show good performance under specific 
conditions, but have limitations for general cases. For example, 
skin color can be an effective feature to segment face regions. 
However, it needs heuristic post-processing to extract faces 
from the segmentation results. Also, skin color is sensitive to 
illumination changes and can only be applied to color images. 
Other features, such as wavelet [7], may handle moderate 
illumination variation. However, when considering 
classification accuracy and computation cost together, the 
methods based intensity usually achieve the best performance 
in some special application environments [2, 7, 8].  

As to the classifiers, typical classifiers applied to face 
detection include neural networks [8, 9], Bayesian classifier 
[7], Support Vector Machine (SVM) [2], and SNoW [10].  

The recent milestone in face detection research is Viola and 
Jones’s work [11]. In their work, a frontal face detection 
system was developed which achieved excellent accuracy and 
nearly real-time speed. Haar features and Adaboost are 
explored to build a cascaded detector. After this seminal work, 
many improved versions were proposed. Mostly of them 
focused on alternatives to AdaBoost [12, 13, 14, 15, 16, 17, 18 
and 19], Haar features [19, 20], coarse-to-fine architecture [21, 
22, 23, 24] and the optimization tuning of the cascade 
architecture [17, 18, 26, 27, 28]. 

Indeed, the aforementioned technologies, especially Viola 
and Jones’ work, have greatly advanced face detection. 
However, it is of course not the end of face detection research 
in terms of both classification accuracy and detection speed, 
especially under complicated situations. 

To further improve the efficiency of face detection system, 
in this paper, we propose a novel face detection method. The 
first key contribution of our method is a novel type of feature. 
We call the feature Locally Assembled Binary (LAB) feature. 
LAB feature is inspired by the success of Haar feature and 
Local Binary Pattern (LBP) for face detection, but it is far 
beyond their simple combination. In our method, Haar 
features are modified to keep only the ordinal relationship 
(named by binary Haar feature) rather than the difference 
between the accumulated intensities. Then, several 
neighboring binary Haar features are assembled together to 
capture their co-occurrence with a similar idea to LBP.  

To learn an efficient face detector, a feature-centric cascade 
is further proposed, which bases on the original feature-centric 
detection method. Feature-centric cascade introduces cascade 
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idea into feature-centric method. It speeds up frontal final face 
detection largely, and even more for multi-view face detection. 
This is the second contribution of the paper. 

To evaluate the classification accuracy and computation 
cost of the proposed LAB feature and feature-centric cascade, 
we conduct experiments on a fairly large frontal face dataset 
(includes 230,000 frontal face samples). The face images in 
the dataset cover various sources of variations. The final 
detector is evaluated on CMU+MIT frontal face test set and 
shows better performance compared with the known best 
results. We also conduct multi-view face detection 
experiments to further investigate the proposed method, in 
which the proposed method also shows good performances in 
both accuracy and speed. 

The rest of the paper is organized as follows: we first 
introduce the proposed LAB feature in Section 2. 
Feature-centric cascade is described in Section 3. The next 
section presents the experimental results on both frontal face 
detection and multi-view face detection. Conclusions and 
future works are given in Section 5. 

2. Locally Assembled Binary (LAB) features 
In this section, we describe the proposed LAB features in 

three hierarchical aspects: the binary Haar feature; the 
assembled binary Haar feature, and LAB feature. 
2.1. Binary Haar feature 

For the purpose of clarity, we firstly review Haar feature 
and analyze the disadvantages for computational cost, and 
then the binary Haar feature is presented.  

A Haar feature is a difference between the accumulated 
intensities of several adjacent rectangle areas. The classical 
layouts of the rectangles are illustrated in figure 1. The feature 
value is the difference between the filled rectangles and the 
unfilled rectangles. More generally, the layouts of the 
rectangles can vary arbitrarily. The accumulated intensities of 
the rectangle region can be computed efficiently by an aided 
image called integral image. Refer to [11] for details. The 
calculation of Haar features includes additions or subtractions 
of the accumulated intensities of the involved rectangles. For 
example, a 2-rectangle Haar feature as shown in Figure 1(a) 
and (b) can be calculated as: 

1 2( ) ( ) ( )j j jf x s s= − ,       (1) 

where 
1( ) js  and 

2( ) js  denote the intensity sum of the filled 
and unfilled rectangle of Haar feature j, x is the input image. 

In practice, in order to extract features robust to lighting 
variations, lighting correction are generally used on the 
candidate image windows before feature extraction. 
Frequently used lighting correction methods include variance 
normalization, histogram equalization, and linear lighting 
correction etc. Though these lighting correction operations 
seem simple, the detection may become time-consuming 
because of their application to each candidate window in the 
input image. For instance, in Viola and Jones’ work [11], for 
each candidate window of the input image, variance 
normalization is conducted. Haar feature is then calculated on 

variance normalized window.  

（ a） （ b） （ c） （ d） （ e）  
Figure 1: Haar feature. 

What’s more, the above lighting correcting procedure 
results in another problem: for the same Haar feature 
belonging to different candidate windows, it has to be 
re-calculated more than more times because of different 
lighting correction parameters for different windows. The 
re-calculation results in multiple feature evaluations and 
largely increases the computational cost. For instance, Haar 
feature with lighting correction is calculated by: 

1 2( ) ( )' ( ) j j

x

s s
jf x σ

−= ,          (2) 

where σ  is the variance of some candidate window x. Because 
σ s are different for different candidate windows, the same 
Haar feature is re-calculated for each different candidate 
windows which contains it, as illustrated in figure 2. Evidently, 
this leads to multiple floating point divisions.  

To overcome the aforementioned problems, binary Haar 
feature is proposed, which keeps only the ordinal relationship 
in Haar feature computation:  
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0
( ) j j

j otherwise
b x − >

=
S S

.     (3) 

In other words, the proposed binary Haar feature keeps only 
the sign information of Haar feature, while the absolute 
difference is discarded. By this binary operation, the feature 
becomes more robust to global lighting changes. Therefore, 
lighting correction specific for each candidate window is 
avoided by this light-robust feature, which decreases the 
computation cost. Furthermore, the above-mentioned feature 
re-calculation problem is avoided at the same time, and which 
facilitates the use of feature-centric strategy as described in 
section 3.1 and 3.2. As a result, the face detection speed is 
improved.  
2.2. Assembling binary Haar features 

In spite of its computational merits, we found that the 
discriminating power of a single binary Haar feature might be 
too weak to construct a robust classifier. To improve the 
discriminative power of the binary Haar feature, we propose to 
assembling multiple binary Haar features together and using 
their co-occurrence as a new kind of feature. The feature is 
called Assembled Binary Haar (ABH) feature. Figure 3 shows 
an example of the ABH feature. In the figure, the ABH feature 
integrates three binary Haar features. When the three binary 
Haar feature values are 1, 1 and 0, the ABH feature is 
calculated by: 

1 2 3 2( , , ) (110) 6a b b b = = ,      (4) 
where a is the ABH feature calculation function from three 
binary Haar features b1, b2, and b3, (.)2 is the operation from a 
binary code to a decimal index. The feature value specifies an 



 

 

index for 2F different combinations, where F is the number of 
combined binary features. 

input image
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Figure 2: Re-calculation of Haar in different candidate windows. 

1 2 3 2( , , ) (110) 6a b b b = =  
Figure 3: Assembling three binary Haar feature. 

2.3. Locally Assembling Binary (LAB) features 
The number of ABH feature is huge. To enumerate all of 

them, there are several free parameters, such as the number of 
binary Haar feature to be assembled, the size of each binary 
feature, and the position of each binary Haar feature. To learn 
from this large feature pool is intractable. Fortunately, we find 
a reduced set which is very good for face detection. the feature 
in the reduced set is called Locally Assembled Binary Haar 
feature. To be simplicity, it is called LAB feature hereinafter.  

Among the assembled binary Haar features, LAB features 
are those ones that only combine 8 locally adjacent 2-rectangle 
binary Haar features with the same size and they share a 
common centre rectangle. The 8 binary Haar features used for 
assembling a LAB feature are shown in figure 4. Figure 5 
gives two examples of LAB feature. In the figure, two 
different LAB features are showed. The centric black 
rectangle is shared by 8 neighboring binary Haar features. All 
nine rectangles are of the same size.  

Formally, a LAB feature can be denoted by a 4-tuple, 
l(x,y,w,h), where x and y denote the X-coordinate and 
Y-coordinate of the left top position of the feature in the image, 
(w, h) are the width and height of the rectangles.  

LAB feature inherits all the advantages of binary Haar 
feature and is very discriminative. Also the number of it is 
small. LAB feature captures the local intensity structure of the 
image. Computation of a LAB feature needs to calculate 8 
2-rectangle Haar features. The computation cost increases 
comparing with one Haar feature. But it possesses more 
discriminative power and do not need special light correction 
in detection process. These advantages in total reduce 
computation cost of the face detection process in our proposed 
method (section 3).  

LAB feature is somewhat similar to locally binary pattern 
(LBP), which have been proved to be effective in texture 
analysis [29]. As one can see, LBP is the special case of LAB 
feature with one pixel size.  

Similar to LBP, LAB feature value are lying in {0, …255}. 
Each value corresponds to a specific local structure. 

 
Figure 4: 8 Binary Haar features in a LAB feature. 
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Figure 5: Two LAB features. 

3. Face detection using LAB features 
Cascade structure is also used in the proposed detection 

method. The whole cascade structure of the proposed face 
detector is shown in figure 6. It can be divided into two 
obvious parts. The first part is some sub-classifiers, which in 
total is called feature-centric cascade. They are run according 
to the proposed method in section 3.2. The second part is the 
other sub-classifiers, called window-centric cascade. They are 
run in a window-centric way similar to that of Viola and 
Jones’ work.  

This section is organized as following: Firstly, in section 
3.1, two detection methods, feature-centric and 
window-centric, named by H. Schneiderman in [23] are 
introduced. Then, in section 3.2, based on the thorough 
analysis of theses two detection method, the feature-centric 
cascade method is proposed to build more efficient face 
detector. In section 3.3, the learning of window-centric 
cascade is described. Finally in section 3.4, the proposed 
detection method for one view is adapted to multi-view.  
3.1. Feature-centric detection method 

Before introducing feature-centric and window-centric 
method in detail, let us firstly review the total process of face 
detection in a high level. To find a face in the image, we need 
to do “exhaustive-search” in the image. This involves building 
a classifier that distinguishes between the object and 
“non-object” (any other scenery) while only having to tolerate 
limited variation in object location and size. The methods find 
the object by scanning this classifier over an exhaustive range 
of possible locations and scales in an image. Figure 7 
illustrates this process, where the classifier calculates all 
possible “windows” in the image as shown by the rectangles. 

Most cascades, such as the Viola and Jones [11], use 
“window-centric” method. These approaches compute 
lighting correction and feature calculation separately for each 
window. The scan of each possible window of the classifier 
means that each feature is also calculated in each position of 
the image. This means that the features containing in some 
window are calculated by other windows’ classification, but it 
have not used for classification by this window’s classifier. 
Feature-centric method aims to use more of the calculated 



 

 

feature for each window. 
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Figure 6: Overall structure of the proposed detector. 
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Figure 7: Exhaustive search in face detection. 

To understand the window-centric and feature-centric 
detection method better, an example is given. The setup in the 
example is the same as it is in all our experiments. For 
window-centric method, Let us suppose that the classifier 
contains only one LAB feature. The feature is as shown in the 
rectangle in figure 8(a). While detection, each window in the 
image is classified, so this feature belonging to the classifier is 
also calculated at each position of the image. The calculation 
of the feature at each position means that the detection process 
produces a byproduct, which is the feature value image. The 
feature value image is shown in figure 8(b). For each window, 
in the case of this example, only the one feature is used for 
classifying it, the other features contained in it calculated by 
the other neighboring window’ classification are not used. 
This is wasteful and less computation efficient, so 
feature-centric method is proposed to improve the utilization 
ratio of the calculated features. 

In feature-centric method, firstly, feature value image (the 
middle image shown in figure 9,) is computed by scanning the 
upper feature in each position of the image. It is just the same 
one as in figure 8(b).Then the ‘feature-centric’ classifier is run 
on the feature value image and needs no feature calculation 
operation. Figure 9 illustrates this procedure. As to learning, 
the ‘feature-centric’ classifier is learned from all the features 
belonging to the window. In fact, the features are of the same 
size because they are collected by shift one specific feature on 
the image. Of course, any size can be used to build the 
‘feature-centric’ classifier. But it is better to pick out the most 

effective one. In this paper we use a greedy search to find the 
best size, which is 3*3 in our experiments. 

Utilizing all the calculated features in the window also 
incurs more classification operations because each feature is 
used to build a classifier and the classifier is run when 
classifying. But the extra classification operations are 
deserved because much more discriminating power is brought, 
especially when the classification operation is very simple and 
effective. In theory, any learning algorithm can be used to 
build a classifier for window-centric and feature-centric 
method. But considering the simplicity and effectiveness of 
classification operation, we use RealBoost learning [30] 
algorithm to learn a linear classification function, which can 
be expressed as: 

( ) ( )( )
1

T

i
i

c x h l x
=

= ∑ ,         (5) 

where c is the classification function, x is the sample window, 
h is the weak classifier function, li is the feature calculation 
function of feature i, T is the total feature number. For 
RealBoost, the classification operation h includes one 
look-up-table for feature value, one look-up-table for 
confidence and one addition. In figure 8 and figure 9, the 
linear classifier of window-centric and feature-centric method 
are also shown respectively. In figure 9, for feature-centric 
detection method, the classifier contains all the features 
containing in the window. The total feature number is denoted 
by N in the classification function. 

Input image Feature value image
( ) ( )( )1c x h l x=

 
(a)                              (b) 

Figure 8: Windows-centric method with the classifier only contains 
one feature and the feature value image. 
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Figure 9: Feature-centric method with one size of LAB features. 

3.2. Feature-centric cascade 
In this section, we modify the ‘feature-centric’ classifier to 

a cascade for the sake of computational efficiency. In 
feature-centric method, all features containing in the window 
are used to construct one whole classifier. But 
‘feature-centric’ classifier is frequently fairly strong. 
Scanning it as a whole at each position of the input image is 
not computationally smart. To promote the computation 
efficiency, it is better to further divide it into a cascade. The 
cascade learned from a ‘feature-centric’ classifier is called 
feature-centric cascade. Of course, it is run in a feature-centric 
way.  

Obviously feature-centric cascade reduce computation cost. 



 

 

An example and its computation cost analysis are given here. 
The setup of it is as the example in section 3.1. 

Assuming the classification window size is 24*24, the 
feature is 3*3 LAB feature, so there are 256 features in a 
window. Because the other processes are of the same for 
feature-centric method and feature-centric cascade, so the 
numbers of classification operation number averaged on each 
window of these two methods represent their difference in 
computation cost. For feature-centric method, all 256 
classification operations incurred by these 256 features are 
operated on each candidate window. So the mean 
classification operations for each window are 256 times. But 
for a feature-centric cascade, because some windows are 
rejected gradually with stage increasing, the mean 
classification operations for each candidate window must be 
less than 256 times. In our experiments, the classification 
operation number is less than 15 for frontal face detection.  

The process of building a feature-centric cascade from a 
‘feature-centric’ classifier is similar to Viola and Jones’ work 
[11]. The features of the ‘feature-centric’ classifier and the 
feature-centric cascade are illustrated in figure 10. In the 
figure, li is the ith LAB feature picked out by RealBoost, N is 
the total feature number of a feature-centric classifier. The 
numbers in the arrowed arcs denote the stage number. The 
features covered by the arrow arcs are features belonging to 
the corresponding stages.  

l1 l2 ... li lN

1
2
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Figure 10: Feature-centric cascade. 

3.3. Learning a further window-centric cascade 
After learning the feature-centric cascade which rejects 

most simple non-faces efficiently, a window-centric cascade 
is learned based all sizes of LAB features to further reject 
those difficult non-faces. The learning procedure is similar to 
that of feature-centric cascade except that all sizes of LAB 
features are used. Of course, window-centric cascade is run in 
a window-centric way. 
3.4. Multi-view face detection 

Till now, we have presented the method to build a detector 
for one view of faces. In this section we extend the method to 
multi-view face detection. To construct a multi-view face 
detector, we first divide all faces into 5 categories according to 
left-right rotate off plane, and then continue to split each 
category into 3 views, each of which takes charge of 30° 
rotation in plane. Besides, each view covers [-30°, +30°] 
up-down rotation off plane for robustness. The 15 different 
views are illustrated in figure 11. 

We build a feature-centric cascade and a window-centric 
cascade for each view. For detection, the procedure is 
illustrated in figure 12. Given the input image, we first 
compute the feature value image. Then for each view, 

feature-centric cascade is firstly run based on the calculated 
feature image, and then the window-centric cascade is run on 
the raw image. 

Note that for multi-view face detection the feature value 
image is shared by all the feature-centric cascade of 15 views. 
This speeds up the detector largely. 
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Figure 11: Multi-view face categories, each rectangle include 3 

rotations in plane. 
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Figure 12: Feature-centric cascades for multi-view detection. 

4. Experiments 
In this section, we evaluate LAB features and the proposed 

detection method in frontal face and multi-view face detection. 
Section 4.1 gives the experimental setup firstly. Then in 
section 4.2, a quantitative analysis of LAB feature is given. 
Section 4.3 and section 4.4 report the performance of the 
proposed method on frontal and multi-view face database 
respectively.  
4.1. Experimental setup 

For frontal face detection, 23,608 frontal face samples are 
collected from various sources, such as WEB, FERET, and 
BioID. Most faces in the sample set have the variation of 
up-down off plane rotation within range of [-30°, 30°]. Totally 
236,080 24×24 grayscale face samples are generated from the 
original 23,608 face images with manually labeled eyes by 
following transformation: mirroring, in plane rotation of 
-12°,-6°, 0°, and 6° 12°.  

For multi-view face detection, the left full profile faces and 
the left half profile faces are mostly collected from 700 video 
clips captured by us. The scene of these video clips is in a 
room with normal lighting conditions. Each video clip 
contains one person. The faces in these video clips are about 
100*100 in size. Totally 24,000 left full profile faces and 



 

 

60,000 left half profile faces are collected. . By rotation in 
plane of -12°,-6°, 0°, and 6° 12°, the left full profile and the 
left half profile faces are 120,000 and 300,000 respectively. 
The face samples of other views can be generated by 
horizontal flip and rotation in plane. 

As for the negative samples, 30,000 images without faces 
are collected for generating non-faces. 

From the description above, one can see our training face 
set is quite large. We use Matrix-Structural Learning (MSL) 
[28] to learn from the training sets, which is a cascade learning 
method to deal with enormous training set. In cascade learning, 
Minimum detection rate and maximum false alarm rate of 
feature-centric and window-centric cascade are both set to 
0.9999 and 0.4 respectively. The non-face samples used to 
train a feature-centric classifier are 60,000. The training 
non-face samples for each window-centric stage are fixed to 
10,000. For the positive bootstrap in MSL, the starting face 
sample set size is 2,000. At each positive bootstrap, maximally 
500 new samples are added. 

To detect faces with various scales, test images are 
down-sampled with a coefficient of 0.8. In the later sections, if 
there is no specific mention, the experiments are conducted on 
a common PC with a 3.20GHz Pentium IV processor. 
4.2. Evaluation of LAB feature on efficiency on 

frontal face samples 
To build a feature-centric cascade, firstly, we search the 

most efficient size. The classifiers learned from different sizes 
of LAB features are investigated according to their 
classification accuracies. 3*3 is picked out as the most 
effective size.  

Secondly, we conduct experimental comparisons with Haar 
features. For 3*3 LAB features, when sample size is 24*24, 
there are totally 256 features. In contrast, Haar feature set 
consists of quite a larger number of features, which is 31,728 
to be exact. The feature types are as shown in figure 1. The bin 
number for Haar feature is set to 40 empirically.  

The feature numbers, which mainly determine the 
computational cost, of a set of classifiers learned from 3*3 
LAB features and Haar features are presented in table 1. The 
classifiers are learned by adjusting the target false alarm rate 
with the detection rate fixed to 0.9999. In table 1, ‘FAR’ 
denotes the false alarm rate. From table 1 one can see that 
feature numbers of LAB classifiers is always less than the 
corresponding ones of Haar classifiers by a half despite Haar 
features used to learn these classifiers are much more than 3*3 
LAB features. 

FAR 0.4 0.1 0.05 0.01 0.005 0.001 0 
Haar 13 34 48 68 72 80 89
LAB  7 18 22 30 31 35 39

Table 1: Feature numbers of the classifiers learned from Haar and 
3*3 LAB features at different false alarm rates. 

4.3. Experiment on frontal face detection 
A frontal face detector is trained based on the proposed 

method. The detection speed is about 30ms.for a 320*240 
image. The face detector processes faces from 24*24 to 

240*240. 
In fact, the computation speed is about 20 times faster than 

Haar features at the same accuracy. Here, we also try to 
analyze the total operations in both detectors. As shown in 
Table 1, the LAB feature number in a feature-centric cascade 
is nearly a half of the Haar feature number at the same 
accuracy. Exactly, the LAB cascade processes about 15 LAB 
features for each window averagely, which includes 15 
look-up-tables and 15 additions (for computing confidence). 
Including the feature evaluations (about 17 additions) in 
advance for each window, totally, LAB cascade needs 32 
additions and 15 look-up-tables for each window. In contrast, 
Haar cascade processes nearly 30 Haar features, which 
include 30 Haar feature evaluations (each feature evaluation 
takes at least 7 additions using integral image), 30 divisions 
(for variance normalization), 30 look-up-tables and 30 
additions (for computing confidence). So, totally Haar 
cascade needs at least 240 additions, 30 divisions and 30 
look-up-tables. Evidently, the proposed method is 
overwhelming in speed. 

To get a sense of the classification accuracy, the face 
detector is tested on CMU+MIT dataset comprising 130 
images containing 507 faces. The ROC curves are given in 
figure 13. Obviously, our method gets the best results.  
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Figure 13: ROC curves on CMU+MIT frontal face set. 

4.4. Experiment on multi-view face detection 
We also trained a multi-view detector to investigate the 

proposed method. The multi-view face detector requires 80 ms 
on a 320x240 image. The detection processes faces from 
24*24 to 240*240. It is reasonable that the multi-view face 
detector’ detection time does not increase linearly with 
multiple classifiers because the preceding procedures (integral 
image computation, feature value image computation etc) are 
shared by all the feature-centric cascades of 15 categories.  

To get a sense of the classification accuracy, the multi-view 
face detector is tested on CMU profile face test set comprising 
of 208 images containing 441 faces. Figure 14 shows the ROC 
curve. For comparison, the results of the previous methods are 
also listed. From the figure, one can see that our results are 
better than [23] but a little worse than [19]. Considering the 
profile face training samples in our experiment are lacking in 
varieties, the results are acceptable. Note that our method gets 



 

 

a much higher detection speed than [23]. As to [19], the 
detection speed is close. In fact it is difficult to say which 
method is faster only from the results of the related literature 
because the programming is also very important. By the way, 
the frontal face detector and two half profile face detector 
without rotation in plane have been re-programmed to a 600M 
Hz DSP as a whole multi-view face detector. It surprisingly 
gets a detection speed of 30ms on a 320*240 image to run 
them simultaneously. 
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Figure 14: ROC curves on CMU profile face set. 

5. Conclusion and future works 
We propose a novel type of feature, called LAB feature, 

accompanying which a feature-centric cascade is also 
presented. In LAB feature, Haar feature is binarized and 
assembled together in a mode similar to LBP to model local 
texture modes. In some sense, LAB feature bridges the gap 
between Haar features and LBP operator. We show that LAB 
feature is not only robust to lighting variations (thus avoiding 
time-consuming lighting correction operator), but also very 
discriminative for face/non-face classification. Furthermore, it 
also facilitates using the feature-centric cascade to further 
improve the face detection speed. Extensive experiments 
verified the above observations.  

There are still many open questions related to LAB features 
and feature-centric cascade, such as: Is there other more 
efficient features in assembled binary Haar features rather 
than LAB features? If any, how to find them out? If more sizes 
of features are used for feature-centric method, what will 
happen? Can the detection speed be promoted further? It is 
also interesting to apply LAB feature to other object detection, 
such as pedestrian, car. 
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