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Abstract

We present a new approach to robust pose-variant face
recognition, which exhibits excellent generalization ability
even across completely different datasets due to its weak
dependence on data. Most face recognition algorithms as-
sume that the face images are very well-aligned. This as-
sumption is often violated in real-life face recognition tasks,
in which face detection and rectification have to be per-
formed automatically prior to recognition. Although great
improvements have been made in face alignment recently,
significant pose variations may still occur in the aligned
faces. We propose a multiscale local descriptor-based face
representation to mitigate this issue. First, discriminative
local image descriptors are extracted from a dense set of
multiscale image patches. The descriptors are expanded by
their spatial locations. Each expanded descriptor is quan-
tized by a set of random projection trees. The final face rep-
resentation is a histogram of the quantized descriptors. The
location expansion constrains the quantization regions to be
localized not just in feature space but also in image space,
allowing us to achieve an implicit elastic matching for face
images. Our experiments on challenging face recognition
benchmarks demonstrate the advantages of the proposed
approach for handling large pose variations, as well as its
superb generalization ability.

1. Introduction
Human face recognition remains one of the most active

areas in computer vision, due to its many applications, both
in traditional security and surveillance scenarios as well as
in emerging online scenarios such as image tagging and im-
age search. While considerable algorithmic progress has
been made on well-aligned face images, pose variation re-
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Figure 1. Misalignment in real face images. Faces detected by
the Viola-Jones face detector and aligned using a neural-network
based eye detector. Even after these rectification steps, significant
local discrepancies due to pose variations still remain.

mains an obstacle to deployable robust face recognition in
real-life photos. Figure 1 illustrates the difficulty: while
popular face detectors such as the Viola-Jones algorithm
[26] produce rough localizations of the face, significant mis-
alignment remains even after aligning the eye locations us-
ing an automatic eye detection algorithm. When applied in
this setting, classical algorithms [25, 2] designed for well-
aligned face images break down.

The ability of different approaches to cope with face pose
and misalignment can be roughly determined by the amount
of explicit geometric information they use in the face repre-
sentations. At one end of the spectrum are methods based
on full three-dimensional face representations [3]. Such
representations allow recognition across the widest possi-
ble range of poses, at the cost of system and computational
complexity. Deformable two-dimensional models such as
active appearance models [5, 9] offer an intermediate rep-
resentation, as a deformable mesh plus texture. The elastic
bunch graph matching (EBGM) approach of [29] utilizes
a similar representation of face geometry and deformation,
but restricts the texture representation to a small set of high-
dimensional feature vectors, such as Gabor jets, located at
the vertices of the mesh. In testing, the mesh is deformed so
that these features best match the input face image, subject
to a penalty on deformation complexity.

Speed improvements over EBGM can be realized by
dropping the geometric constraint and instead matching
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Figure 2. Our pipeline.

approximately-invariant feature descriptors such as SIFT
keys [16] between the test image and each image in the
database [17]. The smoothness of the face makes it a some-
what unnatural candidate for feature matching, however,
since it limits the number of repeatable feature points that
can be reliably extracted. Finally, fully 2D methods such
as Laplacian Eigenmaps [11] can be applied to learn lin-
ear projections that respect any manifold structure present
in the training data. While these algorithms are extremely
fast in testing, characterizing the nonlinear structure of face
images under pose and misalignment is difficult when only
a few training samples are available. Moreover, the per-
formance of such discriminative linear embedding meth-
ods [2, 11] is highly dependent on the specific dataset used
for training: the learned feature transformation does not
generalize to new faces or new datasets.

As demonstrated in Figure 1, even the best 2D or 2.5D
alignment algorithms are intrinsically imperfect, due to
pose, self-occlusion, ect. The difficulty of coping with such
variations directly from 2D data is one of the factors be-
hind the popularity of high-dimensional near-invariant fea-
tures in image classification [16, 19, 28]. Unlike the explicit
deformable matching performed by EBGM, these methods
perform an implicit feature matching by quantizing the fea-
tures and comparing statistics of the quantizations (e.g., his-
tograms). A number of quantizer architectures have been
investigated, including K-means trees [19] and randomized
K-D tree variants [22, 15]. More recently, efforts have been
made to couple the learning of the quantization scheme and
the subsequent classifier [31].

However, intuition from high-dimensional geometry [14,
1] suggests that as long as the feature dimension is large

enough, randomized quantization schemes with only very
weak data dependence may already be sufficient to achieve
good performance. For example, Dasgupta and Freund [6]
prove that for data with low-dimensional structure embed-
ded in a high-dimensional ambient space, inducing a tree
by splitting along randomly chosen directions yields an ef-
ficient quantizer: the expected cell diameter is controlled
by the intrinsic dimension of the data, irrespective of the
ambient dimension.1 This property is especially appealing
for the high-dimensional feature vectors common in com-
puter vision, which often exhibit intrinsically sparse or low-
dimensional structure.

In light of the above developments, this paper proposes a
very simple, efficient algorithm for recognizing misaligned
and pose-varying faces. Like bunch graph matching, the al-
gorithm works with a set of high-dimensional image fea-
tures, although our image features are more discrimina-
tive and invariant for matching [28]. In contrast to bunch
graph matching, rather than searching for a globally opti-
mal matching, the algorithm instead performs a “soft” or
“implicit” matching by jointly quantizing feature values and
the spatial locations from which they were extracted. The
quantizer consists of a forest of randomized decision trees,
in which each node acts on a random projection of the data.
Because the trees are only weakly data-dependent, they ex-
hibit good generalization in practice, even across very dif-
ferent datasets. This nice property is in contrast to many
previous methods which perform strong supervised learn-
ing, such as SVM [30] or LDA [2], to obtain a distance

1For a d-dimensional submanifold of RD , the cell diameter at level L
drops as e−O(L/d), rather than e−O(L/D).
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metric from the training data, which do not generalize well
to new face datasets.

In the rest of the paper, we begin with an overview of our
face recognition pipeline in Section 2. Core components
in our pipeline, such as local feature representation, joint
feature and spatial location quantization using random pro-
jection trees, as well as our face recognition distance metric
are discussed in details in Section 3, Section 4, and Sec-
tion 5, respectively. In Section 6 we perform a number of
simulations to investigate the effects of various parameters,
and then perform large-scale experimental comparisons to a
number of recent algorithms, across publicly available face
datasets. Section 7 summarizes other possible extensions
and some of our key observations of the proposed work. Fi-
nally, Section 8 concludes.

2. Face Recognition Pipeline
Figure 2 gives an overview of our system as a whole.

The system takes as its input an image containing a human
face, and begins by applying a standard face detector (such
as Viola-Jones [26]). Eye detection is performed based on
the approximate bounding box provided by the face detec-
tor. Our eye detector is a neural network based regressor
whose input is the detected face patches. Geometric recti-
fication is then performed by mapping the detected eyes to
a pair of canonical locations using a similarity transforma-
tion. Finally, we perform a photometric rectification step
that uses the self-quotient image [27] to eliminate smooth
variations due to illumination.

In our pipeline, the resulting face image after geomet-
ric and photometric rectification has size 32 pixels × 32
pixels. From this small image, we extract an overcomplete
set of high-dimensional near-invariant features, computed
at dense locations in image space and scale. These fea-
tures are augmented with their locations in the image plan
and are then fed into a quantizer based on a set of random-
ized decision trees. The final representation of the face is
just a sparse histogram of the quantized features. An IDF-
weighted `1 norm is adopted as the final distance metric for
the task of recognition. The entire pipeline is implemented
in C++, and requires less than a second per test image on
a standard PC. The following sections give more extensive
implementation details for the critical steps: feature extrac-
tion, learning the quantizer for building representation for
faces, and recognition.

3. Local Feature Representation
We extract a dense set of features at regular intervals in

space and scale. Dense features allow us to guarantee that
most features in the test image will have an (approximate)
match in the corresponding gallery image, without having
to rely on keypoint detection. In practice, we find it suffi-

Figure 3. Dense, multiscale patches.

cient to form a Gaussian pyramid of images (properly rec-
tified and illumination-normalized as described above) of
size 32 × 32, 31 × 31, and 30 × 30. Within each of these
images, we compute feature descriptors at intervals of two
pixels. The descriptors are computed from 8 × 8 patches,
upsampled to 64×64. The set of feature patches for a given
input face image is visualized in Figure 3.

We compute a feature descriptor f ∈ RD for each
patch. For most of the experiments in this paper, we use
a D = 400-dimensional feature descriptor proposed in
[28], and shown there to outperform a number of com-
petitors on matching tasks. This descriptor, denoted T3h-
S4-25 in [28], aggregates responses to quadrature pairs of
steerable fourth-order Gaussian derivatives. The responses
to the two quadrature filters are binned by parity and sign
(i.e., even-positive, ect.), giving four responses (two of
which are nonzero) at each pixel.2 Four steering direc-
tions are used, for a total of 16 dimensions at each pixel.
These 16-dimensional responses are aggregated spatially, in
a Gaussian-weighted log-polar arrangement of 25 bins for
an overall feature vector dimension of 400.

To incorporate loose spatial information into the subse-
quent feature quantization process, we concatenate the pixel
coordinates of the center of the patch onto its feature de-
scriptor, for a combined feature dimension of 402. Notice
that we do not include scale information; we wish to be as
invariant as possible to local scalings and it is perhaps in-
appropriate to treat such a coarse quantization of scale as a
continuous quantity in the feature vector.

The total number of feature vectors extracted from each
image is 457. Notice that this is a highly overcomplete
representation of the fairly small (32 × 32) detection out-
put. This expansion is conceptually similar to kernel tricks
in machine learning, in which lifting low dimensional data
into a high dimensional space allows very simple decision
architectures such as linear separators (or here, even random
linear separators) to perform very accurately.

In our current implementation, the vast majority of the
computation is spent on this feature extraction step. This
computational effort could be dramatically reduced by ex-
ploiting overlap between spatially adjacent feature loca-

2This thresholding tends to lead to sparse vectors f , in which many
bins are identically zero. Random projections are an especially appropri-
ate tool for quantizing such vectors, since they are incoherent with the
standard basis. In fact, one of the simplest theoretical examples in which
random projections outperform standard k-d trees occurs when the data
consist only of the standard basis vectors and their negatives [6].
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tions, using ideas similar to [24].

4. Joint Feature and Spatial Quantization
The training phase of our algorithm begins with the set of

all (augmented) features extracted from a set of training face
images. We induce a forest of randomized trees, T1 . . . Tk.
Each tree is generated independently, and each has a fixed
maximum depth h. At each node v of the tree, we generate
a random vector wv ∈ RD+2 and a threshold

τv = median{〈wv, f̃〉 | f̃ ∈ X},

corresponding to the binary decision rule

〈wv, · 〉 ≷ τv. (1)

The training procedure then recurses on the left- and right-
subsets XL

.= {f̃ | 〈wv, f̃〉 ≤ τv} and XR
.= {f̃ |

〈wv, f̃〉 > τv}. The random projection wv is sampled from
an anisotropic Gaussian

wv ∼ N
(
0,
[
σ−2

f ID×D

σ−2
x I2×2

])
, (2)

where σ2
f = trace Σ̂(f) and σx = trace Σ̂(x, y), and Σ̂ de-

notes the empirical covariance across the entire dataset. No-
tice that this choice of distribution is equivalent to reweight-
ing the vectors f̃ so that each segment (feature and location)
has unit squared-`2-norm on average, and balances the fact
that the feature vector is much higher-dimensional than the
appended coordinates.

While the theoretical properties of randomized trees are
appealing, in practice the performance can often be im-
proved by sampling a number of random projections, and
then choosing the one that optimizes a task-specific objec-
tive function, e.g., the average cell diameter [7]. Moreover,
it is neither necessary nor feasible to save a unique D + 2-
dimensional vector wv at each node v. Instead, we choose
a dictionary of W = {w(1) . . .w(k)} ahead of time, and
at each node v set wv to be a random element of W . This
allows us to store only the index of wv in W , and does
not break the sample-path guarantees of [6]. For extremely
large face databases, further computational gains can be re-
alized via an inverted file structure, in which each leaf of
the forest contains the indices of a list of training images
for which the corresponding histogram bin is nonempty.

While it may seem like a minor implementation detail,
the expansion of the features by x, y is actually critical
in ensuring that the quantization remains as discriminative
as possible while also maintaining robustness to local de-
formations. Because the quantizer acts in the joint space
(f , x, y) it captures both deformations in feature value and
domain, generating a set of linear decision boundaries in
this space. Figure 4 (left) visualizes these quantization re-
gions in the following manner: a feature descriptor f is

Figure 4. Joint feature-spatial quantization. Left: one bin 10
tree forest learned from the CMU PIE dataset. A feature f is ex-
tracted from the subject’s left eye corner (x, y), and translated to
various locations (x′, y′). At each location, the blue intensity in-
dicates the number of trees for which (f , x, y) and (f , x′, y′) are
implicitly matched. Right: at top, a subset of patches that quantize
to the same bin in least 3 trees. At bottom, number of bins. Notice
that the quantizer restricts itself (softly) to the area around the left
eye corner, and that most of the patches are eye corners.

extracted near the corner of the eye, at point x, y. This de-
scriptor is translated to every point x′, y′ on the image plane.
The intensity of the blue shading on the image (duplicated
at bottom right) indicates the number of trees in the forest
for which (f , x, y) and (f ′, x′, y′) are implicitly matched.
Notice that the strongest implicit matches are all near the
corner of the eye space, and also correspond in (feature)
value to patches sampled near eye corners.

This example also highlights the importance of having
a forest rather than just a single tree: aggregating multiple
trees creates a smoothing of the region boundary that better
fits the structure of the data. We will further examine the
effect of quantizer architecture in Section 6.

Algorithm 1: Tree induction (rptree)
1: Input: Augmented features X = {f̃1 . . . f̃m},

f̃ i = (f i, xi, yi) ∈ RD+2.
2: Compute feature and coordinate variances σ2

f and σ2
x.

3: Generate p ≥ D + 2 random projections

W ∼iid N (0,diag(σ−2
f . . . σ−2

f , σ−2
x , σ−2

x )).

4: repeat k times
5: Sample i ∼ uni({1 . . . p}).
6: τi ← median{〈wi, f̃〉 | f ∈ X}
7: XL ← {f̃ | 〈wi, f̃〉 < τi}, XR ← X \ XL.
8: ri ← |XL|diameter2(XL) + |XR|diameter2(XR)
9: end

10: Select the (w∗, τ∗) with minimal r.
11: root(T )← (w∗, τ∗).
12: XL ← {f̃ | 〈w∗, f̃〉 < τ∗}, XR ← X \ XL.
13: leftchild(T )← rptree(XL)
14: rightchild(T )← rptree(XR)
15: Output: T .
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5. Recognition Distance Metric
The recognition stage of our algorithm is extremely sim-

ple. Each gallery and probe face image is represented
by a histogram h whose entries correspond to leaves in
T1 . . . Tk. The entry of h corresponding to a leaf L in Ti

simply counts the number of features f̃ of the image for
which Ti(f) = L. Notice that each feature f contributes to
k bins of h; similar concatenation is used in [18].

There are many possible norms or distance measures for
comparing histograms. We find consistently good perfor-
mance using a weighted `1-norm with weightings corre-
sponding to the inverse document frequencies (the so-called
TF-IDF scheme [19]). More formally let X = {Xi} be the
set of all the training faces, and hi be the quantization his-
togram of Xi, we have

d(h1,h2) .=
∑

j

wj |h1(j)− h2(j)|

wj
.= log

|X |
|{Xm : hm(j) 6= 0}|

(3)

where | · | denotes the cardinality of the corresponding set.
The intuition of this IDF weighting is that quantization
bins whose values appear in many face images should be
down-weighted because they are less discriminative. Sec-
tion 6 further investigates the appropriateness of this dis-
tance measure. Notice that this matching scheme has the
ability to scale to large face dataset using similar inverted
file architecture as in [19].

6. Simulations and experiments
In this section, we first investigate the effect of vari-

ous free parameters on the performance of the system. We
then fix the parameters and perform large-scale evaluations
across several publicly available datasets.3

6.1. Effect of tree structure

Before performing large-scale recognition experiments,
we first investigate the effect of various parameter choices
on the algorithm performance. For these experiments, we
use a subset of the CMU PIE [23] database, containing a
total of 11,554 images of 68 subjects under varying pose
(views C05,C07,C09,C27,C29).4 A random subset of
30 images of each subject’s images are used for training
(inducing the forest) and the remainder for testing.

3Fixing the parameters helps avoid overfitting; however, further im-
provements in performance may be possible by tuning the algorithm for
larger datasets.

4We use the standard cropped version available at
www.cs.uiuc.edu/homes/dengcai2/Data/data.html.
Each image has size 64× 64 pixels before illumination compensation, the
feature extraction is performed on a downsampled (32 × 32) version of
the illumination-compensated images.

Norm Rec, rate
`2 unweighted 86.3%
`2 IDF-weighted 86.7%
`1 unweighted 89.3%
`1 IDF-weighted 89.4%

Table 1. Recognition rate for various classifier norms.
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Figure 5. Classification error vs. tree height for the PIE database.

While this dataset has relatively few subjects, its small
size allows us to extensively investigate the effect of vari-
ous algorithm parameters. Moreover, the variability present
in the database, due to moderate pose and expression, is a
good proxy for the conditions our algorithm is designed to
handle.

Histogram distance metric. We consider four distance
metrics between histograms, corresponding to the `1 and
`2 norms, with and without IDF weighting. Table 1 gives
the recognition rate in this scenario. In this example, the
IDF-weighted versions of the norms always slightly outper-
form the unweighted versions, and `1 is clearly better than
`2. Based on its good performance here, we adopt the IDF-
weighted `1 norm for the rest of our experiments.

Tree depth. We next investigate the appropriate tree
height h for recognition. Motivated by the result of the pre-
vious experiment, use the IDF-weighted `1-norm as a his-
togram distance measure. We again use the PIE database,
and induce a single randomized tree. We compare the ef-
fect of binning at different levels of the tree. Figure 5 plots
the misclassification error as a function of height. Notice
that the error initially decreases monotonically, with a fairly
large stable region from heights 8 to 18. The minimum er-
ror, 9.2%, occurs at h = 16.

Forest size. We next fix the height h, and vary the number
of trees in the forest, from k = 1 to k = 15. Table 2 gives
the recognition rates for this range of k. While performance
is already quite good (89.4%) with k = 1, it improves with
increasing k, due to the smoothing effect seen in Figure 4.
As the time and space complexity of our algorithm is linear
in the size of the forest, even larger k may be practical for
some problems. Here, though, we fix k = 10, to keep our
online computation time less than 1 second per image.
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Forest size 1 5 10 15
Rec. rate 89.4% 92.4% 93.1% 93.6%

Table 2. Recognition rate vs number of trees.

6.2. Large-scale recognition experiments

Based on the observations from the previous section, we
next perform a series of increasingly challenging large-scale
recognition experiments. To reduce the risk of overfitting
each individual dataset, we fix the tree parameters as fol-
lows: the number of trees in the forest is k = 10. Recog-
nition is performed at depth 16, using the IDF-weighted `1-
distance between histograms.

Standard datasets. We test our algorithm on a number of
public datasets. The first, the ORL database [21] contains
400 images of 40 subjects, taken with varying pose and ex-
pression. We partition the dataset by randomly choosing 5
images per subject as training and the rest as testing. The
next, the Extended Yale B database [8], mostly tests illu-
mination robustness of face recognition algorithms. This
dataset contains 38 subjects, with 64 frontal images per
subject take with strong directional illuminations. For this
dataset, we use a random subset of 20 images per subject as
training and the rest as testing. We also again test on CMU
PIE [23], with the same random partition described in the
above experiments.

Finally, we test on the challenging Multi-PIE database
[10]. This dataset consists of images of 337 subjects at
a number of controlled poses, illuminations, and expres-
sions, taken over 4 sessions. Of these, we select a subset
of 250 subjects present in Session 1. We use images from
all expressions, poses 04_1,05_0,05_1,13_0,14_0,
and illuminations 4,8,10. We use the Session 1 images
as training, and Sessions 2-4 as testing. We apply the de-
tection and geometric rectification stages of our algorithm
to all 30, 054 images in this set. The rectified images are
used as input both to the remainder of our pipeline and to
the other standard algorithms we compare against.

To facilitate comparison against standard baselines, for
the first three datasets we use standard, rectified versions5.
For MultiPIE, no such rectification is available. Here, we
instead run our full pipeline, from face and eye detection to
classification. For comparison purposes, the output of the
geometric normalization is fed into each algorithm. In ad-
dition to being far more extensive than the other datasets
considered, MultiPIE provides a more realistic setting for
our algorithm (and its competitors), in which it must cope
with real misalignment due to imprecise face and eye local-
ization.

Table 3 presents the result of our algorithm, as well as
several standard baselines (PCA, LDA, LPP), based on lin-

5www.cs.uiuc.edu/homes/dengcai2/Data/data.html

ORL Ext. Yale B PIE MultiPIE
PCA 88.1% 65.4% 62.1% 32.6%
LDA 93.9% 81.3% 89.1% 37.0%
LPP 93.7% 86.4% 89.2% 21.9%
This work 96.5% 91.4% 94.3% 67.6%

Table 3. Recognition rates across various datasets.

ear projection. As expected, our method significantly out-
performs these baseline algorithms. Moreover, the perfor-
mance approaches the best reported on these splits (e.g.,
97.0% for ORL and 94.6% for PIE, both with orthogonal
rank one projections [12], and 94.3% for Ext. Yale B with
orthogonal LPP [4]). For the newer MultiPIE dataset, our
system performs over twice as well as baseline algorithms.
This is not surprising, since these algorithms have no intrin-
sic mechanism for coping with misalignment6. The overall
recognition rate of all the algorithms is lower on MultiPIE
though, confirming the challenging nature of this dataset.

Uncontrolled data: Labeled faces in the wild. While the
above results are encouraging, performance on such well-
controlled datasets is not necessarily indicative of good per-
formance in real web applications such as image search
and image tagging. We therefore further test our algorithm
on the more challenging Labeled Faces in the Wild dataset
[13]. This database contains 13,233 uncontrolled images of
5,749 public figures collected from the internet.

To facilitate comparison with the state of the art, we fol-
low the training and testing procedure suggested in [13].
Here, rather than recognition, the goal is to determine if
a given pair of test faces belong to the same subject. We
therefore dispense with the nearest-histogram classification
step, and simply record the IDF-weighted `1 distance be-
tween each pair of test histograms. Different thresholds
on this distance give different tradeoffs between true pos-
itive rate and false positive rate, summarized in the re-
ceiver operating characteristic (ROC) curve in Figure 6. In
this setting, our algorithm achieves an equal error rate of
32%. This significantly surpasses baseline algorithms such
as PCA [25], and approaches the performance of more so-
phisticated algorithms in the low false-positive-rate regime.
One additional advantage of our algorithm is the weak de-
pendence on the training data. In particular, we can ob-
tain similar performance using randomized trees trained on
completely different datasets. We demonstrate this using
the PIE database as training and the LFW as testing. Fig-
ure 6 plots the result. In this scenario, performance ac-
tually improves: the equal error rate decreases to 28%,
the ROC strictly dominates that generated by training on
the LFW data itself. The performance equals that of su-
pervised methods such as [20] (denoted Nowak in Figure
6), and falls within of the current best result on this data,

6Although LPP can adapt to nonlinear structure in the data.
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PIE→ ORL ORL→ PIE PIE→MultiPIE
PCA 85.0% 55.7% 26.5%
LDA 58.5% 72.8% 8.5%
LPP 17.0% 69.1% 17.1%
This work 92.5% 89.7% 67.2%

Table 4. Recognition rates for transfer across datasets.

due to [30] (denoted Hybrid descriptor based;
for a description of the remaining methods, please see
vis-www.cs.umass.edu/lfw/results.html).

Generalization across datasets. One advantage of using
a weakly supervised or even random classification scheme
is that it provides some protection against overfitting. We
demonstrate this advantage quantitatively by training on one
dataset and then testing on completely different datasets.
Methods which are prone to overfitting are likely to fail
here. Table 4 reports the recognition rates for several com-
binations of training and test database. Comparing to Ta-
ble 3, notice that our algorithm’s performance decreases
less than 5% when trained and tested on completely differ-
ent datasets. The performance of PCA degrades similarly,
but remains substantially lower. The performance of more
complicated, supervised algorithms such as LDA and LPP
drops much more significantly. For example, when trained
on ORL and tested on ORL, LDA achieves a 94% recog-
nition rate, which drops to 58% when trained on PIE and
tested on ORL.

7. Extensions and Some Remarks
The approach outlined above can be extended and mod-

ified in several ways. First, if the number of training exam-
ples per subject is large, rather than retaining one histogram
per subject it may instead be appropriate to retain a single
histogram per class. We find that this degrades performance

only moderately, for example, reducing performance on the
ORL database from 96.5% to 92.5%.

In would also be interesting to investigate other classi-
fiers besides nearest neighbor for the histogram matching
step. For example, as is popular in histogram-based image
categorization, one could learn a support vector machine
classifier in the histogram space. Simple linear classifiers
such as LDA or supervised LPP could also be applied7 to
the histogram, effectively treating the quantization process
as a feature extraction step.

The proposed approach demonstrated superb perfor-
mance in our experiments, especially when training and
testing are performed on distinct datasets. Here we sum-
marize some of the key observations obtained from our ex-
periments, as well as our best interpretation of them.

1. We have seen that the recognition rate tends to increase
as the height of the forest increases. This naturally
raises questions about overfitting with excessively tall
trees. While we have not observed this, we have ob-
served that for transferring between databases, recog-
nition performance can be improved by considering
the top L levels of the tree (say, L = 10). Thus overfit-
ting is a much larger problem in transfer experiments
than in recognition experiments. This suggests that the
top L levels of the tree actually adapt to structures that
are common to all human faces, while the remaining
(lower) levels fit much more specific aspects of the
training database.

2. In all examples we have tried, increasing the number of
trees improves (or at least does not decrease) recogni-
tion performance. Figure 4 suggests that this may be at
least partially because aggregating the spatial bound-
aries of the bins produces a shape that is much more
tightly tuned to the type of patch being quantized (e.g.,
eye corners). If the performance is indeed guaranteed
to improve with more trees, it is interesting to ask if
there is any sense in which the quantization regions or
soft similarities are converging. If the limiting shapes
have simple forms, this might lead to even faster clas-
sifiers with equally good performance.

3. In experiments with the Extended Yale B database,
which explicitly tests illumination robustness, we find
that removing the self-quotient normalization step re-
duces the recognition rate by over 9%, from 91.4% in
Table 3 to 83.2%. Nevertheless, it may be that for
less extreme illuminations present in real-world im-
ages, some invariance is already conferred by the fea-
ture descriptor itself. In the other direction, it would be
interesting to better understand when one can get away

7In limited trials, we did not see significant improvement with this ap-
proach, suggesting that the histogram distance metric used here is already
quite appropriate for recognition.
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with simple image-based rectification, and when more
complicated illumination models are required.

4. We have argued that forming random projection trees
in the expanded (feature + coordinate) space yields a
spatially varying implicit matching scheme. Our vi-
sualized examples and good recognition performance
give indirect evidence that this is indeed the case.

8. Conclusion
We have introduced a new approach to face recogni-

tion in semi-constrained environments, based on at implicit
matching of spatial and feature information. The proposed
method performs competitively with existing linear projec-
tion approaches. Because of its weakly supervised nature,
it also performs well in transfer tasks across datasets.
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