Appendix

Label prediction model (Section 3.2.a, derivation of Eqn. 3)

Label prediction model P(d;, ¢;|a;, x;, ;) is defined as follows:

P(d;, cilai, @i, z) = P(d;|ei, as,y 24, 2:) P(ci|ag, @i, 2;)
1. Coarse-level label distribution
P(cilas, i, z;) = P¢ (cilag, x;)
where Pf, (ci|ai, ;) is a classifier with outputs normalized to 1, i.e., > P¢ (cilai, z;) = 1.
2. Detailed-level conditional label distribution
P(dslei, aiy i, 2) o< P (dilai, i)[e; = f(d;)]

where Pd(d|a,z) is a classifier with output normalized to 1, i.e., >, P4(d|a, z) = 1 (sum over all
the detailed label values), and [¢ = f(d)] = 1 if ¢ is the parent of d in the label hierarchy, and 0
otherwise. In doing so, we share a single detailed classifier across different coarse label classes.
The normalizing constant of P(d;|c;, a;,x;, z;) can be written as

Zpi(dmivxi)[ci = f(d)] = Z Pi(d|al,;vz)
d des(d;)

where the first sum is over all the detailed label values, and the second sum is over all the siblings
of d;, which all share the same parent, c;.

3. Detailed-level label distribution can be derived by summing out the coarse-level label variable:
Pd, (di|ai, J,'l)
P(di|ai,xi,zi) = Zi P; (c[dz]|az,xz)
Daes(ay Pl (dlai,xi)

Inference algorithm (Section 4, derivation of Eqn. 5)

The joint distribution of the model can be written as

P(a,d,c,z,0la,x) = P(0|a) H P(d;, cilai, i, 2i) P(a;|z:) P(2:]0).

e We can integrate out 6 due to the conjugacy property

P(z,a,d,cla,x) = /P(a,d,c,z,@)d@
0

Doy an) [, Dok + 32, 0(zi, k)
[, T(w) TS, a+N)

= H P(di, Ci|xi7 a;, zl)P(az|zz) X

e To use Gibbs sampling, we want to derive P(z;|z_;,a,x), P(z;|z—;,a,d, x), and P(z;|z_;, a, c,x).
In the following, we use P(z;|z—;,a,d,x) as an example (the other two are similar). Note that

P(z; =k|z—i,a,d,x) < P(z; = k,z_;,a,d,x)
=C- P(dila;, wi, 2 = k)P(ailzi = B)L(an + Y 6(z.k) + 1) J[Dlar+ D 6(250)

jes\i I#k jes\i
= C - P(dila;, z;, 2z; = k)P(ai|z = k) (ax + Z 0(z;,k)) Hl"(al + Z 5(z;0))
JES\i l JES\i
o P(di|ai, wi, 2 = k) Plailzi = k) (o + Y, 0(2;.k))
jes\i

in which we make use of the property of the Gamma function: I'(x + 1) = 2T'(z).



Learning label prediction models (Section 5, derivation of Eqns. 7, 9, 10)

In M-step, we have the following likelihood function (ignoring other irrelevant terms)

L= ZlOgP dn|azv ) zn)> ")+7210gp t|aza Lis zt)>qc(z;)

t,i
= Z{ log P (df|af', 27! )) ga(zmy + (log Pin (c[d]|afa})) gazny
- <10g Z Pd (d/|a’za €L, )> n)}""}/z 1OgPC( t|a7,5 z)>q‘:(z£‘)
d’ec[d]]

t,e

e Assume that the output of the coarse label classifier can be approximated by the detailed label
classifier (i.e., they are consistent during training), we have

PE(f(d)ai,zi) = Y P (dlas, ;).
des(dy)
Then the log likelihood function can be simplified as

L~y (log P (d}|al, @} ))gazry +7 > (log PG (chlaf, @f))ge (ot)

n,i t,

e Denote the parameters in the kth detailed-label classifier as vy, and consider the gradient of £
w.r.t. vg:

oL n 9 n
a—l/k:qu(zl *k)a—logpk(d |0J17 z)'

n,t
e Denote the parameters in the kth coarse-label classifier as py, then the gradient of £ w.r.t. uy
can be written as

0
— = (2t =k)=—1o PC tlat,
T = 0 = W) o Pe(clal o).



