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Abstract

We propose a novel tracking algorithm for the target

of which geometric appearance changes drastically over

time. To track it, we present a local patch-based appear-

ance model and provide an efficient scheme to evolve the

topology between local patches by on-line update. In the

process of on-line update, the robustness of each patch in

the model is estimated by a new method of measurement

which analyzes the landscape of local mode of the patch.

This patch can be moved, deleted or newly added, which

gives more flexibility to the model. Additionally, we intro-

duce the Basin Hopping Monte Carlo (BHMC) sampling

method to our tracking problem to reduce the computational

complexity and deal with the problem of getting trapped in

local minima. The BHMC method makes it possible for our

appearance model to consist of enough numbers of patches.

Since BHMC uses the same local optimizer that is used in

the appearance modeling, it can be efficiently integrated

into our tracking framework. Experimental results show

that our approach tracks the object whose geometric ap-

pearance is drastically changing, accurately and robustly.

1. Introduction

Object tracking is well-known in the computer vision

community. Recently, it has been addressed in real-

world scenarios rather than a lab environment by many re-

searchers [18]. In real-world settings, objects are typically

complex and difficult to track. We consider these scenarios

especially in movies and sports games which usually con-

tain large amount of extreme geometric appearance changes

in target objects. To deal with this problem, the tracking al-

gorithms have to adapt for the appearance changes of the

target objects by on-line update. Many on-line learning al-

gorithms tackle the photometric appearance changes of tar-

get objects and successfully track them [4, 6, 17]. There

are, however, few studies on geometric appearance changes

(a) Frame #1 (b) Frame #117 (c) Frame #125 (d) Frame #212

Figure 1. Example of tracking results in diving seq. Our tracking

algorithm successfully tracks a target even when the geometric ap-

pearance of the target is drastically changing. The blue and green

squares represent patches of our appearance model.

in target objects. In this paper, we address the problem of

tracking non-rigid objects whose geometric appearances are

drastically changing as time goes on. Fig.1 shows some

tracking examples of such objects by our method.

The philosophy of our method is to make the best of both

histogram-based appearance model [2, 12] and pixel-wise

one [1, 4]. The histogram-based appearance model cov-

ers the geometric variations to some degree but loses spa-

tial information of target objects. On the other hands, the

pixel-wise one preserves all of the spatial information but

typically fails to capture the extreme geometric changes of

target objects. To both cover geometric changes and pre-

serve spatial information of target objects, we propose a lo-

cal patch-based appearance model as in [3, 9] and present a

new strategy for the on-line construction of the appearance

model. In our model, the topology between local patches

evolves as the appearance of the target changes geometri-

cally. Simultaneously, the position relationship between lo-

cal patches provides the spatial information of the target,

which makes our method more robust.

The first contribution of this paper is to present an on-

line updating scheme to evolve a local patch-based appear-

ance model. Our appearance model needs no specific model

for the target and no training phase for learning the appear-

ance or behavior of the target. This appearance model is

successfully applied to track non-rigid objects. The second

contribution is the proposal of a new method of measure-

ment which measures the robustness of patches by land-
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scape analysis. The robustness of a patch is determined by

the smoothness and steepness properties of its local mode

which is obtained by [10]. The last contribution is that,

to the best of our knowledge, we are the first to intro-

duce the Basin Hopping Monte Carlo (BHMC) sampling

method [19] to the tracking problem. BHMC simplifies

the landscape of a solution space by combining the Monte

Carlo method with deterministic local optimizer [10]. In

our tracking problem, it gives an efficient way of reaching

the global optimum with a small number of samples, even

in a huge solution space, owing to the increase of the num-

ber of local patches. We extend it to the adaptive BHMC

by adding an adaptive proposal density, which further im-

proves the sampling efficiency.

2. Related Work

Tracking methods for non-rigid objects: Schindler et

al. [15] represent an object as the constellations of parts to

accurately track a bee with the Rao-Blackwellized Particle

Filter. This method, however, fixes the topology of the con-

stellation whereas our method evolves it via on-line update.

Ramanan et al. [13] propose a tracking method operated by

detecting models of the target whose appearances should be

built first. This method shows good results in tracking an

articulated person. By making shape models of humans,

Zhao et al. [20] successfully track humans in crowded envi-

ronments where occlusion persistently occurs. All of these

tracking methods, however, basically assume that specific

models of the targets are given. In contrast, our method uti-

lizes no prior knowledge of the specific model for the target

and no off-line training phase.

Tracking methods with online appearance learning: By

approximately estimating the pixel-wise color density in a

sequential manner, Han et al. [4] successfully track an ob-

ject where lighting conditions, pose, scale, and view-point

are changing over time. Ross et al. [14] present an adaptive

tracking method which utilizes the incremental principal

component analysis and shows robustness to large changes

in pose, scale, and illumination. These two methods, how-

ever, do not consider extreme geometric changes of an ob-

ject. Our method explicitly tackles these changes with a

local patch-based on-line appearance model.

Sampling based tracking methods: In tracking problems,

the particle filter [5] has shown efficiency in handling

non-gaussianity and multi-modality. The Markov Chain

Monte Carlo (MCMC) method is well applied to the multi-

object tracking problems by reducing computational costs

[8, 16]. As the dimension of a solution space increases,

however, these methods still suffer from the problem of

getting trapped in deep local minima and handling a vast

number of samples. Our method based on BHMC sampling

solves these problems by transforming the landscape of the

solution space into a simple one.

X position

Y position

c

t
X

2

t
R

1

t
R

4

t
R

3

t
R

1

t
X

2

t
X 3

t
X

4

t
X

center of 

an object

center of 

each  patch

Patch

State

E
n
e
rg

y

E
n
e
rg

y
  b

a
rrie

r

t
X

Original landscape

Simplified landscape

(a) Example of Xt (b) Landscape of Xt

Figure 2. Example of basin-hopping landscape transformation.

(a) shows an example of state Xt. As shown in (b), BHMC sim-

plifies the landscape, which consists of local minima only.

3. BHMC Based Tracking Method

3.1. Bayesian Object Tracking Formulation

In our tracking method, an object is represented by a

local patch-based dynamic graph model as shown in Fig.

2(a). Then, the object state Xt at time t is defined by

Xt = (Xc
t ,X

1
t , · · · ,Xm

t ,R1
t , · · · ,Rm

t ) where X
c
t denotes

the center position of an object, Xi
t indicates the center po-

sition of the ith local patch, Ri
t represents the relative posi-

tion between X
c
t and X

i
t, and m is the total number of local

patches. Given the state at time t, Xt and the observation

up to time t, Y1:t, the Bayesian filter updates the posteriori

probability p(Xt|Y1:t) with the following rule:

p(Xt|Y1:t) ≈ p(Yt|Xt)
∫

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1,
(1)

where p(Yt|Xt) is the observation model that measures the

similarity between the observation at the estimated state and

the given model, and; p(Xt|Xt−1) is the transition model

which predicts the next state Xt based on the previous state

Xt−1. With the posteriori probability p(Xt|Y1:t) computed

by the observation model and the transition model, we ob-

tain the Maximum a Posteriori (MAP) estimate over the N

number of samples at each time t.

X̂t = arg
X

(l)
t

max p(X
(l)
t |Y1:t) for l = 1, . . . , N, (2)

where X
(l)
t = (X

c(l)
t ,X

1(l)
t , · · · ,X

m(l)
t ,R1

t , · · · ,Rm
t )

represents the lth sample of the object state Xt and X̂t =
(X̂c

t , X̂
1
t , · · · , X̂m

t ,R1
t , · · · ,Rm

t ) denotes the best configu-

ration which can explain the current state with the given ob-

servation. Note that R
1
t , · · · ,Rm

t is fixed in the sampling

process.

3.2. Adaptive Basin Hopping Monte Carlo

Since the solution space generally becomes large as the

number of local patches m in the state Xt increases, the
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conventional MCMC method is not an efficient way to com-

pute the integration in (1). Therefore we introduce the

BHMC method [19] to our tracking problem which pro-

vides better performance in those high dimensional solu-

tion spaces. The BHMC method typically transforms the

rough landscape of the original solution space into a sim-

pler one by using robust local optimization techniques in

the sampling process, as depicted in Fig. 2(b). In a new

transformed energy landscape, energy barriers are lowered

and energy maxima of an original function are no longer of

concern in the sampling process. This means that we have

more chance of reaching the global optimum with a smaller

number of samples. Actually, in all of our experiments, 20

samples are sufficient to obtain the MAP estimate.

The BHMC method consists of two main steps similar

to the conventional MCMC method; the proposal step and

the acceptance step. In the proposal step, we use two dif-

ferent proposal densities; q1 and q2. The proposal density

q1 is used in each frame whereas q2 is used once at the start

of each frame to connect the current frame to the previous

one. In q1, we only propose the new sample of the object

center X
c(l+1)
t given the lth sample X

c(l)
t via a Gaussian

perturbation.

q1(X
c(l+1)
t ;X

c(l)
t ) = G(X

c(l)
t , σ2), (3)

where G denotes the Gaussian distribution with mean X
c(l)
t

and variance σ2. The new center position of the ith local

patch X
i(l+1)
t is automatically determined by the following

rule 1.

X
1(l+1)
t =X

c(l+1)
t + R

1
t ,

...

X
m(l+1)
t =X

c(l+1)
t + R

m
t .

(4)

In q2, we assume that the center of an object has to be

near the centroid of the local patches. With this assump-

tion, we propose the Adaptive BHMC (A-BHMC) whose

proposal density is adaptively changing according to the

relative positions between the object center and each local

patch. Therefore our adaptive proposal is

q2(X
c(1)
t ; X̂c

t−1) = G(X̂c
t−1, σ) + pδ, (5)

where q2(X
c(1)
t ; X̂c

t−1) means that the first sample X
c(1)
t at

the current frame is proposed based on the MAP estimate

X̂
c
t−1 of the previous frame. In (5), δ denotes the adapt-

ing constant that is set to 0.3 and, p represents the adapting

parameter that is defined by

p =







p + 1 if X̂
c
t−1 ≪ 1

m

∑m

i=1 X̂
i
t−1

p − 1 if X̂
c
t−1 ≫ 1

m

∑m

i=1 X̂
i
t−1

p otherwise .

(6)

1We contain Xi

t
and Ri

t
in the global state simply for representing the

likelihood in (8) as Xi

t
and Ri

t
components.

The adapting parameter initially has the value zero and

ranges from -5 to 5. Two vectors X̂
c
t−1 and X̂

i
t−1 in (6)

are compared in component-wise manner for each x and y

position.

Most performance in A-BHMC comes from the new ac-

ceptance step. In this step, the acceptance ratio is calcu-

lated by the likelihood ratio at the local mode (optimum)

of each patch. The local mode is determined by the mode-

seeking method fo such as the Lucas-Kanade image regis-

tration method [10]. Then, our acceptance ratio is defined

by

a = min[1,
p(Yt|fo(X

(l+1)
t ))p(fo(X

(l+1)
t )|X

(l+1)
t )

p(Yt|fo(X
(l)
t ))p(fo(X

(l)
t )|X

(l)
t )

×
q(X

(l)
t ;X

(l+1)
t )

q(X
(l+1)
t ;X

(l)
t )

],

(7)

where p(Yt|fo(X
(l)
t )) denotes the product of likelihood at

the local mode of each patch, and q(X
(l+1)
t ;X

(l)
t ) repre-

sents the proposal density in (3). The detailed procedure

estimating the likelihood is described in the next section.

4. On-Line Appearance Model Construction

4.1. Appearance Model

Our appearance model adopts the philosophy of repre-

senting objects as an assembly of parts [3, 9]. We assume

that each local patch is only dependent on the center of

an object, which assumption is similar to those of the star

model [3] and the implicit shape model [9]. With this as-

sumption, the likelihood in (7) is represented by

p(Yt|fo(X
(l)
t ))p(fo(X

(l)
t )|X

(l)
t )

≈

m
∏

i=1

pa(Yt|fo(X
i(l)
t ))ps(fo(X

i(l)
t )|X

c(l)
t ,Ri

t),
(8)

where pa denotes the photometric likelihood and ps indi-

cates the geometric likelihood.

Actually, fo(X
i(l)
t ) returns the image registration result

of the ith local patch centered on X
i(l)
t . In the image regis-

tration process, the ith local patch is warped to the patch at

local mode, which is the best match to ith template image

T i
t at time t. Then, the photometric likelihood is defined by

pa(Yt|fo(X
i(l)
t )) = exp−λaNSSD(fo(X

i(l)
t

),T i

t
), (9)

where NSSD function returns the normalized sum of

squared differences between the patch at local mode and

its template image, and λa denotes the weighting parameter

that is set to 30. The geometric likelihood is calculated by

ps(fo(X
i(l)
t )|X

c(l)
t ,Ri

t)) = exp−λsDIST (fo(X
i(l)
t

)−X
c(l)
t

,Ri

t
),

(10)
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(a) Bounding box (b) Good points (c) Chosen patches

Figure 3. Example of patch initialization in diving seq. (b) dis-

plays 50 points which have small K and (c) illustrates fifteen ini-

tialized local patches.

where DIST function returns the difference between the

relative position of fo(X
i(l)
t ) with respect to X

c(l)
t and R

i
t,

and λs denotes the weighting parameter that is set to 1.

4.2. Online Updating

Our appearance model evolves photometric and geomet-

ric appearance of an object via on-line update. In the pro-

cess of on-line update, the local patches of our appearance

model can be newly added, deleted or moved to a differ-

ent position. On-line update occurs once at the end of each

frame.

4.2.1 Initializing the Patches

The initial position of patches has to be chosen so as to be

good for the image alignment. For this, we utilize the con-

dition number K of the Hessian Matrix H .

K =
σmax(H)

σmin(H)
, (11)

where σmax(H) and σmin(H) denote maximal and min-

imal singular values of H respectively. In (11), small K

means that the matrix is numerically stable .

To initialize the patches, we manually draw a bounding

box around the target and choose the center of the first local

patch within the bounding box as the point that has the least

K value. The size of the patch is randomly determined.

Then, the second one is chosen as the point that has the

next least K value so as not to overlap with existing local

patches. The procedure is repeated and terminated when

there is no space to make local patches or the number of

local patches reaches a predefined value. Fig. 3 shows the

process of patch initialization.

4.2.2 Examining the Patches by Landscape Analysis

When the landscape of local mode (LLM) of each patch has

good properties, our appearance model reliably estimates

the likelihood in (8), which is important for the success of

tracking. As the measure of good LLM, we use smoothness

and steepness. Smooth LLM represents that local modes are

gathered in a narrow region of a solution space while steep

status

M−1
sm ≤ θsm The landscape of local modes is smooth.

M−1
sm > θsm The landscape of local modes is rough.

M−1
st ≤ θst The shape of local modes is steep.

M−1
st > θst The shape of local modes is gradual.

Table 1. The status of local modes. In all experiments, we set

θsm as 1.0 and θst as 4.0.

(a) Smooth &

steep

(b) Rough &

gradual

(c) Steep &

rough

(d) Gradual &

smooth

Figure 4. Example of local modes for a patch in gymnastics seq.

Red squares denote samples of a local patch. Blue ones represent

local modes of these samples.

Case (a) Case (b) Case (c) Case (d)

M−1
sm 0.030000 10.115001 1.502500 0.000000

M−1
st 0.582418 4.431388 0.370085 7.647641

Table 2. Quantitative analysis of Fig. 4. Case (a): There are

strong local modes because they are both smooth and steep. Case

(b): The landscape is very rough. Case (c): The shape of local

modes is steep but the landscape is rough. Case (d): Conversely,

the landscape is very smooth but the shape of local modes is grad-

ual.

LLM means that these local modes have a steep shape. Both

smooth and steep LLM guarantee that there is a very strong

local mode for the patch.

To measure these properties quantitatively, we design a

new method of measurement inspired by [4]. The degree

of smoothness is approximately estimated by

Msm(i)−1 = V ar(fo(X
i(l)
t )|l=1,...,N ), (12)

where fo finds local modes for the N number of samples

of the ith local patch and V ar returns the variance on the

positions of these local modes. The degree of steepness is

measured as the mean of the distance between the positions

of samples and of local modes:

Mst(i)
−1 = Mean(DIST (fo(X

i(l)
t ),X

i(l)
t )|l=1,...,N).

(13)

In Table 1, the status of local modes is summarized. Fig.

4 and Table 2 describe the experimental results of measur-

ing the degree of smoothness and steepness.

4.2.3 Modifying the Patches

According to the landscape analysis, we can identify the

bad patches as those with rough landscapes or gradual local

1211



(a) Frame #2 (b) Frame #9 (c) Frame #19 (d) Frame #81

Figure 5. Example of background patches in pedestrian seq.

Blue squares denote unmodified local patches whereas green de-

note modified ones. The red rectangle represents the bounding

box. To construct a background patch (sky-blue), we firstly choose

the nearest bounding line to each modified local patch. Then,

we select a center position of the background patch outside this

bounding line in the perpendicular direction of the line so that the

patch is ten pixels away from the bounding box. The size of the

background patch is equal to that of the modified local patch.

modes. These bad patches are modified on-line. In the mod-

ifying process, we provide two criteria for the modification

such that

Criterion 1:A modified local patch has to be sim-

ilar to the foreground and not to the background.

Criterion 2:A modified local patch should not be

in the high density regions of other local patches.

The first criterion typically prevents local patches from

drifting away from an object and into a background. On

the other hand, the second criterion generally makes local

patches escape from the center of an object. The first cri-

terion is formulated by likelihood over foreground

likelihood over background
≥ θC1.

The foreground model is constructed by the average of color

histograms of unmodified local patches and the background

model is made by the color histogram of one background

local patch for each modified local patch. Fig. 5 displays

the construction of background patches. The merit of back-

ground patches is that they preserve the spatial information

of the background for each modified local patch. The fore-

ground and background model utilize the Bhattacharyya co-

efficient as a similarity measure [12]. The second criterion

checks that no patches exist within the radius θC2 of the

modified local patch.

When the above two criteria are satisfied, modifications

are performed by adding new patches, deleting or moving

bad patches. First, our algorithm tries to move a bad patch

via the Gaussian perturbation centered on the current po-

sition. The size of a moved patch is equal to that of the

original one. If, until the predefined number of iterations,

the algorithm cannot find the patch which satisfies the above

criteria, it deletes the patch. The adding process occurs only

when the algorithm finds the patch within the half number

of predefined iterations. In this case, it chooses a new po-

sition of the patch utilizing the condition number explained

in section 4.2.1.

Algorithm 1 A-BHMC tracker with local patch-based dy-

namic appearance modeling

Input: Xt−1 = (Xc
t−1,X

1
t−1, · · · ,Xm

t−1,R
1
t−1, · · · ,Rm

t−1)

Output: X̂t = (X̂c
t , X̂

1
t , · · · , X̂m

t ,R1
t , · · · ,Rm

t )
1: Transition phase

2: Propose X
c(1)
t using (5).

3: End

4: Sampling phase

5: for l = 1 to N − 1 do

6: 1.Propose X
c(l+1)
t using (3).

7: 2.Determine X
i(l+1)
t using (4).

8: 3.Calculate the likelihood score using (8).

9: 4.Accept X
(l+1)
t with probability (7).

10: end for

11: Estimate the MAP state X̂t using (2).

12: End

13: Updating phase

14: 1.Initialize patches using (11) in an initial frame.

15: 2.Select patches to be modified using (12) and (13).

16: 3.Modify the patches using the criterion 1 and 2.

17: 4.Update the appearance model using (14) and (15).

18: End

4.2.4 Updating the Appearance Model

In the case of the photometric appearance, the template T i
t

in (9) is naively updated by

T i
t+1 = 0.5T i(ref) + 0.5T

i(dyn)
t , (14)

where T i(ref) indicates the reference template in an initial

frame and T
i(dyn)
t represents the template image obtained

in the region of fo(X̂
i
t) at time t. Various methods for the

template update are discussed in [11]. In the case of the ge-

ometric appearance, our method updates Ri
t in (10), which

is the relative position of the ith local patch with respect to

the center of an object.

Ri
t+1 = 0.5Ri

t + 0.5DIST (fo(X̂
i
t), X̂

c
t), (15)

where X̂
i
t and X̂

c
t are the MAP estimates of X

i
t and X

c
t ,

repectively. Note that this updating process is for unmod-

ified local patches. For modified local patches, T i
t+1 and

Ri
t+1 are already determined in the modification process ex-

plained in section 4.2.3. Algorithm 1 illustrates the whole

process of our tracking method.

5. Experimental Results

We compared the proposed algorithm with three differ-

ent tracking methods: on-line appearance learning method

of Ross [14], standard MCMC method based on [8], which

uses an HSV color histogram as the appearance model in
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Figure 6. Number of stable, moved and newly added patches in

gymnastics seq.

(a) Frame #32 (b) Frame #90 (c) Frame #153 (d) Frame #195

Figure 7. Geometric appearance of the target when the number

of moved patches peak in Figure 6. Among 27 local patches, 23

patches are moved at (a), 22 at (b), 22 at (c) and, 20 at (d), where

green squares denote moved patches and blue squares denote sta-

ble ones.

[12] while dividing an object into upper and lower body,

and the Mean Shift method based on the implemented func-

tion in OpenCV. Note that we used the software of Ross for

the method [14].2

5.1. Quantitative Results

We tested our method by evaluating the performance of

local patch-based appearance model and A-BHMC sam-

pling method, individually.

The performance of the appearance model: To evaluate

the performance of our appearance model, we first checked

the number of modified and unmodified local patches in

each frame. As illustrated in Fig. 6, our appearance model

actively moves, deletes or adds patches based on the land-

scape analysis at each frame. This means that the topology

between local patches in the model evolves as time goes on.

Fig. 7 shows that our appearance model adaptively modi-

fies the position and number of patches, particularly when

geometric appearance of the target is drastically changing.

Our method successfully captures the movements of head,

legs and arms without the specific model of the target.

The target is considered as correctly tracked in that frame

2The videos of tracking results and original datasets are available at

http : //cv.snu.ac.kr/paradiso.

0 50 100 150 200

0.0
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0.9

 A-BHMC

 MCMC

A
c
c
e
p
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n
c
e
 r

a
te

Frame

Figure 8. Acceptance rate of car4 seq in [14]. The acceptance

rate is defined by the number of accepted samples over the total

number of samples in each frame.

Method \ Seq. Pedestrian Diving High-jump

Our method succeed succeed succeed

Method [14] succeed fail/#56 fail/#13

MCMC(1000) fail/#53 fail/#43 fail/#20

MCMC(3000) fail/#56 fail/#50 fail/#20

MCMC(5000) fail/#62 fail/#61 fail/#22

Mean Shift fail/#3 fail/#123 fail/#13

Table 3. Comparison of tracking results. The index indicates

that the tracking algorithm fails to track a target from that index of

a frame. We utilized 1000,3000 and 5000 samples for evaluating

the MCMC method.

if the root mean square error of an object center is smaller

than 30. For this experiment, we manually draw the cen-

ter of the target object as ground truth and tested different

tracking methods. Table 3 summarizes the tracking re-

sults of three different test sequences that include objects

whose geometric appearances are changing drastically over

time. In all of the test sequences, our method successfully

tracked the targets. Other methods, however, missed the tar-

gets at the frames where the targets changed their geometric

appearances. Note that the LLM analysis in our appearance

model is a critical factor for good tracking. Without LLM

analysis, our method cannot measure badness of patches

and cannot modify those patches. In the experiment, tracker

without LLM analysis failed to track the objects because

bad patches survive and drift away from them.

The performance of A-BHMC: The appearance model

generally consists of 5 to 30 local patches, which indi-

cates that the solution space is very large. Our tracking

method, however, used a very small number of samples, 20

in all experiments for tracking an object. This performance

typically benefits from A-BHMC. To evaluate the perfor-

mance of A-BHMC in our tracking algorithm more analyt-

ically and qualitatively, we compared it with the standard

MCMC-based tracking algorithm [8]. In this experiment,

the test video only contained a rigid object for fair compari-

son. We utilized an equal number of samples, equal appear-
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(a) Frame #57 (b) Appearance model

(c) Frame #142 (d) Appearance model

(e) Frame #229 (f) Appearance model

Figure 9. Tracking results of diving seq.

ance model and equal transition model for testing. One of

the good properties of A-BHMC is that it can easily jump

over the energy barriers by transforming an energy land-

scape into a simpler one. Therefore, the A-BHMC method

frequently accepts proposed samples since high energy bar-

riers are lowered. As shown in Fig. 8, our tracking algo-

rithm had higher acceptance rates than the standard MCMC

method. This means that our method easily escapes from

local minima and obtains more diverse samples.

5.2. Qualitative Results

Fig. 9 presents the tracking results in diving seq. Un-

der the severe geometric changes of a target appearance,

our method successfully tracked the target. The left parts of

Fig. 9(b)(d)(f) illustrate our constructed appearance mod-

els where blue squares denote unmodified local patches and

green ones denote modified ones. The right parts of Fig.

9(b)(d)(f) represent the local modes of the patches as white

squares and the estimated center of an object as a red point.

Fig. 9(b)(f) show the robustness of our on-line appear-

ance model. In Fig. 9(b), our method removed some local

patches in the background region in the next frame since lo-

cal modes of those patches had very rough landscapes and

they did not satisfy two modification criteria in the section

4.2.3. Additionally, our algorithm dealt with the occlusion

of a target by adaptively deleting patches which are oc-

cluded. As described in Fig. 9(f), the algorithm reduced

the number of local patches from 15 to 4.

In Fig. 10(a)-(d), we tested the video that includes back-

ground clutter and pedestrians whose appearance is sim-

ilar to that of a target. In the case of the conventional

MCMC method, a trajectory was hijacked by other pedestri-

ans wearing similar colors of clothing to the target when the

target changes its geometric appearance. On the other hand,

our tracking method robustly tracked the target in spite

of background clutter and geometric appearance changes.

Fig. 10(e)-(l) demonstrate how the proposed method out-

performed conventional tracking algorithms in drastic geo-

metric appearance changes. The conventional tracking al-

gorithms failed to track the target when the positions of

head and legs are reversed. The result of the method [13]

shows that the specific model of the target occasionally can-

not capture the drastic geometric changes of the target. The

test video used in Fig. 10(e)-(l) includes the scale change of

a target. In this environment, for tracking the target which

became smaller over time, our method adaptively shortened

the range between the center of a target and each local patch,

and successfully tracked it. Our method also tracked the tar-

get which transforms its appearance from a robot to a car by

evolving an appearance model as shown in Fig. 10(m)-(p).

6. Conclusion

In this paper, we have proposed an effective tracking al-

gorithm evolving a local patch-based appearance model by

the analysis of landscape of local modes. With A-BHMC

sampling, the algorithm efficiently addresses tracking of

a target whose geometric appearance is drastically chang-

ing over time. Experimental results demonstrated that the

proposed method outperformed conventional tracking algo-

rithms in severe tracking environments. Our future work

is to extend our method to deal with severe occlusions and

multi objects.
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