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Abstract

The earth mover’s distance (EMD) [19] is an important perceptually meaningful metric for
comparing histograms, but it suffers from high (O(n3 log n)) computational complexity. We
present a novel linear time algorithm for approximating the EMD for low dimensional his-
tograms using the sum of absolute values of the weighted wavelet coefficients of the difference
histogram. EMD computation is a special case of the Kantorovich-Rubinstein transshipment
problem, and we exploit the Hölder continuity constraint in its dual form to convert it into a
simple optimization problem with an explicit solution in the wavelet domain. We prove that
the resulting wavelet EMD metric is equivalent to EMD, i.e. the ratio of the two is bounded.
We also provide estimates for the bounds.

The weighted wavelet transform can be computed in time linear in the number of histogram
bins, while the comparison is about as fast as for normal Euclidean distance or χ2 statistic.
We experimentally show that wavelet EMD is a good approximation to EMD, has similar
performance, but requires much less computation.

Keywords: Fast earth mover’s distance, wavelets, mass transportation problems, Kantorovich-
Rubinstein metric.



1 Introduction

Histogram descriptors: Histogram descriptors are a powerful representation for matching
and recognition. Their statistical nature gives them sufficient robustness while maintaining dis-
criminative power. They have been used extensively in vision applications like shape matching
[1], keypoint matching [15], texture analysis [11] and 3D object recognition [9]. Colour and
texture histograms [19] are also used for content based image retrieval. These descriptors are
often compared using binwise dissimilarity measures like Euclidean or other Lp norms or the χ2

statistic. While these measures can be computed very fast and often give good results, they do
not take into account all possible variations in the random variables whose distributions they
compare. These unmodelled variations may lead to large measure values for changes in the
distribution that are perceived to be small. For example, suppose we take two photos of a plain
wall with strong and weak sunlight and compare their colour histograms. The histograms are
shifted delta functions and have large binwise differences. Consequently, all of these measures
will give large values. The popular SIFT descriptor [15] is a gradient orientation – location
histogram. A similar histogram shifting will occur if the keypoint is not localized accurately.

Earth mover’s distance: Crossbin distance measures take into account the fact that his-
tograms are based in feature space and it is possible for histogram mass to move between bins
in feature space. They penalize this movement according to the distance covered, called the
ground distance. The earth mover’s distance (EMD) is a natural and intuitive metric between
histograms if we think of them as piles of sand sitting on the ground (feature space). Each
grain of sand is an observed sample. To quantify the difference between two distributions, we
can measure how far the grains of sand have to be moved so that the two distributions coincide
exactly. EMD is the minimal total ground distance travelled weighted by the amount of sand
moved (called flow). EMD makes sure that shifts in sample values are not penalized excessively.
For the example of a shifted delta function, the EMD is simply the shift amount. EMD has
been successfully used for image retrieval by comparing colour and texture histograms [19],
contour matching [3], image registration [2], [5] and pattern matching in medical images [7],
[6]. However, a major hurdle to using EMD is its O(n3 log n) computational complexity (for an
n-bin histogram).

Wavelet EMD: In this paper, we present a novel method for approximating the EMD for
histograms p1 and p2 using a new metric on the weighted wavelet coefficients of the difference
histogram. We show that this is equivalent to EMD, i.e. the ratio of EMD to wavelet EMD
is always between two constants. Although our estimates for these constants are loose, we will
show experimentally that our metric follows EMD closely and can be used instead without any
significant performance difference. The wavelet EMD metric can be computed in O(n) time.

EMD can be computed as the minimal value of a linear program. The Kantorovich-
Rubinstein (KR) transshipment problem [18] is the corresponding problem for continuous dis-
tributions. Both problems admit duals with the same optimal value. The important insight in
our algorithm is that the dual of the KR problem has a wavelet domain representation with a
simple explicit solution.

In the primal form, the objective function is the total flow–weighted ground distance between
all bin pairs. See table (1) for exact definitions. The flows must make up for the difference
between the histograms at each corresponding bin. In the dual form, the optimization is over
a potential f assigned to each bin. For a difference histogram p := p1 − p2, the dual EMD is
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Figure 1: Computation of wavelet EMD

given by :

Dual EMD := sup
f

∫

f(x)p(x)dx (1)

subject to the constraint that the difference between two bin potentials is bounded by the
ground distance c(x, y) = ‖x − y‖, i.e. f(x) − f(y) ≤ ‖x − y‖. The objective function is the
maximum inner product between the potential function and the difference histogram and is
easily represented in the wavelet domain, since orthonormal wavelets preserve inner products.
The constraint means that f cannot grow faster than some (non-vertical) straight line at any
point. This is actually a Hölder continuity condition and is somewhat between continuity and
differentiability. The wavelet coefficients of a Hölder continuous function decay exponentially
at fine scales, since fine scale wavelets represent rapid changes in the function. We thus have
an equivalent constraint in the wavelet domain. The resulting optimization is trivial and gives
an explicit solution :

d(p)wemd :=
∑

λ

2−j(1+n/2)|pλ| (2)

p is the n dimensional difference histogram and pλ are its wavelet coefficients. The index λ
includes shifts and the scale j. We will call this the wavelet EMD between two histograms. This
is clearly a metric. This is not exactly equal to the EMD since the Hölder continuity constraint
can’t be transformed exactly into the wavelet domain.

This surprising formula for approximating the EMD with wavelet coefficients of the differ-
ence histogram is the main contribution of this paper. By using appropriate wavelets, we can
approximate EMD very well. Since the wavelet transform is a common linear time operation,
we can compute this in time linear in the number of bins for uniform histograms. Figure (1)
explains the EMD approximation algorithm in 2D.

Intuitively speaking, the wavelet transform splits up the difference histogram according
to scale and location. Each wavelet coefficient represents an EMD subproblem that is solved
separately. The sum of all distances is an approximation to EMD. This is a good approximation
because wavelet transforms are well suited for separating local variations according to scale and
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EMD for signatures [19] Discrete EMD for histograms Continuous EMD for distributions
Signatures f(i; 1), f(i, 2) Histograms f(i; 1), f(i, 2) Distributions p1(x), p2(x)

In general,
∑

i f(i; 1) 6=
∑

i f(i; 2)
∑

i f(i; 1) =
∑

i f(i; 2) = 1
∫

p1(x)dx =
∫

p2(x)dx = 1
Difference f(i) := f(i; 1) − f(i; 2) Difference p(x) := p1(x) − p2(x)

Ground distance dij ≥ 0 Ground distance dij ≥ 0 Cost function c(x, y) ≥ 0
Flow (from bin i to bin j) gij ≥ 0 Flow (from bin i to bin j) gij ≥ 0 Joint distribution q(x, y) ≥ 0

Potential πi Potential f(x)

EMD := min
∑

ij
gijdij

∑

ij
gij

EMD := min
∑

ij gijdij EMD := inf
∫

c(x, y)q(x, y)dxdy

s.t.
∑

j gij ≤ f(i; 1),
∑

i gij ≤ f(i; 2), s.t.
∑

i gik −
∑

j gkj = f(k) s.t.
∫

q(u, y)dy −
∫

q(x, u)dx = p(u)
∑

ij gij = min (
∑

i f(i; 1),
∑

i f(i; 2))

Dual EMD := max
∑

i πif(i) Dual EMD := sup
∫

f(x)p(x)dx
s.t. πi − πj ≤ dij s.t. f(x) − f(y) ≤ c(x, y)

Table 1: Correspondence between EMD for signatures, discrete EMD and continuous EMD for
probability distributions

position. For a single wavelet coefficient, the mass to be moved is proportional to |pλ|2
−jn/2,

since this would be the wavelet coefficient if we use wavelets normalized by total mass, i.e.
∫

|ψλ| = 1. The distance travelled is proportional to the span of the wavelet 2−j (According
to Meyer’s [17] convention, a wavelet at scale j is the mother wavelet squeezed 2j times.) The
total EMD is thus approximated by equation (2).

Approximation by scale and location separation is similar to the way packages are shipped
over large distances. The total journey is broken into several hops – short and long. Short
hops connect the source and destination to shipping hubs, while long hops connect the shipping
hubs themselves. Packages from nearby towns merge at shipping hubs to travel together. Thus,
the package journey is split into multiple scales, and the sum of the distances travelled is an
approximation to the actual distance.

2 Related Work

The earth movers distance was introduced in vision by Werman et al. [21], though they did not
use this name. Rubner et al. [19] extended this to comparing signatures: adaptive histograms of
varying mass represented by weighted clusters. They computed the EMD using a linear program
called transportation simplex and used it for content based image retrieval by comparing colour
signatures. They obtained better performance than binwise measures. This method has an
empirical time complexity between O(n3) and O(n4). EMD being a transportation problem,
can also be modelled as a network flow problem ([10] chapter 9) in graph theory. The two
histograms are represented by a single graph with a vertex for each bin and ground distances
as the edge weights. The two histogram vertices act as sources and sinks respectively with bin
contents as values. Computing EMD is now an uncapacitated minimum cost flow problem and
can be solved by Orlin’s algorithm ([10] section 9.5) in O(n3 logn) time.

Various approximation algorithms have been suggested to speed up the computation of
EMD. Ling and Okada [14] empirically showed that EMD could be computed in O(N2) time
if an L1 ground distance is used instead of the usual Euclidean distance. They used the EMD
for comparing different histogram descriptors and noted improved performance compared to χ2

and Euclidean distance.
Indyk and Thaper [8] use a randomized multiscale embedding of histograms into a space

equipped with the l1 norm. The multiscale hierarchy is obtained by a series of random shifting
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and dyadic merging of bins. The histogram levels are weighted by powers of 2, with more
weight at the coarser levels. They show that the l1 norm computed in this space, averaged
over all random shifts, is equivalent to the EMD. They do not prove this for individual random
embeddings, and also do not estimate the constants that bound the ratio of this norm to
EMD. They couple this with locality sensitive hashing for fast nearest neighbour image retrieval
using colour signatures. Grauman and Darrell’s pyramid match kernel [4] is based on this
method. They use histogram intersection instead of l1 distance at each level and inverted
weights to obtain a similarity measure useful for matching partial histograms instead of a metric.
Both these methods have a time complexity of O(Tdm logD) for d dimensional histograms
with diameter D and m bins. The random embeddings are computed T times. Although
these algorithms are fast, our algorithm gives deterministic error bounds. We will also show
empirically that our algorithm is more accurate.

The diffusion distance introduced by Ling and Okada in [13] is computed by constructing a
Gaussian pyramid from the difference histogram and summing up the L1 norms of the various
levels. Although this has some similarities with our algorithm, it is not an approximation to
the EMD and may behave differently.

Holmes and Taylor [6], [7] use partial signature matching based on the EMD for identifying
mammogram structures. They embed histograms into a learned Euclidean space to speed up
computation.

The continuous EMD problem and its generalizations have a good basis in probability theory
for comparing distributions and have been studied since Nobel prize winner L. V. Kantorovich’s
[18] first formulation of the problem as a linear program and the study of its duality in 1942. In
this area, various equivalent formulations of EMD are minimal l1 metric, Kantorovich metric
[18], Wasserstein distance and Mallows distance [12]. General mass transportation problems
have wide applications in mathematical economics, recursive stochastic equations for studying
convergence of algorithms and stochastic differential equations.

3 Theory

The earth mover’s distance is a metric between two probability distributions for metric ground
distances. It is a special case of a class of optimization problems in applied probability theory
called mass transportation problems. We will first look at the analogy between discrete and
continuous EMD and state the dual form (section 3.1). Then, in section (3.2), we will describe
how to convert the dual form into the wavelet domain. The wavelet domain dual problem has
an explicit solution.

3.1 Continuous EMD and its dual

The wavelet domain connection of the EMD problem becomes clear only when we look at EMD
for continuous distributions. Table (1) lists analogous terms between EMD for signatures and
discrete and continuous versions of the EMD problem for distributions. The problem is simpler
for histograms than for signatures because they must add up to 1. The objective function is
simpler because the total flow

∑

ij gij = 1. The constraint is simpler as well and means that
the flows must make up the difference between the two histograms. This is a mass conservation
constraint. We will now formally state the continuous domain EMD problem [18], summarized
in the third column of table (1).

Let P1 and P2 be probability distributions with densities p1 and p2 respectively, defined on
a compact space S ⊂ R

n. c is a continuous cost function on the Cartesian product space S×S.
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Here, we will restrict c to be of the form ‖x − y‖s with 0 < s ≤ 1. s = 1 gives us the usual
Euclidean ground distance. The Kantorovich-Rubinstein transshipment problem (KRP) is to
find

µ̇c = inf
q

∫

||x− y||s q(x, y)dxdy (3)

where the infimum is over all joint probability distributions Q with density q on S × S. Q is
analogous to flow in the discrete EMD problem and specifies how the source density p1 is moved
to the target density p2. Thus the joint density q must satisfy the mass conservation constraint
:

p1(u) − p2(u) =

∫

q(u, y)dy −

∫

q(x, u)dx (4)

p := p1−p2 is a difference density with the property that
∫

p = 0. The Kantorovich–Rubinstein
theorem states that the problem admits the dual representation :

µ̇c = sup
f

∫

f(x)(p1(x) − p2(x))dx (5)

with the same optimal value. The supremum is over all bounded continuous functions f on S
(called potentials) satisfying the order s Hölder continuity condition

f(x) − f(y) ≤ ||x− y||s for all x, y ∈ S (6)

In the dual form, the EMD is the supremum of inner products of the difference density with a
suitably smooth function.

Going back to the piles of sand, in the primal form, we try to find the flows q to convert p1

into p2 that move the sand by the least amount (3). In the dual form, we try to assign heights
or potentials f to the various bins that will drive these flows. If we limit the change in the
potentials by the ground distance (6), we can measure the total sand movement by the change
in total height of the sand pile (5).

3.2 EMD in the wavelet domain

Now we will look at expressing the dual problem in the wavelet domain. We can identify the
various classes that a function belongs to by observing the rate of decay of its wavelet coefficients
[17] (Chapter 6). For our application, we are interested in the wavelet characterization of Hölder
spaces, since the potential f belongs to one. First we will explain some notation about the
wavelet series representation of a function.

A function f in R
n can be expressed in terms of a wavelet series (Meyer [17] Chapter 2) as:

f(x) =
∑

k

fkφ(x− k) +
∑

λ

fλψλ(x) (7)

φ and ψ are the scaling function and wavelet respectively. k runs through all integer n–tuples
and represents shifts, and λ := (ǫ, j, k). In n dimensions, we need 2n − 1 different wavelet
functions which are indexed by ǫ. They are usually constructed by a tensor product of 1D
wavelet functions along individual dimensions. For example, in 2D, we have horizontal (ǫ = 1:
ψ(x)φ(y)), vertical (ǫ = 2: φ(x)ψ(y)) and diagonal (ǫ = 3: ψ(x)ψ(y)) wavelets. j represents the
scale and is a non-negative integer. Larger values of j mean finer scales with shorter wavelet
functions. The set of all possible λ for a scale j ≥ 0 is denoted by Λj and Λ is the union of all
Λj . We thus have

ψλ(x) := 2nj/2ψǫ(2jx− k) (8)
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A wavelet ψ has regularity r ∈ N if it has derivatives up to order r and all of them (including
ψ itself) have fast decay, i.e. they decay faster than any reciprocal polynomial for large x. For
orthonormal wavelets, the coefficients can be computed as

fk =

∫

f(x)φ̄(x− k)dx, k ∈ Z
n (9)

fλ =

∫

f(x)ψ̄λ(x)dx, λ ∈ Λ, j ≥ 0 (10)

φ̄ and ψ̄ are complex conjugates of φ and ψ respectively.
Hölder space membership is an indication of the global smoothness of a function. For

0 < s < 1, a bounded, continuous function f belongs to the Hölder class Cs(Rn) if the following
supremum exists and is finite :

CH(f) := sup
x6=y

|f(x) − f(y)|

‖x− y‖s
(11)

We can now state the constraint (6) simply as

CH(f) < 1 (12)

The following theorem from Meyer ([17] section 6.4) can be used to characterize functions in
Cs(Rn) :

Theorem 1. A function f ∈ L1
loc(R

n), (i.e. |f | is integrable over all compact subsets of R
n)

belongs to Cs(Rn) if and only if, in a wavelet decomposition of regularity r ≥ 1 > s, the
approximation coefficients fk and detail coefficients fλ satisfy

|fk| ≤ C0, k ∈ Z
n and

|fλ| ≤ C12
−j(n/2+s), λ ∈ Λj , j ≥ 0 (13)

for some constants C0 and C1.

A little modification to the proof of this theorem (see Appendix A) gives the following
lemma:

Lemma 1. For 0 < s < 1, if the wavelet series coefficients of the function f are bounded as in
(13), then f ∈ Cs with CH(f) < C such that

a12(ψ; s)C1 ≤ C ≤ a21(ψ; s)C0 + a22(ψ; s)C1 (14)

for some positive constants a12, a21 and a22 that depend only on the wavelet and s. For discrete
distributions, if we change the definition of CH(f) to

CH(f) := sup
|x−y|≥1

|f(x) − f(y)|

‖x− y‖s
, (15)

the same condition holds for s = 1 as well.

The constants a12, a21 and a22 are estimated in Appendix A. Now we have all the ingredients
necessary for our main result :
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Theorem 2. Consider the KR problem with the cost function c(x, y) = ‖x − y‖s, s < 1. Let
pk and pλ be the wavelet transform coefficients (approximation and detail, respectively) of the
difference density p generated by the orthonormal wavelet-scaling function pair ψ and φ with
regularity r ≥ 1 > s. Then for any non-negative constants C0 and C1 > 0,

µ̂c = C0

∑

k

|pk| + C1

∑

λ

2−j(s+n/2)|pλ| (16)

is an equivalent metric to the KR metric µ̇c; i.e. there exist positive constants CL and CU

(depending only on the wavelet used) such that

CLµ̂c ≤ µ̇c ≤ CU µ̂c (17)

For discrete distributions, the same result holds for s = 1 as well.

Proof. Consider the auxiliary wavelet domain problem :

Maximize pT f =
∑

k

pkfk +
∑

λ

pλfλ

subject to |fk| ≤ C0 and |fλ| ≤ C12
−j(s+n/2) (18)

p and f are coefficient vectors of pλ and fµ. It is easy to see that µ̂c in (16) is the solution of
this problem. We need to show that the ratio of the optimal values of the KR problem and
auxiliary wavelet problem are bounded by two constants CL and CU . Since we use orthonormal
wavelets that preserve inner products, the wavelet problem (18) has the same objective function
as the KR problem dual (5).

Note that changing the KR dual problem constraint CH(f) < 1 to CH(f) < K for any
K > 0 will simply have the effect of scaling the optimal value by K, since for every function
f allowed by the original constraint, there is a corresponding function Kf allowed by the new
constraint. Further, the constraints in the auxiliary problem (18) will allow functions with
CH(f) < C, where C is bounded by the limits in (14). So, all functions with CH(f) less than
the lower bound in (14) are included by the constraint, and no function with CH(f) greater
than the upper bound are included. Consequently, the optimal value is scaled by a factor C
that obeys the bounds in (14). This is equivalent to (17) with

CL = a12(ψ; s)C1 and

CU = a21(ψ; s)C0 + a22(ψ; s)C1. (19)

The wavelet EMD metric is thus equivalent to EMD.
For discrete distributions, we can scale the domain so that the minimum distance between

any two points is 1 or more. This scales the EMD by the same factor. Now the bounds (19)
are valid again and we have the required equivalence. A similar but more complex result holds
for biorthogonal wavelets as well. See Appendix B for details.

We set C0 = 0 because this gives us the tightest bounds in (14). Setting the constant C1 to
1, we get the simple distance measure :

d(p)wemd := µ̂c

∣

∣

∣

C0=0,C1=1
=
∑

λ

|pλ|2
−j(s+n/2) (20)

The bounds ratio
CU

CL
=
a22(ψ; s)

a12(ψ; s)
(21)

measures the maximum possible error. After scaling wavelet EMD suitably, the ratios WEMD/EMD
and EMD/WEMD will always be less than the bounds ratio.
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4 Experiments

First, in section (4.1), we will discuss some implementation issues that affect the accuracy and
other aspects of wavelet EMD. In section (4.2), we will describe how to choose appropriate
wavelets. Finally, in section (4.3), We will describe experiments that demonstrate that the
wavelet EMD behaves very similar to EMD, but can be computed much faster.

4.1 Some implementation notes

For applications that store computed histogram descriptors, we split the wavelet EMD com-
putation into two parts. First, the histogram descriptor is converted into the wavelet domain
and its coefficients are scaled according to equation (2). The wavelet EMD distance between
two descriptors is now the L1 distance between these coefficients. We should note the following
points while computing wavelet EMD :

1. Initialization : The standard Mallat filter bank algorithm ([16] section 7.3.1) for com-
puting the wavelet transform starts with fine level wavelet coefficients as input. We can use
signal values as input if we want to reconstruct the signal again, as in compression or denoising.
This does not work if we want to use wavelet coefficients to represent signal properties like
Hölder continuity. We can approximate fine scale wavelet coefficients with signal values if we
use coiflets ([16] section 7.2.3). Unfortunately, this is not accurate enough for our application.
So, we use the wavelet transform initialization method (algorithm 2) of Zhang, Tian and Peng
[22]. We assume that the histogram bin values are obtained from a block sampler.

2. Periodic and non-periodic histograms : For data like distance and intensity values,
there are no samples outside the histogram limits and we use zero padding extension while
computing the wavelet transform. Since angles are measured modulo 2π, angle dimensions are
extended periodically. For example, SIFT descriptors are 3D histograms of gradient orientation
with respect to location around the feature point. So, we should use periodic extension along
the gradient orientation dimension and zero padding along the location dimensions.

3. Wavelet transform size : Zero padding increases the size of the wavelet transform.
For each decomposition level, the histogram is padded with a vector of zeros about as long as
the wavelet filter length. This is significant for multi-dimensional histograms that only have a
few bins along each dimension. However, most of these coefficients are close to zero because
the wavelet transform is a sparse representation. We can store the coefficients compactly as a
sparse vector if we set small coefficients to zero. After weighting the coefficients, we keep the
largest coefficients that contribute 95% to the total L1 norm. The remaining are set to zero.
The coefficients are then stacked to form a 1D sparse vector: the final descriptor representation.
Descriptor comparison takes time linear in the number of non–zero coefficients. Although there
may be about 1–5 times as many elements as in the original histogram, depending on its size
and dimensionality, the required time is similar to that for χ2 or Euclidean distance on similarly
enlarged histograms.

4. Histogram dimensionality : Although this method can be applied to histograms of
any dimension, it may not be practical for histograms with more than 4–5 dimensions. High
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Daubechies CU/CL Daub. symmetric CU/CL

db3 6.33 sym3 6.33
db4 7.29 sym4 4.64
db5 9.92 sym5 6.01
db6 12.59 sym6 5.58

Coiflets CU/CL Ojanen CU/CL

coif1 4.38 oj8 7.46
coif2 4.75 oj10 10.56
coif3 5.85 oj12 13.79

Table 2: Theoretical (loose) estimates for maximum error for various 1D wavelets. Ojanen
wavelets have maximum smoothness for a given filter length. Coiflets have low error despite
large support.

dimensional histograms tend to be sparse, and wavelet transform of sparse arrays can be non-
sparse. Wavelet transform computation time also increases exponentially with dimension. We
restrict our experiments to histograms of dimensionality 1, 2 and 3 only.

Next we will look at how to choose wavelets that approximate EMD well.

4.2 Which wavelets ?

The conditions of theorem (2) put some restrictions on the wavelets for which this works. We
need wavelets with at least one derivative. This rules out the simple Haar wavelet.

We can try choosing the best possible wavelets by computing the bounds ratio CU/CL for
C0 = 0, C1 = 1. Table (2) lists maximum error estimates (CU/CL) for some common wavelets
in 1D. These estimates (see Appendix A) are computed through combinatorial optimization
and are hard to compute for higher dimensions. Without explicit calculation, we cannot say
how the bounds will change for a wavelet as the dimension increases. The estimate formulas
do indicate that wavelets with small support and fast decay will have a high CL. CU will be
low if the wavelet has a small absolute value maximum.

In higher dimensions, it is easier to choose wavelets empirically. We measured the error of
wavelet EMD with respect to actual EMD for a set of 100 random 16×16 histogram pairs. Since
uniform random histogram pairs tend to have EMD concentrated in a small range, we instead
generated only one histogram randomly. The second histogram was obtained by changing
this at random locations by random amounts. The number of locations as well as maximum
allowed change at a location was gradually increased. These random histogram pairs have well
distributed EMDs. Wavelet EMD was scaled to make its mean ratio with EMD 1. Table (3)
shows the normalized RMS error and the observed bounds ratio CU/CL. The bounds ratio is
the maximum of all the ratios WEMD/EMD and EMD/WEMD, while the normalized RMS
error is the RMS deviation of the ratio WEMD/EMD from 1. The table also notes the time
needed to compute wavelet EMD in Matlab R2007a on an Intel Xeon 3GHz PC. This can be
improved if optimized wavelet transform implementations are used. We observed that Coiflets
of order 3 and symmetric Daubechies wavelets of order 5 produced good results. We use order
3 coiflets in our experiments.
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Wavelet Normalized Bounds ratio Time (ms)
RMS error CU/CL

db3 16% 1.91 28
db4 20% 2.45 36
db5 17% 1.98 43
db6 18% 1.93 49

sym3 16% 1.91 28
sym4 17% 2.18 31
sym5 13% 1.50 34
sym6 16% 2.00 44

coif1 16% 1.88 34
coif2 15% 1.85 45
coif3 14% 1.87 74

oj8 20% 2.44 37
oj10 18% 2.07 39
oj12 17% 1.82 43

Table 3: EMD approximation error for random 16 × 16 histograms for various wavelets

Method Bounds Normalized Preproc. Compare
ratio RMS error time time

EMD – – 0.92 s 63 ms
Wavelet EMD 7.03 18% 2.35 s 0.11 ms
Indyk-Thaper 11.00 43% 0.51 s 22 ms

Table 4: Error and time requirements for 16x16x16 colour histograms. Preprocessing time in-
cludes colour space conversion, binning, clustering (EMD only) and weighted wavelet transform
(WEMD). Indyk-Thaper random embedding is repeated 5 times.

4.3 Image retrieval: colour histograms

We tested wavelet EMD on content based image retrieval using colour histograms. We used
the SIMPLIcity test database [20] that consists of 10 image classes with 100 images each. We
will show that wavelet EMD provides a better approximation to EMD than other EMD ap-
proximation methods in terms of distance values as well as performance for colour histograms.
We computed 16× 16× 16 colour histograms in Lab colour space since Euclidean (ground) dis-
tances in this colour space are proportional to perceived colour differences. The histograms were
clustered into 64 clusters each before computing EMD, but not for computing approximations.

The scatter plots in figure (2) compare the wavelet EMD approximation with that of Indyk
and Thaper [8] for distances computed between these colour histograms. Both approximations
are scaled to have a mean ratio with EMD of 1. The plot indicates that Wavelet EMD distances
correlate better with EMD than Indyk and Thaper. Note that EMD and its approximations
have a maximum value depending on the histogram size. The Indyk-Thaper scatter plot appears
cut–off because its greater spread causes it to reach this limit faster. Table (4) shows the
approximation errors and time requirements for EMD, wavelet EMD and Indyk and Thaper’s
method. Although wavelet EMD needs more preprocessing time than the other two methods,
actual comparison is very fast.

Another method to measure approximation error, in the context of feature matching, is to

10



0 2 4 6
0

2

4

6

8

10

12

Scaled Indyk−Thaper approx.

E
M

D

0 2 4 6 8 10 12
0

2

4

6

8

10

12

Scaled Wavelet EMD
E

M
D

Figure 2: EMD approximations with Wavelet EMD using order 3 Coiflets is better than with
Indyk and Thaper’s [8] method. The red (dark) line indicates points of zero error.

measure the probability of distance order reversal, i.e. the probability that histogram p1 is closer
to histogram p2 than to histogram p3 according to EMD, but not according to an approximation.
We expect this probability to decrease as p3 moves farther away from p1, compared to p2, i.e.
the ratio EMD(p1, p3)/EMD(p1, p2) increases. Figure (3) shows that this probability starts
lower and falls off faster for wavelet EMD than for Indyk and Thaper’s approximation. We do
not include EMD–L1 in these comparisons because it uses a different ground distance.

Figure (4) shows ROC curves for EMD and its different approximation methods obtained
from leave one out image retrieval experiments on this dataset. Wavelet EMD and EMD have
almost the same performance, and this is better than EMD–L1 and Indyk and Thaper’s method.

5 Conclusion and future work

We have introduced a new method to approximate the earth mover’s distance between two
histograms using weighted wavelet transform coefficients of the difference histogram. We pro-
vide theoretical bounds to the maximum approximation error. Our experiments with colour
histograms demonstrate that the wavelet EMD approximation preserves the performance of
EMD while significantly reducing computation time.

In this paper, we have focussed our attention on approximation of EMD for full histograms.
We would like to extend this to matching partial histograms as well. We also want to explore
the use of different ground distances (different powers s) and other applications like image
registration that can benefit from fast EMD computation.
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Appendix A Proof of Lemma (1)

Parts of this proof are adapted from Meyer ([17] section 6.4). We will start with the first
inequality a12(ψ; s)C1 ≤ C in (14). The proof of this inequality corresponds to the proof of the
only if part of theorem (1). For all functions f ∈ Cs(Rn), 0 < s ≤ 1 with the seminorm CH(f),
we will compute bounds on their wavelet series coefficients. We will omit the dependence of CH

on f to simplify notation. Suppose that the wavelet coefficient bounds are actually attained.
Using the definition of CH , we can bound the values of f(x) as :

|f(x) − f(k + r)| ≤ CH‖x− k − r‖s for any r ∈ R
n, k ∈ Z

n

Since the bounds are attained, we have

C0 = sup
k

|fk| = sup
k

∣

∣

∣

∣

∫

f(x)φ(x− k)dx

∣

∣

∣

∣

= sup
k

∣

∣

∣

∣

f(k + r) +

∫

(f(x) − f(k + r))φ(x− k)dx

∣

∣

∣

∣

(

since

∫

φ(x− k)dx = 1

)

≤ sup
k

|f(k + r)| +

∫

|f(x) − f(k + r)| |φ(x− k)| dx

≤ sup
k

|f(k + r)| +

∫

CH‖x− k − r‖s |φ(x− k)| dx

≤ ||f ||∞ + CH

∫

‖x− r‖s|φ(x)|dx

Since this is true for all r ∈ R
n,

C0 ≤ ||f ||∞ + CH inf
r

∫

‖x− r‖s|φ(x)|dx (22)

If we define

a11(ψ; s) :=
1

infr
∫

‖x− r‖s|φ(x)|dx
, (23)

we can write this as
CH ≥ a11(C0 − ||f ||∞) (24)

Note that this constant depends only on the wavelet and s.
To compute a bound on C1, we will first bound fλ using the definition of CH .

f(y) ≤ f(2−j(k + r)) + CH‖y − 2−j(k + r)‖s

|fλ| =

∣

∣

∣

∣

∫

f(y)ψλ(y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(f(y) − f(2−j(k + r)))ψλ(y)dy

∣

∣

∣

∣

≤

∫

∣

∣f(y) − f(2−j(k + r))
∣

∣ |ψλ(y)| dy

≤

∫

CH‖y − 2−j(k + r)‖s
∣

∣

∣
2nj/2ψǫ(2jy − k)

∣

∣

∣
dy
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(using the n dimensional change of variables x = 2jy − k, so dx = 2njdy)

= CH

∫

‖x− r‖s2−js2−nj/2 |ψǫ(x)| dx

= CH2−j(s+n/2)

∫

‖x− r‖s |ψǫ(x)| dx

So C1 = sup
λ

2j(s+n/2) |fλ|

≤ sup
j,ǫ

2j(s+n/2)CH2−j(s+n/2)

∫

‖x− r‖s |ψǫ(x)| dx
(25)

Since this is true for all r ∈ R
n,

C1 ≤ CH max
ǫ

inf
r

∫

‖x− r‖s |ψǫ(x)| dx (26)

If we define

a12 :=
1

maxǫ infr
∫

‖x− r‖s |ψǫ(x)| dx
, (27)

we can write this as
CH ≥ a12C1 (28)

This constant too depends only on the wavelet and s.
From equations (24) and (28), we have

CH ≥ max {a11(C0 − ||f ||∞), a12C1} (29)

If the bounds on the wavelet coefficients of f are not attained, we can instead say that

CH ≤ C such that C ≥ max {a11(C0 − ||f ||∞), a12C1} (30)

Since its hard to know ||f ||∞ beforehand, we can simply use the looser bound (28),

CH ≤ C and C ≥ a12C1 (31)

This is our first inequality.
Proving the second inequality is a bit more involved. This corresponds to the proof of the

if part of theorem (1). We need to look at the converse problem: given a function defined by
a wavelet series with approximation and detail coefficients bounded by C0 and C1 respectively,
what is the corresponding bound on CH ?

We start with the wavelet series of f

f(x) =
∑

k

fkφ(x− k) +
∑

λ∈Λj ,j≥0

fλψλ(x)

and split this into a Littlewood-Paley type series as

f(x) =
∑

j>=−1

fj(x) (32)

with f−1(x) =
∑

k

fkφ(x− k) (33)

and fj(x) =
∑

λ∈Λj

fλψλ(x) for j ≥ 0 (34)
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To begin with, we will establish some properties of the functions fj . Consider the wavelet
series Σψ(x; η) :=

∑

k,ǫ ηk,ǫψ
(ǫ)(x− k) with −1 ≤ ηk,ǫ ≤ 1. This is a convergent series because

of the fast decay properties of wavelets. So,

||Σψ||∞ := sup
x,η

|Σψ(x; η)| (35)

is finite. This quantity can be computed for wavelets with compact support using combinatorial
optimization if we note that the supremum will occur at ηk,ǫ ∈ {−1,+1}. If we have |fλ| ≤
C12

−j(s+n/2), then

|fj(x)| ≤ C12
−j(s+n/2)2nj/2 ||Σψ||∞ for all x

So, ||fj ||∞ ≤ C1 ||Σψ||∞ 2−js (36)

With a similar argument, we get

||f−1||∞ ≤ C0 ||Σφ||∞ (37)

where ||Σφ||∞ is defined similar to ||Σψ||∞.
Now we can immediately bound ‖f‖∞ as

‖f‖∞ ≤ C0 ||Σφ||∞ +
∑

j≥0

C1 ||Σψ||∞ 2−js

‖f‖∞ ≤ C0 ||Σφ||∞ +
C1

1 − 2−s
||Σψ||∞ (38)

Next, we will look at the first derivatives of the functions fj . Since the wavelets have at least
one derivative, we have for first derivatives with respect to all the components xi (i = 1, . . . , n)
of x :

∂xi
f−1(x) =

∑

k

fk∂xi
φ(x− k) (39)

∂xi
fj(x) =

∑

λ∈Λj

fλ∂xi
2nj/2ψǫ(2jx− k)

=
∑

λ∈Λj

fλ2j(n/2+1)(∂xi
ψǫ)(2jx− k) (40)

Again using the fast decay properties of wavelet derivatives, we can define the following
convergent series and their absolute suprema :

Σφ(i)(x; η) :=
∑

k

ηk∂xi
φ(x− k) ‖Σφ(i)‖∞ := sup

x,η
|Σφ(i)(x; η)| (41)

Σψ(i)(x; η) :=
∑

k,ǫ

ηk,ǫ∂xi
ψ(ǫ)(x− k) ‖Σψ(i)‖∞ := sup

x,η
|Σψ(i)(x; η)| (42)

(43)

Also, the Hölder space embedding C1 ⊂ Cs (every differentiable function is a member of
Cs) for s < 1 implies that the series

∑

φ(x; η) ∈ Cs. We define

∣

∣

∣

∣

∣

∣

∑

φs(x)
∣

∣

∣

∣

∣

∣

∞
:= sup

x6=y

∑

φ(x; η) −
∑

φ(y; η)

||x− y||s
(44)
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Now we can bound the derivatives of fj as :

|∂xi
fj(x)| ≤ C12

−j(s+n/2)2j(n/2+1)‖Σψ(i)‖∞ for all x

So, ||∂xi
fj ||∞ ≤ C1‖Σψ

(i)‖∞2−j(s−1) (45)

Similarly, we also get
||∂xi

f−1||∞ ≤ C0‖Σφ
(i)‖∞ (46)

Finally, we have everything we need to estimate CH . Define rj(x;x0) := fj(x) − fj(x0)
and r(x;x0) := f(x) − f(x0) =

∑

j rj(x;x0), for any x0 ∈ R
n. Then, we need to find CH s.t

|r(x;x0)| ≤ CH‖x− x0‖. Let m ∈ Z be defined by 2−m ≤ ‖x− x0‖ < 2.2−m. We can split the
series for r(x;x0) as

r(x;x0) = r−1(x) +
m−1
∑

j=0

rj(x;x0) +
∑

j≥m

rj(x;x0) (47)

We have the following two cases :

Case 1: ‖x− x0‖ < 1 so that m > 0
Starting with the last term of equation (47), we have :

∣

∣

∣

∣

∣

∣

∑

j≥m

rj(x;x0)

∣

∣

∣

∣

∣

∣

≤
∑

j≥m

|fj(x)| + |fj(x0)|

≤
∑

j≥m

2C1‖Σψ‖∞2−js (from equation (36))

= 2C1‖Σψ‖∞
2−ms

1 − 2−s

≤
2C1‖Σψ‖∞

1 − 2−s
‖x− x0‖

s (48)

This holds for s = 1 as well. To deal with the middle term of equation (47), we use the mean
value theorem to bound each rj .

|rj(x;x0)| =

∣

∣

∣

∣

∣

n
∑

k=1

(xk − x0k)
∂fj

∂xk
(x′)

∣

∣

∣

∣

∣

(for some x′ between x and x0)

≤
∑

i

‖x− x0‖ · ‖∂xi
fj‖∞

≤ C1

∑

i

‖Σψ(i)‖∞2j(1−s)‖x− x0‖ (from equation (45))

So,

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

rj(x;x0)

∣

∣

∣

∣

∣

∣

≤ C1

∑

i

‖Σψ(i)‖∞

m−1
∑

j=0

2j(1−s)‖x− x0‖

= C1

∑

i

‖Σψ(i)‖∞
2m(1−s) − 1

21−s − 1
‖x− x0‖
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Now 2m−1 < ‖x− x0‖
−1 implies 2m(1−s)‖x− x0‖ < 2s−1‖x− x0‖

s. So we get

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

rj(x;x0)

∣

∣

∣

∣

∣

∣

≤
C1
∑

i‖Σψ
(i)‖∞

2(1−s) − 1
(2s−1‖x− x0‖

s − ‖x− x0‖) (49)

We cannot use this bound for s = 1. In that case, since we are adding up m terms with the
same bound for each, we can use the fact that m ≤ 1 − log2‖x− x0‖ to get

∣

∣

∣

∣

∣

∣

m−1
∑

j=0

rj(x;x0)

∣

∣

∣

∣

∣

∣

≤ C1

∑

i

‖Σψ(i)‖∞(1 − log2‖x− x0‖)‖x− x0‖ (50)

We can bound the first term of equation (47) using the Hölder norm bound from equation
(44) as :

|r−1(x)| ≤ C0

∣

∣

∣

∣

∣

∣

∑

φs(x)
∣

∣

∣

∣

∣

∣

∞
‖x− x0‖

s (51)

Now we add the three terms from equations (51), (49), (48) to get

|r(x;x0)| ≤

(

C0

∣

∣

∣

∣

∣

∣

∑

φs(x)
∣

∣

∣

∣

∣

∣

∞
+ C1

∑

i‖Σψ
(i)‖∞

21−s(21−s − 1)
+ C1

2‖Σψ‖∞
1 − 2−s

)

‖x− x0‖
s (52)

For s = 1, we can add up everything to get

|r(x;x0)| ≤ C0

∑

i

‖Σφ(i)‖∞‖x− x0‖

+ ‖Σψ(i)‖∞(1 − log2‖x− x0‖)‖x− x0‖

+ 4C1‖Σψ‖∞‖x− x0‖ (53)

The log term indicates that the wavelet coefficient decaying at the rate of 2−j(1+n/2) is
insufficient to restrict functions to the space C1. Instead, this condition restricts functions to
the Zygmund class Λ⋆, which includes some extra functions.

Case 2: ‖x− x0‖ ≥ 1 so that m ≤ 0
The only change here is that the middle term disappears in equations (52) and (53).

Combining these two cases, for s < 1, we get the bound :

CH ≤ C0

∣

∣

∣

∣

∣

∣

∑

φs(x)
∣

∣

∣

∣

∣

∣

∞
+ C1

∑

i‖Σψ
(i)‖∞

21−s(21−s − 1)
+ C1

2‖Σψ‖∞
1 − 2−s

(54)

If we define

a21(ψ; s) :=
∣

∣

∣

∣

∣

∣

∑

φs(x)
∣

∣

∣

∣

∣

∣

∞
and (55)

a22(ψ; s) :=

∑

i‖Σψ
(i)‖∞

21−s(21−s − 1)
+

2‖Σψ‖∞
1 − 2−s

, (56)

we have the second inequality for 0 < s < 1 :

CH ≤ C and C ≤ a21(ψ; s)C0 + a22(ψ; s)C1 (57)
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If we restrict ourselves to case 2, i.e. ‖x − x0‖ ≥ 1, this inequality is still valid for s = 1 with
the change that :

a22(ψ; s) :=
2‖Σψ‖∞
1 − 2−s

(58)

The bounds ratios in table (2) were calculated for 1D discrete distributions using this formula
with s = 1.

From equations (57) and (31), we have the bounds in the lemma :

CH ≤ C and a12(ψ; s)C1 ≤ C ≤ a21(ψ; s)C0 + a22(ψ; s)C1 (59)

Appendix B WEMD with biorthogonal wavelets

Theorem (2) holds in a slightly changed form for biorthogonal wavelets as well. In the auxiliary
wavelet domain problem (18), we can keep the constraint, but we have to change the objective
function since biorthogonal wavelets don’t preserve inner products. Since these wavelets are not
orthonormal, the analysis (φ, ψ) and synthesis (φ̃, ψ̃) scaling function and wavelet are different.
They are related by the following biorthogonal relationship :

∫

φ(x− k)φ̃(x− l) = δkl

∫

ψλ(x)φ̃(x− l) = 0
∫

ψλ(x)ψ̃µ(x) = δµλ

∫

φ(x− k)ψ̃µ(x) = 0

The wavelet coefficients of a function in a biorthogonal wavelet series expansion are given by :

fk =

∫

f(x)φ(x− k)dx fλ =

∫

f(x)ψλ(x)dx (60)

and the function can be reconstructed as :

f(x) =
∑

k

fkφ̃(x− k) +
∑

λ

fλψ̃λ(x) (61)

We can use equation (61) to compute the inner product of two functions.

∫

f(x)p(x)dx =

∫

(

∑

k

fkφ̃(x− k) +
∑

λ

fλψ̃λ(x)

)(

∑

l

plφ̃(x− l) +
∑

µ

pµψ̃µ(x)

)

dx

Let θ̃ω(x) := φ̃(x − k) or ψ̃λ(x), i.e. the function θ̃ represents either φ̃ or ψ̃ and the index ω
first runs over all k and then over all λ.

=
∑

ω,σ

fωpσ

∫

θ̃ω(x)θ̃σ(x)dx

= fTUp

(62)
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where f and p are vectors of wavelet coefficients as before and

Uωσ :=

∫

θ̃ω(x)θ̃σ(x)dx (63)

Thus the auxiliary wavelet domain problem now becomes :

Maximize fTUp

subject to |fk| ≤ C0 and |fλ| ≤ C12
−j(s+n/2) (64)

This is the same problem as before, except that we must change p to p̃ := Up. The solution
is :

µ̂c = C0

∑

k

|p̃k| + C1

∑

λ

2−j(s+n/2)|p̃λ| (65)

If we set C0 = 0 and C1 = 1, we get the simplified formula :

d(p)wemd :=
∑

λ

2−j(s+n/2)|p̃λ| (66)

Computing WEMD with biorthogonal wavelets will take a bit longer because we need to
compute Up. This raises the overall complexity to O(n2), though we do not expect it to increase
computation time significantly since matrix multiplication has much lower complexity constants
than the fast wavelet transform. Although the matrix U is not sparse (O(n) non-zeros), a lot
of its elements are still zeros, and the rest can be precomputed and stored.

An advantage of using biorthogonal wavelets is that we can have wavelets with tighter
bounds. The constant a12 depends on the analysis wavelet while a21 and a22 depend on the
synthesis wavelet. Since biorthogonal wavelets offer more freedom in choosing these two, we
can expect wavelets with lower bounds ratios

CU

CL
=
a22(ψ̃; s)

a12(ψ; s)
. (67)
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