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Abstract

Multi-modal image registration is a challenging prob-
lem in medical imaging. The goal is to align anatomi-
cally identical structures; however, their appearance in im-
ages acquired with different imaging devices, such as CT
or MR, may be very different. Registration algorithms gen-
erally deform one image, the floating image, such that it
matches with a second, the reference image, by maximizing
some similarity score between the deformed and the refer-
ence image. Instead of using a universal, but a priori fixed
similarity criterion such as mutual information, we pro-
pose learning a similarity measure in a discriminative man-
ner such that the reference and correctly deformed float-
ing images receive high similarity scores. To this end, we
develop an algorithm derived from max-margin structured
output learning, and employ the learned similarity measure
within a standard rigid registration algorithm. Compared
to other approaches, our method adapts to the specific reg-
istration problem at hand and exploits correlations between
neighboring pixels in the reference and the floating image.
Empirical evaluation on CT-MR/PET-MR rigid registration
tasks demonstrates that our approach yields robust perfor-
mance and outperforms the state of the art methods for
multi-modal medical image registration.

1. Introduction
Many medical imaging applications require multi-modal

registration, or the precise spatial alignment of images of
the same person taken with different scanning devices. This
is an intrinsically difficult problem, since corresponding lo-
cations in the different images show different intensities,
and often there is not a one-to-one mapping between the
intensities in the two images. For example in MR-CT reg-

istration, black pixels in the MR image can correspond to
either bone or air tissue, which have maximally distinct CT
values. Thus, one cannot simply use photo-consistency as
a similarity score for this task, not even after rescaling the
image intensities.

The most popular approach in multi-modal image regis-
tration maximizes the mutual information (MI) of the im-
ages based on their joint intensity histogram, that is, the
two dimensional histogram of the pixel intensities of corre-
sponding point pairs [11]. This approach favors similarity
scores that yield the most information about the intensity
distribution at one location in the floating image given the
intensity at the corresponding position in the reference im-
age. While this is a plausible and very general assumption,
it also discards much useful information. Considering again
the example of MR-CT registration, a black pixel in MR
does not tell us that the output pixel should have a uniquely
defined intensity. In fact, we know precisely that the out-
put pixel intensity in CT should be either one, in the case
of bone, or zero, in the case of air. Such knowledge can be
learned when an exact registration is known, and it can be
used to improve existing registration algorithms.

The first successful approaches in learning similarity
functions for medical image registration have been under-
taken within a generative framework [5, 4, 8, 13]. Leven-
ton et al. [5] propose to estimate the underlying joint inten-
sity distribution from registered example image pairs, and
then to employ a maximum likelihood (ML) approach to
define the alignment measure for new image pairs. Chung
et al. [4] minimize the Kullback-Leibler (KL) divergence
between the learned joint intensity distribution and the joint
distribution of the new images. Similarly, Sabuncu et al.
[8] use the entropic graph-based Jensen-Rényi (JR) diver-
gence for the same minimization problem. One problem,
however, with MI and all similarity measures based on sin-
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Figure 1. A flowchart of the proposed registration method using the learned similarity function.

gle pixel intensity histograms is that they give the same
similarity score if the pixels in both images are randomly
permuted. This is an artifact of the unrealistic modelling
assumption of generative approaches that states that the in-
tensity of the pixel in the reference image is independent of
its neighbors given the corresponding pixel in the floating
image. In fact, if considered in conjunction with its neigh-
bors, each pixel carries much more helpful information than
its pixel intensity alone. For example, observing that a pixel
in the floating image is part of a boundary between two dif-
ferent tissue types will be much more informative in find-
ing the corresponding pixel in the reference image than the
pixel’s intensity alone. Therefore, each point should be de-
scribed by a whole set of features derived from the neigh-
borhood of that point, for example, an image patch centered
at that point. This can be extremely problematic for joint
histogram based approaches, however, since it would re-
quire high-dimensional histograms which are generally un-
reliable to estimate [7]. To some degree these problems can
be overcome by partitioning the feature space and consider-
ing only histograms of the resulting class labels [3]. How-
ever, if for computational reasons only few partitions are
used, we lose again much information. Furthermore, a par-
titioning optimal for representing either the input or the out-
put distribution of patches will not necessarily represent the
joint distribution well.

In this paper, our goal is to develop a method that
overcomes the computational and data-scarcity problems of
the generative learning approaches that require joint input-
output histograms over a neighborhood. To this extent, we
propose a discriminative approach to learn a similarity func-
tion based on features extracted from the neighborhoods of
both the reference and floating image positions. Since dis-
criminative approaches condition on the input (reference)
image, they do not impose the unrealistic conditional in-

dependence assumptions mentioned above. Furthermore,
they allow the use of kernels which provide an elegant way
of handling structured inputs in machine learning problems
[9]. More generally, one can use joint kernels depending on
structured input-output pairs [1], which provide an efficient
way to model nonlinear dependencies between floating and
reference image patches for multi-modal image registra-
tion. Joint kernels are commonly used in structured output
prediction learning. In this paper, we adapt the maximum
margin structured output learning method of [10] to learn-
ing similarity functions for multi-modal image registration.
This formulation is preferable to other discriminative learn-
ing methods, since it provides an efficient and elegant way
to incorporate joint kernel maps and cost sensitivity into
the prediction problem of structured objects. We train this
method with registered image patch pairs where the struc-
tured objects are the floating image patches. We define the
similarity function to be the resulting discriminative func-
tion and employ it in standard registration algorithms, that
search through a space of possible deformations (rigid or
non-rigid) to find the deformation maximizing the learned
similarity score. Our approach is outlined in Section 2.

In Sections 3 and 4, we evaluate the learned similarity
function empirically. We present experiments underpinning
the validity of the measure in Section 3. These experiments
include visual comparisons as well as the robustness of our
approach to various transformations on the training data. In
Section 4 we incorporate the similarity measure in a stan-
dard rigid registration algorithm [2], allowing us to com-
pare against MI on MR-CT and MR-PET alignment prob-
lems. We also benchmark our proposed similarity measure
against some newer variants of MI that have been developed
to overcome certain limitations; specifically, we compare
against normalized mutual information (NMI), entropy cor-
relation coefficient (ECC) and versions that are invariant to
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the size of overlapping regions [2]. Furthermore, we bench-
mark against the learned joint density based measure (LJD)
[5]. These analyses show that our approach outperforms
the state of the art methods for multi-modal medical image
registration.

2. Learning the Similarity Function
In this section we describe the steps involved in learn-

ing the similarity measure for multi-modal image registra-
tion. Fig. 1 sketches the whole methodology, which consists
of learning the similarity measure from a pre-registered set
of images and applying the learned measure for registering
new images.

2.1. Max margin structured prediction

In multi-modal image registration, we are interested in
the task of inferring a spatial transformation T : Ωr → Ωf
for a reference image Ir : Ωr → R and its corresponding
floating image If : Ωf → R image, where Ωr,Ωf ⊂ Rd
are the feasible position sets of the reference and floating
images respectively. Given a similarity function s that quan-
tifies the compatibility of aligned reference-floating image
pairs, the optimal transformation of (Ir, If ) is found by
maximizing the similarity over all possible transformations,

T ∗ = argmaxT∈T s(Ir, If ◦ T ).

Our goal is to train a similarity function s over a sample
of pre-aligned image pairs such that the empirical cost ∆
of misregistration, e.g. the target registration error [12], is
minimized.

We assume that the similarity of two images decomposes
into the similarities of local regions,

s(Ir, If ◦ T ) =
∑

p∈Ω⊆Ωr

s(f(Ir, p), f(If , T (p))), (1)

where f extracts a vectorial description of the local sur-
roundings of point p from the given image. In this pa-
per we focus on rectangular image patches centered at p,
but other feature representations would be possible. One
can extend this framework further by incorporate compat-
ibility terms s̃ for multiple patches of the floating image
s̃(f(If , p), f(If , p′)). For example, s̃ can impose spatial
consistency of neighboring patches after transformation.
Since the standard datasets include a small number of regis-
tered full images, we restrict our attention to the formulation
that ignores dependencies across floating image patches.

The optimal similarity function should give the highest
score to the correctly aligned patch pairs and lower scores to
the incorrectly aligned pairs. This is exactly the optimiza-
tion goal of training a predictor that infers the floating image
patch y = f(If , p′) corresponding to a given reference im-
age patch x = f(Ir, p) by maximizing s(x,y) over all the

possible patches of If . Let D = {(x1,y1), . . . , (xn,yn)}
be a sample of correctly aligned image patches. We restrict
the space of s to linear functions over some feature repre-
sentation φ that is defined on the joint input-output space,

s(x,y;w) = 〈w, φ(x,y)〉 . (2)

We train the similarity function s by maximizing the min-
imum margin of the sample with respect to w, where
the margin is defined as γ(x,y;w) = s(x,y;w) −
maxy′ s(x,y′;w) and y 6= yi is any structured object from
the output space Y (the set of all patches from the floating
image If ). If we allow margin violations with linear penal-
ties and we control the norm ofw, the optimization problem
can be stated as a convex program [10]

min
w,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi (3)

s.t. s(xi,yi;w)− max
y∈Y,y 6=yi

s(xi,y;w) ≥ ∆(yi,y)− ξi,

ξi ≥ 0,∀i.

Note that due to the non-linearity of the constraints, this
is not a quadratic program (QP), but it can be converted
into a QP by replacing each margin constraint with a set of
constraints; that is ∀y ∈ Y,y 6= yi,

s(xi,yi;w)− s(xi,y;w) ≥ ∆(yi,y)− ξi. (4)

The important point here is that the number of constraints
for each x is the number of patches in the floating image.
For efficient optimization of this objective function, we use
a cutting plane approach, where at each iteration the most
violated constraint is included in a set of active constraints
Si for each training instance xi, and the quadratic program
is optimized over the set of active constraints S = ∪iSi. An
algorithmic overview is given in Algorithm 1.

Before giving further details of Algorithm 1, we com-
pare (3) to two alternative formulations, multi-class SVM
(mSVM) and a binary class SVM that discriminates the set
of all (xi,yi) pairs from (xi,y) pairs for all y 6= yi and
all i. The advantage of (3) over mSVM lies in the ability
to learn across classes, which is especially important where
classes (in our case floating image patches) have internal
structure and the number of classes is very large. This is
achieved via joint kernel maps (Section 2.2) that capture
statistics within and between image modalities. It is quite
possible that during test time the similarity function has to
be evaluated on floating image patches that are never ob-
served during training. The standard mSVM cannot gen-
eralize to such scenarios as opposed to the structured pre-
diction approach. The binary classification problem stated
above has been proposed in [13] and solved by a boost-
ing algorithm. The constraints of this problem (separating
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Algorithm 1 Cutting plane algorithm
1: Input: D = {(x1,y1), . . . , (xn,yn)}
2: Si ← ∅ for all i = 1, . . . , n
3: Define Yi,∀i as described in Section 2.3
4: repeat
5: for i = 1, . . . , n do
6: H(y) = ∆(yi,y)− s(xi,yi;w) + s(xi,y;w)
7: compute ŷ = argmaxy∈Yi

H(y)
8: compute ξi = max{0,maxy∈Si

}
9: if H(ŷ) > ξi + ε then

10: Si ← Si ∪ {ŷ}
11: Solve the dual of (3) over S, S = ∪iSi
12: end if
13: end for
14: until no Si has changed during iteration

all correct pairs from all incorrect pairs) are significantly
harder than the constraints of (3) and are possibly infeasi-
ble. The constraints of (3) impose separation for each train-
ing instance but not across all data. Furthermore, (3) natu-
rally incorporates the error function, ∆, into the optimiza-
tion problem, which is not the case for the binary formula-
tion. In our experiments, 0/1 loss is used for ∆ function.

2.2. Joint Kernel Map

The choice of feature representation φ(x,y) should re-
flect the correlations between the components of the input
and output variables. We consider feature maps that are im-
plicitly induced by a kernel function defined over the joint
input-output space via

k((x,y), (x′,y′)) = 〈φ(x,y), φ(x′,y′)〉
= ψ(x,x′) · ψ′(y,y′)

where ψ and ψ′ denote the inner product kernel in input
and output space, respectively. In our experiments, we use
Gaussian kernels for ψ and ψ′. In each iteration of Algo-
rithm 1, we solve the dual problem of (3) via kernel func-
tions and obtain the learned similarity function s(x,y;w)
expressed in terms of the dual variables α as

s(x,y;w) = 〈w, φ(x,y)〉

=
n∑
i=1

∑
ȳ∈Si

αiȳψ(xi,x) · (ψ′(yi,y)− ψ′(ȳ,y)).

2.3. Output Space Yi ⊆ Y

When iteratively optimizing problem (3) using Algo-
rithm 1, we have to find the most violated constraint at each
iteration (see line 7 of Algorithm 1). This is computation-
ally problematic if the whole output space Y is searched
through exhaustively, since the number of patches in the

floating image may be large. A practical approach to solve
this problem is to search only over a reduced set Yi ⊂ Y in
the i-th iteration, where Yi includes neighboring patches of
training output patch yi in the floating image. By assum-
ing that the neighborhood size is larger than the maximum
shift of the center point of patch yi for the optimal trans-
formation T ∗, our restricted set Yi remains plausible for
registration purposes.

In some image registration problems, the correct float-
ing image patch for a local reference image patch can be
ambiguous in the vicinity of the true positions. If the cost
function ∆ does not capture this ambiguity, as in the case of
0/1 loss or target registration error, it is crucial to avoid im-
posing margin constraints for these floating image patches,
as these can lead to infeasibility of the optimization prob-
lem. To state this problem more formally, let (xi,yi) and
(xj ,yj) be two correctly aligned image patch pairs in D. If
xi and xj are very similar, i.e., xi ≈ xj , and yj is in the
neighborhood of yi, i.e., yj ∈ Yi, then the constraints (4)
require

s(xi,yi;w) > s(xi,yj ;w), (5)
s(xj ,yj ;w) > s(xj ,yi;w). (6)

Plugging xi for xj in (6) and combining with (5) yields
the infeasibility problem mentioned above. We overcome
this problem by explicitly removing all patches y such that
x ≈ xi from Yi when ∆ function is 0/1 loss. We define
x ≈ xi to be true if the Euclidean distance between the
intensities of x and xi is smaller than some small positive
threshold value.

2.4. Selecting training and test image patches

For training our similarity measure for multi-modal reg-
istration, we need a training set D of well-aligned im-
age patches. Although one could simply extract patches
from all positions of a set of registered training image
pairs Ir, If , this can yield a very large dataset that is not
practical to work with. Moreover, we can only expect
the patch-wise similarity measure to be informative in re-
gions that have some image contrast and are not uniformly
coloured. Otherwise, we can always shift the patches rel-
ative to each other without changing the similarity score
s(f(Ir, p), f(If , T (p))). Thus, during both the training and
testing steps, our similarity score is only needed for a subset
of the image space.

We therefore define a restricted region Ω ⊆ Ωr from
which we extract both the training and the test set patches.
We focus on regions with high contrast, that is,

Ω := {p | ‖∇Ir(p)‖ > θ, p ∈ Ωr},

where ∇Ir(p) denotes the norm of the image gradient at p
and θ is a threshold parameter. This selection of the train-
ing and test set implies that our similarity score s and the
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Figure 2. A CT image (left), and the locations Ω from which
we extract patches for training and testing of the similarity score
(right).

resulting registration algorithms will mainly focus on align-
ing anatomical boundaries. This is a plausible assumption
in cases where images from different modalities fundamen-
tally depict the same anatomical structures, as in CT and
MR images [6]. When other modalities such as PET or
SPECT are used, this assumption may be violated; however,
a learned similarity measure may still be useful as long as
one modality contains structural information.

Moreover, using patches that are very close together in
Ωr will always yield the same similarity scores. Such patch
pairs thus contribute neither to the training nor to the testing
step. Instead, they simply increase the computation time.
We therefore constraint the positions in Ω to also have at
least some minimal distance from each other. The resulting
positions Ω for one example image pair are shown in Fig. 2.

3. Validating the learned similarity measure
separately from multi-modal registration

In this section, we first examine the learned local simi-
larity measure between patches (2), and then we show some
properties of the induced image-wise criterion (1). The de-
scription of the data sets and experimental setup for learn-
ing the similarity function is given in Sections 4.1 and 4.2,
respectively.

3.1. Local similarity measure

To illustrate the learned similarity function between
patches, we plot its values for a MR-CT example in Fig. 3.
We show a reference MR image of a human head in (a), and
the corresponding CT image in (b). To show the validity
of the learning function s as a local similarity measure, we
pick one position x1 in the reference MR image, and com-
pute the scores s(x1,y) for all patches y of the CT image
that are within a box of the size of the maximal expected
shift. The results are color-coded in (d). While MI and NMI
are typically computed between two whole images, they can
also be computed between two local image patches. In or-
der to compare NMI against our proposed local approach,
we show such similarity scores for patch-wise NMI in (c).

A good similarity measure should be uniquely max-
imised for the correct match (x1,y1). While this goal is

x1 y1 y2 y3

NMI learned

Figure 3. Comparison of local similarity values for NMI and the
learned similarity measure. (a) and (b) are reference (MR) and
floating (CT) image, respectively. The small rectangles below in
(a) and (b) show a 2D views of the 3D patches extracted at the
marked positions. (c) and (d) show the local similarity values of
NMI and the learned similarity measure for all pairs of x1 and a
patch y within the rectangle marked in (b). Red codes for high
similarity, blue for low values.

achieved by the learned similarity measure, the NMI has
two maxima in the vicinity of the true match; this can easily
lead to misregistration. Another shortcoming of NMI can
be seen by examining the matches (x1,y2) and (x1,y3)
more closely. y2 looks relatively similar to y1, whereas
the appearance of y3 is quite different to y1. Neverthe-
less, NMI gives a better score to the pair (x1,y3) than to
(x1,y2). This counterintuitive behaviour is not seen for our
learning based approach, which may thus be more easily
interpretable.

3.2. Image-wise similarity measure

To evaluate the combined image-wise similarity func-
tion (1), we conducted the following synthetic experiments.
We took a correctly aligned CT-MR image pair, and trans-
lated and rotated the CT image in different directions while
the MR image was kept fixed. For each CT-MR image
pair resulting from such a transformation, we computed our
learned similarity score of (1) as well as NMI. NMI was cal-
culated both patch-wise and image-wise (Patch-wise NMI
is the sum of single patch pair NMI values, similar to (1),
whereas, image-wise NMI means a NMI value between the
whole image pair). The results are shown in Fig. 4. Note
that the obtained graphs for the learned similarity score are
smoother than those for patch-wise NMI. They also show
that the learned similarity score has a unique local max-

190



Figure 5. Axial views of RIRE brain image volumes from the
patient-01 dataset. Left to right: CT, MR, and PET image.

imum at zero, which is the true transformation. In con-
trast, the patch-wise NMI curves show multiple local max-
ima, which will lead any local optimization algorithm to
stop short of the true global maximum. On the other hand,
image-wise NMI shows comparable smooth graphs, but the
global maximum for the image-wise NMI scores is obtained
at positions +1◦,−6mm, +0mm for the rotation and trans-
lations, respectively. Thus, image-wise NMI would not
yield to a precise alignment of the two datasets.

In summary, these experiments give a first, strong hint
that the learned similarity score yields a more accurate and
more stable criterion for registration tasks than entropy-
based similarity measures. In the next section, we will fur-
ther validate this claim on a set of real multi-modal registra-
tion problems.

4. Validating the learned similarity measure
within multi-modal registration

In order to evaluate the effectiveness of the learned sim-
ilarity function in real applications, we conducted rigid reg-
istration experiments on a set of clinical brain image vol-
umes comparing the performance of our learned similarity
measure with the state-of-the-art alternatives.

4.1. RIRE dataset

In our experiments, we used CT, MR-T2, and PET image
volumes from the Retrospective Image Registration Evalu-
ation (RIRE) Project [12]. Note that all the MR-T2 images
have been rectified by the RIRE project. The dataset con-
sists of a training set for learning a similarity function and
a test set for evaluating the registration performance. The
RIRE project provides the ground truth transformation for
one patient (pt-00), which we use for building a pair of pre-
aligned training images. The test images are from seven
different patients. Since no PET images are available for
two of the seven patients, we only use five patients’ images
for PET to MR registration (pt-01, pt-02, pt-05, pt-06, and
pt-07), but all seven for CT to MR registration. The physi-
cal voxel size is 0.65×0.65×4 mm3 for CT, 1.25×1.25×4
mm3 for MR, and 2.59 × 2.59 × 8 mm3 for PET images.
Axial views of the CT, MR, and PET image volume of pt-01
are shown in Fig. 5.

Modality CT to MR PET to MR
parameter level 2 level 1 level 2 level 1
σ 2.0 4.0 2.0 4.0
θ 0.2 0.2 0.1 0.2
|Ω| 262 306 263 276

Table 1. Learning parameters as determined via cross-validation.
|Ω| denotes the number of training patch pairs.

To evaluate the accuracy of registration results for the
various similarity measures, we use the target registration
error (TRE) [12]. For each patient, the RIRE project has de-
fined a set of volume of interests (VOIs) which are anatom-
ically meaningful. TRE is the Euclidean distance between
the VOI center in the reference image and its correspond-
ing location in the deformed floating image. To obtain the
TREs, we submit our transformation for each test image
pair to the RIRE website, which computes the TREs and
posts them online1.

4.2. Experimental setup

We applied Algorithm 1 to RIRE dataset. The hyper-
parameters (width of the Gaussian kernel, σ, and threshold,
θ, for the magnitude of image gradients) were selected by
5-fold cross validation among all combinations of values on
a finite grid. The candidate parameter values were evaluated
via their average TREs for the training patient’s VOIs given
registrations computed with the respective parameters. The
optimal parameters are reported in Table 1.

In order to obtain a fast and robust registration, we used
a multi-resolution approach [11]. We resampled all images
isotropically to 6 × 6 × 6 mm3 for the coarse resolution
(level 2), and 3 × 3 × 3 mm3 for the finer resolution (level
1), respectively. The patch size is fixed as 30×30×18 mm3

for all resolutions and modalities. Since generalisation of s
over different resolutions cannot be expected, we trained a
separate similarity function for each image resolution.

The proposed learned similarity measure (Learned) is
compared with several entropy-based measures: the mutual
information (MI), normalized MI (NMI), entropy correla-
tion coefficient (ECC), cumulative residual entropy correla-
tion coefficient (CRECC), their modified overlap invariant
measures (MMI, MECC, MCRECC) [2], and the learned
joint density-based measure (LJD) [5]. Note that LJD es-
timates a joint density from the training image pair using
the mixture of Gaussian method. For all of the compari-
son measures, we estimated densities (and joint densities)
with histograms containing 64 (and 64x64) bins, and we
accumulated samples using linear (bilinear) interpolation of
histogram bins. We used the registration implementation of

1TRE statistics for various registration methods are available in http:
//www.insight-journal.org/rire/view_results.php
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rotation around transversal axis translation along coronal axis translation along sagittal axis

le
ar

ne
d

pa
tc

h-
w

is
e

N
M

I
im

ag
e-

w
is

e
N

M
I

Figure 4. Image-wise similarity functions (1) for an artificial CT-MR matching task, where the CT image is transformed as in the caption of
the table while the MR image is fixed. Top to bottom row represent the learned similarity function values, patch-wise NMI, and image-wise
NMI, respectively.

[2] for all similarity functions.

4.3. Results

The experimental results are shown in Fig.6, with nu-
merical values are given in Table 2. The presented values
are statistics computed from the TREs of all VOIs from all
test patients.

For MR-CT registrations, our learned measure outper-
forms all standard measures, yielding the lowest mean and
median TRE among all measures. A MR-CT registration
can be judged successful if the TRE value is smaller than 4
mm, which is the largest voxel dimension of the respective
image pairs; otherwise, it should be considered a misreg-
istration [4]. In Table 2, one can see that for the learned
measure the maximum TRE is smaller than 4 mm, imply-
ing that all of VOIs of the test patients were successfully
registered. On the other hand, the maximum TREs for the
other similarity measures are all larger than 4 mm, which
means they failed to register some VOIs successfully.

Concerning PET-MR registration, our proposed similar-
ity measure also leads to registrations for which the worst
case TRE is still smaller than 8mm (the maximum voxel di-
mension of the PET images) and shows much tighter quar-
tile range compared to the other measures as shown in Fig.6.
However, the median performance is not significantly better
than the other measures except MI which performs much
worse. This might be due to the low resolution and the
high noise levels in the PET images, which renders the PET

patches much less informative.

5. Conclusions and Future Works

In this paper, we have shown a method to learn a sim-
ilarity measure for multi-modal 3D image registration. In
contrast to universal similarity measures such as mutual
information, our learned score can be adapted optimally
for a given task. Furthermore, the new method also al-
lows to exploit structural information contained in neigh-
bourhoods around a voxel of interest. These two effects
are achieved through applying a modified version of max-
margin structured-output learning methods to this problem.
The algorithm makes use of joint kernels for the input and
the output space which provide an efficient way of captur-
ing the statistics within and between the respective image
modalities to be registered, through the implicit use of an
infinite-dimensional feature space representation. Experi-
mental comparison on CT-MR and PET-MR registrations
on brain image volumes from the RIRE project shows that
our learned similarity measure outperforms other similarity
measures in terms of the robustness and accuracy. In our
future work, we plan to investigate the use of more sophis-
ticated feature functions, different joint kernel maps, and
different ∆ functions. We also plan to apply this approach
to non-rigid registration.
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Modality Statistics MI MMI NMI ECC MECC CRECC MCRECC LJD Learned

CT/MR
Mean 2.08 2.47 4.51 3.48 6.17 3.97 3.87 3.23 1.40
Median 1.98 1.99 2.89 2.62 4.50 2.86 2.90 2.41 1.29
Max 5.15 6.10 12.50 9.38 17.74 10.16 10.07 6.32 3.32

PET/MR
Mean 8.19 3.00 3.20 3.10 2.96 3.34 3.29 3.07 2.60
Median 5.16 2.37 2.64 2.54 2.40 3.01 2.95 2.56 2.52
Max 37.18 7.71 7.57 7.65 7.50 7.53 7.47 7.56 4.81

Table 2. Statistics of VOI TREs (in mm) across all test patients’ image volumes.

Figure 6. Box and whisker plot of the TREs for the RIRE data
and different similarity measures. The box has lines at the lower
quartile, median, and upper quartile values. Whiskers extend from
each end of the box to the adjacent values in the data; the most
extreme values within 1.5 times the interquartile range from the
ends of the box. Outliers are data with values beyond the ends of
the whiskers. Outliers are displayed with a red + sign.
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