
Towards Total Scene Understanding:
Classification, Annotation and Segmentation in an Automatic Framework

Li-Jia Li
Dept. of Computer Science
Princeton University, USA

jial@princeton.edu

Richard Socher
Dept. of Computer Science
Princeton University, USA

richard@socher.org

Li Fei-Fei
Dept. of Computer Science
Princeton University, USA
feifeili@cs.princeton.edu

Abstract

Given an image, we propose a hierarchical generative
model that classifies the overall scene, recognizes and seg-
ments each object component, as well as annotates the im-
age with a list of tags. To our knowledge, this is the first
model that performs all three tasks in one coherent frame-
work. For instance, a scene of a ‘polo game’ consists of
several visual objects such as ‘human’, ‘horse’, ‘grass’, etc.
In addition, it can be further annotated with a list of more
abstract (e.g. ‘dusk’) or visually less salient (e.g. ‘saddle’)
tags. Our generative model jointly explains images through
a visual model and a textual model. Visually relevant ob-
jects are represented by regions and patches, while visu-
ally irrelevant textual annotations are influenced directly
by the overall scene class. We propose a fully automatic
learning framework that is able to learn robust scene mod-
els from noisy web data such as images and user tags from
Flickr.com. We demonstrate the effectiveness of our frame-
work by automatically classifying, annotating and segment-
ing images from eight classes depicting sport scenes. In
all three tasks, our model significantly outperforms state-
of-the-art algorithms.

1. Introduction
One of the most remarkable feats of the human visual

system is how rapidly, accurately and comprehensively it

can recognize and understand the complex visual world [7].

The various types of tasks related to understanding what

we see in a visual scene is called ‘visual recognition’. In

computer vision, visual recognition has enjoyed some great

success in recent years, particularly in single and/or isolated

object categorization and localization. While recognizing

isolated objects and object classes is a critical component of

visual recognition, a lot more is needed to be done to reach

a complete understanding of visual scenes. Take a picture

of a polo game scene as an example. Often, within a sin-

gle glance, humans are able to classify this image as a polo

game (high-level scene classification), recognize different

objects within the scene (annotation), and localize and de-
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Figure 1. An example of what our model can understand given an

unknown image. At the scene level, the image is classified as a

‘polo’ scene. A number of objects can be inferred and segmented

by the visual information in the scene, hierarchically represented

by object regions and feature patches. In addition, several tags can

be inferred based on the scene class and the object correspondence.

lineate where the objects are in the scene (segmentation).

No existing algorithm today can perform these tasks in a

coherent framework. Towards this goal, we propose a uni-

fied framework to classify an image by recognizing, anno-

tating and segmenting the objects within the image. The

result of our algorithm is a generative model that encodes

a hierarchy of semantic information contained in the scene

(Fig.1). Three main motivations have guided our work. We

highlight our contribution in achieving each of them in one

unified framework.

Total scene understanding. Most of the earlier object

and scene recognition work offers a single label to an image,

e.g. an image of a panda, a car or a beach. Some go further

in assigning a list of annotations without localizing where in

the image each annotation belongs (e.g. [16]). A few con-

current segmentation and recognition approaches have sug-

gested more detailed decomposition of an image into fore-

ground object and background clutter. But all of them only

apply to a single object or a single type of object (e.g. [15]).

Our proposed model captures the co-occurrences of objects

and high-level scene classes. Recognition becomes more

accurate when different semantic components of an image

are simultaneously recognized, allowing each component to
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provide contextual constraints to facilitate the recognition

of the others. In addition, both object recognition within a

scene as well as scene classification can benefit from under-

standing the spatial extents of each semantic concept. Our
model can recognize and segment multiple objects as well
as classify scenes in one coherent framework.

Flexible and automatic learning. Learning scalability

is a critical issue when considering practical applications

of computer vision algorithms. For learning a single, iso-

lated object, it is feasible to obtain labeled data. But as

one wishes to understand complex scenes and their detailed

object components, it becomes increasingly labor-intensive

and impractical to obtain labeled data. Fortunately, the In-

ternet offers a large amount of tagged images. We propose a
framework for automatic learning from Internet images and
tags (i.e. flickr.com), hence offering a scalable approach
with no additional human labor.

Robust representation of the noisy, real-world data.
While flickr images and tags provide a tremendous data

resource, the caveat for exploiting such data is the large

amount of noise in the user labels. The noisy nature of

the labels is reflected in the highly uneven number and the

quality of flickr tags: using a ‘polo’ image as an exam-

ple, many tags do not have obvious visual correspondences

(e.g. ‘pakistan’, ‘adventure’); some tags can be incorrect

(e.g. ‘snow’, ‘mountain’); and visually salient tags are often

missing (e.g. ‘grass’, ‘human’). Our generative model of-
fers, for the first time, a principled representation to account
for noise related to either erroneous or missing correspon-
dences between visual concepts and textual annotations.

In Sec.2, we describe the details of the model, its gener-

ative process and its properties. Sec.3 first illustrates how

the parameters of the model are updated, and then provides

an overview of the entire automatic learning framework.

Sec.4 describes how classification, annotation and segmen-

tation are performed given an unknown, unlabeled image.

The subsequent Sec.5 will provide experimental results and

model analysis on these three tasks. Lastly, Sec.6 compares

our model to previous approaches.

2. The Hierarchical Generative Model
We propose a hierarchical generative model which aims

to understand scene images, their objects and the associated

noisy tags. The model shown in Fig.2 describes the scene

of an image through two major components. In the visual

component, a scene consists of objects that are in turn char-

acterized by a collection of patches and several region fea-

tures. The second component deals with noisy tags of the

image by introducing a binary switch variable. This vari-

able enables the model to decide whether a tag is visually

represented by objects in the scene or whether it represents

more visually irrelevant information of the scene. There-

fore, the switch variable enables a principled joint modeling
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Figure 2. A graphical model representation of our generative

model. Nodes represent random variables and edges indicate de-

pendencies. The variable at the right lower corner of each box

denotes the number of replications. The box indexed by Nr repre-

sents the visual information of the image, whereas the one indexed

by Nt represents the textual information (i.e. tags). Nc, No, Nx,

Nfi , i ∈ 1, 2, 3, 4 denote the numbers of different scenes, objects,

patches and regions for region feature type i respectively. Hyper-

parameters of the distributions are omitted for clarity.

of images and text and a coherent prediction of what tags

are visually relevant. The hierarchical representation of im-

age features, object regions, visually relevant and irrelevant

tags, and overall scene provides both top-down and bottom-

up contextual information to components of the model.

2.1. The Generative Process

In order to explain the generative process of our model

mathematically, we first introduce the observable variables.

Each image d ∈ D is over-segmented into small coherent

regions by using Felzenszwalb et al [9]. For each region,

we extract NF = 4 types of features, where F = {shape,

color, location, texture}1. We further vector quantize re-

gion features into region codewords, denoted by the variable

R in the model (see example of the representative regions

for ‘horse’ in Fig.1). We use 100, 30, 50, 120 codewords

for each feature type, respectively. Additionally, the set of

patches X is obtained by dividing the image into blocks.

Similarly, patches are represented as 500 codewords ob-

tained by vector quantizing the SIFT [20] features extracted

from them (see example of the representative patches for

‘horse’ in Fig.1). Noisy tags are represented by the variable

T , which is observed in training. To generate an image and

its corresponding annotations, a scene class C is sampled

from a fixed uniform prior distribution. Given a scene, we

are now ready to generate both the visual and textual com-

ponents of the scene.

Generating the visual component. Given the scene

class C, the probability of objects in such scenes is gov-

erned by a multinomial distribution. For each of the Nr

1We use the shape and location features described in [21]. Color fea-

tures are simple histograms. Texture features are the average responses of

filterbanks in each region.
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image regions denoted by the left internal box in Fig.2, we

first sample an object O ∼ Mult(ηc). Given the object O,

we sample the image appearance:

1. For each i ∈ F , sample global appearance features:

Ri ∼ Mult(αi|O), where there is a unique αi for each

object and each type of region feature.

2. Sample Ar many patches: X ∼ Mult(β|O).

Generating the tag component. At the same time, a re-

gion index Z is sampled from a uniform distribution. Z is

used to account for the different numbers of tags and regions

in this image, as suggested by [3]. As mentioned above, the

switch variable S allows tags T to correspond to either vi-

sually relevant (i.e. the objects) or visually irrelevant (i.e.

more abstract information) parts of the scene. This is for-

mulated by allowing tags T to be drawn from either the dis-

tribution governed by object O, or the one controlled by

scene class C. These ideas are summarized in the following

generative procedure. For each of the Nt image tags:

1. Sample an index variable: Z ∼ Unif(Nr). Z is re-

sponsible for connecting an image region with a tag.

2. Sample the switch variable S ∼ Binomial(γOZ
). S

decides whether this tag is generated from the visually

relevant object O or more visually irrelevant informa-

tion related to the scene C. Fig.3 shows examples of

switch probabilities for different objects.

(a) If S = non-visual: sample a tag T ∼ Mult(ϕc).

(b) If S = visual: sample a tag T ∼ Mult(θOZ
).

Putting the generative process together, the resulting
joint distribution of scene class C, objects O, regions R,
image patches X , annotation tags T , as well as all the latent
variables becomes:

p(C,O,R,X,S,T,Z|η, α, β, γ, θ, ϕ) = p(C) · (
Nr∏

n=1

p(On|η, C))

×
Nr∏

n=1

((

NF∏

i=1

p(Rni|On, αi)) ·
Ar∏

r=1

p(Xnr|On, β))

×
Nt∏

m=1

p(Zm|Nr)p(Sm|OZm , γ)p(Tm|OZm , Sm, θ, C, ϕ) (1)

2.2. Properties of the Model

Our model is designed to perform three visual recogni-

tion tasks in one coherent framework: classification, anno-

tation and segmentation. Eq.1 shows the joint probability of

variables governing these three tasks. Later, in Eq.9, it will

be clear how scene classification can directly influence the

annotation and segmentation tasks.

Through the coupling of a scene C, its objects and their

regions the model creates a hierarchical representation of an

image. By modeling three layers jointly, they each improve

the overall recognition accuracy. Each scene C defines a

unique distribution p(O|C) over objects. Additionally, the

scene class C influences the distribution p(T |C) over tags.

This scene class influence serves as a top-down contextual

facilitation of the object recognition and annotation tasks.

One unique feature of our algorithm is the concur-

rent segmentation, annotation and recognition, achieved by

combining a textual and a visual model. Furthermore, our

visual model goes beyond the ‘bag-of-words’ model by in-

cluding global region features and patches inspired by [4].

Lastly, the model presents a principled approach to deal-

ing with noisy tags. Fig.3 shows probability values of

switch variable ‘S’ for different objects. When a tag is likely

to be generated from a visually irrelevant, abstract source

(e.g. ‘wind’), its p(S =visual) is low; whereas tags such

as ‘grass’, ‘horse’ show high probability of being visually

relevant.
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Figure 3. Probabilities of different objects. Words such as ‘horse’

or ‘net’ have higher probability because users tend to only tag them

when the objects are really present, largely due to their clear visual

relevance. On the contrary, words such as ‘island’ and ‘wind’ are

usually related to the location or some other visually irrelevant

concept, and usually not observable in a normal photograph.

3. Automatic Learning

We have described the model in detail and can now turn

to learning its parameters. To this end, we derive a collapsed

Gibbs sampling algorithm [24]. For each image and its tags,

we sample the following latent variables: object O, switch

variable S and index variable Z.

3.1. Learning via Collapsed Gibbs Sampling
Let Odn denote the object for the nth region in the dth

image, Rdn and Xdn represent the sets of its region features
and patches. We define set Adn = {j : Zdj = n} and
Bdn = {j : Zdj = n, Sdj = visual}. The switch vari-
ables related to Adn is denoted as SA, i.e., SA = {Sdj :
j ∈ Adn}. The tags related to Bdn are represented as

TB = {Tdj : j ∈ Bdn}. Odn represents all object assign-
ments excluding Odn. Similarly, we define the switch, in-
dex and tag variables Sdm, Zdm, Tdm, Sdm, Zdm and T dm

for the mth tag in the dth image. SA and TB represent the
corresponding assignments excluding Adn and Bdn respec-
tively. Following the Markov property of variable O, we
analytically integrate out parameters η, α, β, γ, ϕ, θ. Then,
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the posterior over the object Odn can be described as:

p(Odn = o|Odn, Cd,R,X,S,T,Z) ∝ p(Odn = o|Odn, Cd) ·
p(Rdn|Rdn,O) · p(Xdn|Xdn,O) · p(ZA|Nr) ·
p(SA|O,Z, SA) · p(TB |O,Z,S, T B) (2)

Using standard Dirichlet integral formulation, we obtain
the first element of this product:

p(Odn = o|Odn, Cd = c) =
nco,−dn + πo∑

o′ nco′,−dn + Noπo
(3)

where πo is the symmetric Dirichlet hyperparameter gov-

erning η. No is the total numbers of different objects.

nco,−dn denotes the number of assignments of the object

class o to scene class c, not including the current instance.

Similarly, the other counting variables

nofi,−dn, nox,−dn, nos,−dm and not,−dm are also

defined as the number of occurrences for fi, x, s, t
with o excluding the instances related to dn or

dm. Given nos = #(Z = z, Oz = o, S = s),

nos,−Adn
indicates the frequency of s co-occurring

with o excluding instances related to set Adn. Given

not = #(Z = z, Oz = o, S = visual, T = t), not,−Bdn
is

the frequency of t co-occurring with o excluding instances

related to set Bdn. nct,−dm denotes the number of times

tag t co-occurring with scene type c, excluding the current

instance. Furthermore, Nfi
, Nx, Nt are the total numbers

of different region features, patches and tags. The hyperpa-

rameters πo, πfi , πx, πs, πct, πot are symmetric Dirichlet

distributions governing η, αi, β, γ, ϕ, θ.

S only has two possible values: S = visual indicates a

visually relevant object and S = non-visual indicates a visu-

ally irrelevant object or scene information. Hence, Ns = 2.
The second and third part of Eq.3 become:

p(Rdn|Rdn,O) =

NF∏

i=1

p(Rdni = fi|Rdni,Odn = o, Odn)

=

NF∏

i=1

nofi,−dn + πfi∑
f ′

i
nof ′

i ,−dn + Nfiπfi

(4)

p(Xdn|Xdn,O) =
Γ(

∑
x′ nox′,−dn + Nxπx)

Πx′Γ(nox′,−dn + πx)
×

Πx′Γ(nox′ + πx)

Γ(
∑

x′ nox′ + Nxπx)
(5)

p(Z = z|Nr) = 1
Nr

, hence p(ZA|Nr) is constant. The

part related to S is:

p(SA|O, SA,Z)

=
Γ(

∑
s′ nos′,−Adn

+ Nsπs)

Πs′Γ(nos′,−Adn
+ πs)

Πs′Γ(nos′ + πs)

Γ(
∑

s′ nos′ + Nsπs)
.(6)

The contribution of tags to object concept Odn is:

p(TB |O, T B ,Z,S)

=
Γ(

∑
t′ not′,−Bdn

+ Ntπot)

Πt′Γ(not′,−Bdn
+ πot)

Πt′Γ(not′ + πot)

Γ(
∑

t′ not′ + Ntπot)
.(7)

Similarly, we derive the posterior over the switch variable

S and index Z. Please see the technical report for details.

Up to this point, the update equations only need tags and

images. However, there is no information of which tag T
corresponds to which object O inside the image. Without

such information it is possible to confuse tag-object rela-

tions, if both only occur together, e.g. ‘water’ and ‘sail-

boat’. To prevent such a case, we introduce an automatic

initialization system which provides a few labeled regions.

3.2. Automatic Initialization Scheme

In this section, we propose an initialization scheme

which enables us to learn the model parameters with no hu-

man effort of labeling. The goal of the initialization stage

is to provide a handful of relatively clean images in which

some object regions are marked with their corresponding

tags. During the learning process, these regions and tags

provide seed information to the update equations.

In the preprocessing step, we use a lexicon to remove all

tags that do not belong to the ‘physical entity’ group. Any

lexicon dataset may be used for this purpose, we choose

WordNet [22]. We also group all words in one WordNet

synset (a group of synonyms) to one unique word, e.g. ‘sail-

ing boat’ and ‘catboat’ are both transformed to ‘sailboat’.

In the next step, we query flickr.com with the object

names collected from the previous step to obtain initial

training sets for each of the object classes. We then train

the object model described in [4] and apply it to all scene

images. A few object regions are collected from a hand-

ful of images for each object class. We now have a small

number of partially annotated scene images and their still

noisy tags, we select the best K of such images to seed the

learning process described in Sec.3. This is done by ranking

the images by favoring larger overlaps between the tags and

annotated objects 2.

3.3. Learning Summary
Algorithm 1 summarizes the learning process. Further-

more, Fig.4 provides an example walk-through of one train-

ing image. After the pre-processing stage, some of the noisy

tags are pruned out, but some visually relevant tags are

still missing (e.g. tree, sky). The automatic initialization

scheme then provides some segmented and annotated re-

gions as seeds for the learning of the generative model. Us-

ing these seed images and additional unannotated images,

the visual and textual components of the model are jointly

trained. The effect of this joint learning is a robust model

that can segment images more accurately (Fig.4(e)). Note

that some visually irrelevant tags could also be recovered at

the end of training (Fig.4(f), e.g. wind). This is attributed to

2rank(Od, Td, P (Td|C)) =

∑
Td∈Od

⋂
Td

P (Td|C)
∑

Td∈Od
⋃

Td
P (Td|C)

, where Td are

the flickr tags of image d and P (Td|C) is the observed probability of tag

Td given the scene class C
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(a)

Original words:
sailboat,
boat,
Delavan Lake,
Delavan, 
Wisconsin,
dusk,
water

Filtered words:

sailboat,
boat,
water

Annotation:
sailboat,
water,
sky,
tree,
wind
seaside

  Sky

  Water

Sailboat

Boat

Sailboat

  Water

   Tree

(b) (c) (d)

  Sky

(e) (f )

Figure 4. Walk-through of the learning process. (a) The original image. (b) The original tags from Flickr. Visually irrelevant tags are

colored in red. (c) Output of Step 1 of Algorithm 1: Tags after the WordNet pruning. (d) Output of Step 2 of Algorithm 1: The image

is partly annotated using the initialization scheme. Different object concepts are colored differently. Note that there is a background class

in our initialization scheme, which is denoted in black in this figure. Since the criterion for being selected as an initial image is very

conservative, the image annotations are clean but many regions are not annotated (missing tags). (e): Output of Step 3 of Algorithm 1:

After training the hierarchical model, the image is completely and more precisely segmented. (f): Final annotation proposed by our

approach. Blue tags are predicted by the visual component (S = visual). Green tags are generated from the top down scene information

learned by the model (S = non-visual).

———————————————————————–
Algorithm 1 Automatic training framework
———————————————————————–

Step 1: Obtaining Candidate Tags Reduce the number of

tags by keeping words that belong to the ‘physical entity’

group in WordNet. Group synonyms using WordNet synsets.

Step 2: Initialize Object Regions

Obtain initial object models. Apply the automatic learning

method of [4] to learn an initial object model.

Annotate scene images. Apply the learned object model

to annotate candidate object regions in each scene image.

Select initialization images. Select a small number of ini-

tialized images by a ranking metric described by Footnote2

Step 3: Automatic Learning. Treat the automatically se-

lected top ranked images as ‘supervised’ data, add more

flickr images and their tags to jointly train the model de-

scribed in section 2.

———————————————————————–

the top-down influence of the scene class on the tags. Hav-

ing learned this model, we can now turn to inference.

4. Inference: Classification, Annotation and
Segmentation

Classification. The goal of classification is to estimate
the most likely scene class for an image given an unknown
image without any annotation tags. We use the visual com-
ponent of the model (i.e. the region and patch appearances)
to compute the probability of each scene class, by integrat-
ing out the latent object variable O:

p(C|Rd,Xd) =
p(C,Rd,Xd)

p(Rd,Xd)

∝
∏

Nr

∑

O

p( R|O)p(X|O)p(O|C) (8)

Finally, we choose c = argmaxCp(C|Rd,Xd).
Annotation. Given an unknown image, annotation tags

are extracted from the segmentation results derived below.

Segmentation. Segmentation infers the exact pixel loca-
tions of each of the objects in the scene. By integrating out
all the scene classes, we obtain:

p(O|R, X) =
∑

C

p(O, C|R, X) ∝
∑

C

p(O, C, R, X)

=
∑

C

p(O|C)p(R|O)p(X|O)p(C) (9)

We observe that object segmentation is influenced both by

the top-down force of scene class (first term in Eq.9) as well

as the bottom-up force generated by the visual features (sec-

ond and third terms in Eq.9).

5. Experiments and Results
We test our approach on 8 scene categories suggested in

[18]: badminton, bocce, croquet, polo, rock climbing, row-
ing, sailing, snowboarding. By using these category names

as keywords, we first automatically crawl the Flickr website

to obtain 800 images and their tags for each category. 200

randomly selected images from each class are set aside as

the testing images. After Step 1 of Algorithm 1, we obtain

a vocabulary of 1256 unique tags. For segmentation exper-

iments we consider the 30 most frequent words from this

list. Note, however, that top down influence from the scene

information still enables our model to be able to annotate

images with tags from the full list of 1256 words. We offer

more details about this dataset in the technical report.

Our hierarchical model can perform three tasks: image

level classification, individual object annotation as well as

pixel level segmentation. We now investigate performance

of these tasks as well as the influence of parts of the model

such as the switch variable on overall accuracy.

5.1. Scene Classification

The goal in this experiment is to classify an unknown

image as one of the eight learned scene classes. We per-

form three experiments to analyze the different aspects of
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our model and learning approach. All evaluations are done

based on the 8-way classification results3.

A. Comparison with different models. We compare the

results of our model with three other approaches: (i) a base-

line bag of words image classification model [8]; (ii) the

region-based model used to initialize our initial object class

models [4]; (iii) a modified Corr-LDA model based on [3]

by adding a class variable on top of the mixing proportation

parameter θ in the original model.

We provide the same list of tags generated by our system

to our model and the modified model of [3]. Fig.5 summa-

rizes the results. Our model consistently outperforms the

other three approaches, whereas the region-based model [4]

and the modified Corr-LDA model outperform a simple bag

of words model. A comparison of the modified Corr-LDA

model and our model underlines the effectiveness of our se-

lective learning of visually relevant and irrelevant tags of

the real-world data.
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Figure 5. Comparison of classification results. Left: Overall per-
formance. Confusion table for the 8-way scene classification.

Rows represent the models for each scene while the columns rep-

resent the ground truth classes. The overall classification perfor-

mance is 54%. Right: Comparison with different models (Ex-
periment A). Performance of four methods. Percentage on each

bar represents the average scene classification performance. 3rd
bar is the modified Corr-LDA model [3].

B. Influence of unannotated data. To provide some in-

sight into the learning process, we show in Fig.6-Left the

classification performance curve as a function of the num-

ber of unlabeled images given to the model. In this experi-

ment, the number of initialized images are fixed to 30. Per-

formance gradually increases when more unlabeled images

are included. This proves the effectiveness of unlabeled data

in our learning framework.

C. Effect of noise in tags. In order to underline the ro-

bustness of our model to noisy training data, we present

a set of experiments in which we dilute the original flickr

tags with different percentages of noise by adding arbi-

trary words from the list of 1256 words during the train-

ing process. Fig.6-Right shows that while the algorithm of

[3] decreases in accuracy when noise increases, our model

is oblivious to even large percentages of noise. The ro-

bustness to noise is mostly attributed to the switch variable

3An 8-way classification result can be depicted by an 8 × 8 confusion

table. By convention, we use the average of the diagonal entries of the

table as the overall classification results of a particular model.
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Figure 6. Left: Influence of unannotated data (Experiment B).
Classification performance as a function of number of unannotated

images. The y axis represents the average classification perfor-

mance. The x axis represents the number of unlabeled images. It

shows the unannotated images also contribute to the learning pro-

cess of our model. Right: Effect of noise in tags (Experiment
C). Performance of different models as a function of noise percent-

age in the tags. The y axis is average classification performance.

The x axis represents the percentage of noisy tags. While the per-

formance of corr-LDA decreases with the increase of percentage

of noise, our model performs robustly by selectively learning the

related tags.

‘S’, which correctly identifies most of the noisy tags, hence

keeping the visual part of the model working properly even

amidst a large amount of tagging noise.

5.2. Image annotation
Annotation tags are given through the results of segmen-

tation. If there is a region of a certain object, we treat the

name of this object as a tag.

D. Comparison to other annotation methods. In

this experiment, we compare annotation results with two

other state-of-the-art annotation methods – Alipr [16] and

Corr-LDA [3]. We use precision-recall and F-measures to

demonstrate the annotation results. Table 1 lists detailed

annotation results for seven objects, as well as the overall

scores from all object classes. Our annotation consistently

and significantly outperforms the other two methods. This

can be largely attributed to the selective learning of useful

tags that can find a balance between bottom-up visual ap-

pearance cues and top-down scene class information.

Alipr Corr LDA Our Model

Object Prec Rec F Prec Rec F Prec Rec F

human .83 .97 .89 .83 1.00 .91 .85 .98 .91
horse – – – .17 .91 .28 .17 .91 .29
grass .42 .86 .56 .22 1.00 .35 .33 .86 .48
sky .59 .33 .43 .55 .17 .26 .44 .92 .59
tree .45 .38 .41 .25 .01 .03 .38 .93 .54
net – – – – – – .27 .85 .41
sand – – – – – – .24 .46 .32
Mean .15 .22 .16 .16 .40 .15 .28 .73 .34

Table 1. Comparison of precision and recall values for annotation

with Alipr, corr-LDA and our model. Detailed results are given for

seven objects, but means are computed for all 30 object categories

(Experiment D).

5.3. Image segmentation

Our model not only classifies an image as a scene class,

but also provides pixel level segmentation of the objects in
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Object Prec Rec F Prec Rec F

human .35 .23 .28 .43 .47 .45
horse .13 .49 .20 .27 .53 .36
grass .62 .38 .47 .59 .50 .54
sky .79 .44 .56 .74 .73 .73
tree .40 .48 .44 .41 .59 .48
net .04 .09 .05 .45 .26 .33
sand .11 .32 .16 .29 .35 .32
Mean .22 .34 .28 .42 .46 .43

Table 2. Results of segmentation on seven object categories and

mean values for all 30 categories (Experiment E).

the image without any such information given during train-

ing. We first compare quantitative results with another ap-

proach and then show a qualitative difference in example

segmentations with and without the top down contextual in-

fluence provided by the scene class C.

E. Comparison to another segmentation method. In

the image segmentation and annotation experiments, we

train our model on 30 initialized images plus 170 unlabeled

images. We test on 240 images where groundtruth is pro-

vided by human segmentation. Precision is computed by

dividing the total area of correctly segmented pixels by the

total area of detected pixels for each object. Recall is calcu-

lated by dividing the total area of correctly segmented pixels

by the total area of true pixels of each object. We compare

our segmentation results with the region-based model in [4].

[4] is used in the training of our initial object models. It is

also one of the state-of-the-art concurrent object segmenta-

tion and recognition methods. Table 2 shows that our model

significantly outperforms [4] in every object classes.

F. Influence of the scene class on annotation and seg-
mentation. In this experiment, we examine the top-down,

contextual influence of a scene in our model (Fig.7). We

compare our full model to a damaged model in which the

top down influence of the scene class is ignored. Our re-

sults underscore the effectiveness of the contextual facili-

tation by the top-down classification on the annotation and

segmentation tasks.

6. Related Work
Our model is related to several research areas below.

Image understanding using contextual information.
Semantically meaningful image understanding is a rela-

tively recent topic in computer vision. A few earlier ap-

proaches have proposed interesting models for image un-

derstanding by object and scene, or multiple object recog-

nition [31, 30, 14, 23, 12]. Also related are algorithms about

object recognition in context, either through geometric con-

straints [13] or through semantic relations [26]. But none of

these approaches has offered a rigorous probabilistic frame-

work to perform simultaneous image classification, annota-

tion and segmentation. Our earlier work [18] proposed a hi-

erarchical model for event classification. But it only works

in a fully supervised fashion, with cleanly segmented and

annotated images.

Machine translation between words and images. Our

work is also related to a family of models called ‘pictures

and words’ models for images and annotations [1, 6, 5, 3]4

None of these models are capable of simultaneously per-

forming image classification, annotation and segmentation.

Furthermore, an important assumption of these models is

that human annotations are provided in the training phase.

None of them can robustly handle noisy tags.

Simultaneous object recognition and segmentation. A

large body of work exists for simultaneous object recogni-

tion and segmentation [28, 15]. The object recognition and

segmentation part of our model is related to a few recent

unsupervised object categorization and segmentation papers

[4, 27, 32]. But all of these models focus on delineating a

single object class in images. No image level classification

together with complete image annotation has be done.

Learning semantic visual models from Internet data.
Finally, our approach is inspired by earlier approaches of

learning from noisy internet data such as [2, 19, 10, 11, 29].

These approaches focus on single object classification to

improve retrieval results from internet images. Our ap-

proach extends this to more exhaustive image understand-

ing and explores the context correlation among objects.

7. Conclusion
In this paper, we have proposed a novel model to

automatically classify, annotate and segment images of
different scene classes. A hierarchical model is developed
to unify the patch-level, object-level, and scene-level
information. Our model is the first to provide a principled
probabilistic treatment of noisy tags often seen in real-
world data. Through an automatic training framework, we
show that our model outperforms state-of-the-art methods
in classifying, labeling and segmenting complex scene
images. In the future, we will consider more sophisticated
visual models to capture the geometry and appearance
information of objects. We will also explore further the
contextual relationships among objects within the scene.
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