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Abstract

Many vision problems have been formulated as en-

ergy minimization problems and there have been signif-

icant advances in energy minimization algorithms. The

most widely-used energy minimization algorithms include

Graph Cuts, Belief Propagation and Tree-Reweighted Mes-

sage Passing. Although they have obtained good results,

they are still unsatisfactory when it comes to more difficult

MRF problems such as non-submodular energy functions,

highly connected MRFs, and high-order clique potentials.

There have also been other approaches, known as stochas-

tic sampling-based algorithms, which include Simulated

Annealing, Markov Chain Monte Carlo and Population-

based Markov Chain Monte Carlo. They are applicable to

any general energy models but they are usually slower than

deterministic methods. In this paper, we propose new algo-

rithms which elegantly combine stochastic and determinis-

tic methods. Sampling-based methods are boosted by de-

terministic methods so that they can rapidly move to lower

energy states and easily jump over energy barriers. In dif-

ferent point of view, the sampling-based method prevents

deterministic methods from getting stuck at local minima.

Consequently, a combination of both approaches substan-

tially increases the quality of the solutions. We present

a thorough analysis of the proposed methods in synthetic

MRF problems by controlling the hardness of the problems.

We also demonstrate experimental results for the photomon-

tage problem which is the most difficult one among the stan-

dard MRF benchmark problems.

1. Introduction

Markov Random Field (MRF) models are of fundamen-

tal importance in computer vision. Many vision prob-

lems have been successfully formulated in MRF optimiza-

tion. They include stereo matching, segmentation, denois-

ing and inpainting, to mention just a few. Recently, Szeliski

et al. [18] presented a comprehensive review of the standard

MRF-based vision problems and the comparative results of

existing optimization methods.

The general formulation of the MRF models is as fol-

lows. Given a graph G = 〈V,E〉, where V is the set of

nodes and E is the set of edges, the energy function is given

by

E(x) =
∑

s∈V

θs(xs) +
∑

〈s,t〉∈N

θst(xs, xt), (1)

where N is a neighborhood system and the first term

θs(xs) is called the unary term or data term and is defined

in various ways depending on the applications. For exam-

ple, in stereo problems it can be intensity difference, sum

of squared difference or Birchfield-Tomasi measure of cor-

responding pixels. In denoising problems, it can be the

intensity difference between the true and the noisy pixels.

In the segmentation problem, it can be the color differ-

ence between a single pixel and the histogram of the seg-

ment it belongs to. The second term θst(xs, xt) is called

the pairwise term or smoothness term. This term usu-

ally encodes the prior knowledge into the energy function.

In most applications, smoothness regularization constraints

are commonly used, which compel the solution to be piece-

wise smooth. Widely-used smoothness models include the

Potts model, the truncated linear model and the truncated

quadratic model. In general cases, the optimization of the

above energy function is known to be NP-hard problem [5].

There have been a lot of researches on minimizing the

aforementioned energy function. For the standard grid

graphs, we can see that many algorithms have a good

performance [18]. The existing methods for solving this

minimization can be divided into two approaches: de-

terministic and sampling-based methods. Some of the

well-known deterministic methods are move-making algo-

rithms. Move-making algorithms iteratively make local

moves to explore the solution space. They include Iterated

Conditional Modes (ICM), the Gradient Descent Method

and Graph Cuts [5, 6, 11]. Graph Cuts, including α-

Expansion, αβ-Swap and Quadratic Pseudo-Boolean Op-

timization (QPBO), are the state of the art algorithms. They
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iteratively optimize the binary sub-problems of the origi-

nal problem. They are fast, accurate and even find global

optima for some classes of functions. Another important

class of deterministic methods is the message passing ap-

proach. It includes Belief Propagation (BP) [19] and Tree

Reweighted Message Passing (TRW) [10, 20]. BP was orig-

inally developed for graphs without cycles. Although there

is no guarantee of convergence in the case of the graph with

cycles, it has been successfully applied to vision problems.

One of the important properties of TRW is that it gives a

lower bound of the energy function, which can be used to

check optimality of the solutions.

Stochastic approaches such as sampling-based methods

have also been applied to the MAP-MRF based vision prob-

lems. Sampling-based methods were originally developed

to generate samples from a given target distribution or to

integrate functions in high dimensional spaces. Swendsen-

Wang Cuts is proposed to solve image segmentation and

stereo problems [2, 3]. Recently, Kim et al. [9] proposed

a more advanced MCMC method called Population-based

MCMC (Pop-MCMC) to optimize a plane-based stereo en-

ergy model. And Jung et al. [7, 8] proposed window anneal-

ing method to increase mixing ratio of the MCMC method.

The story is different, however, when it comes to more

difficult MRF problems. More difficult MRF models are in-

evitable to incorporate realistic image priors into the mod-

els. (e.g.,occlusion terms in stereo and texture information

in denoising and segmentation.) Examples of more difficult

MRF models include non-submodular functions, globally

conditioned MRF models, highly connected MRF models

and higher-order clique potentials. To those difficult exam-

ples, most existing methods are not applicable, and even

with some applicable algorithms the results are far from the

global optimum.

Note that α-Expansion and αβ-Swap cannot be applied

to non-submodular energy functions. To solve those func-

tions, we should truncate the non-submodular terms. Con-

sequently, it seriously degrades the quality of solutions in

difficult MRF problems. In contrast, QPBO can solve those

functions without truncation. As the difficulty of prob-

lems increases, however, it produces more unlabeled pixels,

which yields unsatisfactory results. The number of unla-

beled pixels depends on the strength of unary and pairwise

terms, the number of non-submodular terms and the con-

nectivity of the graph structure [16]. To resolve this prob-

lem, probing is proposed by Rother et al. [16] but it still

leaves unlabeled pixels. In addition, every Graph Cut based

method can handle only pairwise graphs. Although Boros

and Hammer [4] showed how to reduce higher-order clique

potentials into equivalent pairwise potentials, the number

of terms in the energy function grows exponentially with

the clique size. Message passing algorithms are also de-

graded as the difficulties of the problems increase. The gap

between the solutions and the lower bounds of TRW-S can

be efficient measures of qualities of the solutions. As Ko-

modakis and Paragios [12] mentioned, the solutions and the

lower bounds do not converge in difficult MRF problems.

Recently, efficient BP methods for higher-order clique po-

tential are proposed by Nwogu and Corso [15] and Lan

et al. [13].

Sampling-based methods also have weaknesses. Al-

though applicable to any class of MRF problems, they are

usually slower than deterministic methods even in the sim-

ple MRF problems [9], and do not lower the energy state

substantially [7, 8]. If difficulties of the problems increase,

we do not think they can solve the problems in a practical

timescale.

Therefore, we definitely need a more efficient optimiza-

tion technique to cope with difficult MRF vision problems.

Our main idea is to combine sampling-based and deter-

ministic methods so that we can take advantages of the

strength of both approaches. Our new algorithm is mainly

inspired by the work of Strens et al. [17]. They used direct

search optimization (downhill simplex method and differen-

tial evolutions) in the framework of Pop-MCMC to increase

sampling performance. Our paper is organized as follows.

We present the advantages of combining stochastic and de-

terministic algorithms. In section 3, Pop-MCMC is briefly

introduced. Then, we propose the new combined method

in Section 4. Section 5 gives the experimental results. The

final section concludes the paper with discussion.

2. Toward difficult MRF problems: combina-

tion of stochastic and deterministic meth-

ods

To deal with difficult MRF problems, we propose to

combine deterministic methods with the sampling-based

stochastic method. The sampling-based method is boosted

by combination with deterministic methods. The sample

can rapidly move into lower energy state owing to the de-

terministic methods. Moreover, it can effectively jump from

one basin to another over the energy barrier. Consequently,

this property increases the mixing rate and yields faster

convergence and better solutions. On the other hand, the

sampling-based method helps deterministic methods not to

be stuck in local minima. In addition, in terms of the land-

scape of the solution space, the combination reduces the

number of local minima. The reason is as follows. The

number and the location of local minima vary with respect

to the applied methods. This is because each method has

different neighborhood structures in the solution space ow-

ing to its own operators or search techniques. This elimina-

tion of local minima is illustrated in Fig 1. If we effectively

combine two methods in Fig 1 (a) and (b), all the minima

but the overlapped ones will be eliminated. Although this
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Figure 1. The energy landscape is altered by the combination of

multiple methods: (a) The structure of local minima viewed from

an algorithm, (b) another algorithm, and (c) combined algorithm.

In (c), many local minima are eliminated and only two overlap-

ping local minima have survived. They are drawn with black thick

contours.

scenario of elimination is not exactly the same as in the pro-

posed approach, it may be helpful in getting intuition on the

advantages of the combination of different methods.

The whole procedure of the proposed algorithm is based

on Pop-MCMC. As in Pop-MCMC, the proposed algorithm

runs several chains in parallel and makes samples move by

the proposals under the Metropolis-Hastings rule. In this

work, we design new effective proposals which exploit de-

terministic methods.

3. Population-based MCMC

Markov Chain Monte Carlo (MCMC) methods have

been used to sample target distributions. Along with Simu-

lated Annealing, MCMC has also been used to obtain opti-

mum samples of target functions. In MCMC, a new sample

is drawn from the previous sample with a local transition

probability, based on the Markov chain. Since most MCMC

methods allow only local moves, in a large solution space

it takes a very long time to reach the global optimum. To

overcome the limitations of MCMC, recently Population-

based MCMC has been applied to the vision problem [9]. It

obtained lower energy state much faster than other existing

sampling methods.

Pop-MCMC or evolutionary Monte Carlo is a stochas-

tic simulation method that combines a population of

Metropolis-Hastings samplers and Evolutionary Algo-

rithms to improve the performance of MCMC samplers.

Pop-MCMC generates multiple chains in parallel with dif-

ferent temperatures, and multiple samples are drawn at the

same time. Samples can exchange information with each

other. This enables global moves of samples which conse-

quently makes the mixing rate of drawn samples faster. In

terms of optimization, the fast mixing rate means fast con-

vergence to the global optimum.

Let us define the target distribution of ith chain as fol-

lows.

πi(x) = π(x)
1

Ti , (2)

where π(x) is an original target distribution, and Ti is the

temperature of the ith chain. In the chain with high temper-

ature, the target distribution is nearly flat, where the heights

of barriers between local optima are very low. Therefore,

the samples in such chains can freely wander in contrast to

the samples in a chain with low temperature. By exchanging

these higher-temperature configurations with the configura-

tion of a low temperature of our interest, we can allow the

low temperature simulation to sample configurations much

more efficiently than with local Metropolis updates only.

This leads to a faster mixing rate between samples, and

helps the escape from local minima. Given an original tar-

get distribution π(x), a new expanded target distribution is

defined as follows.

π∗(x1:N ) =

N
∏

i=1

πi(xi), (3)

where N is the number of chains to use. We assume that

πk ≡ π for at least one chain k ∈ {1, . . . , N}. x1:N =
{x1, · · · ,xN} is a population composed of samples of N
chains. Each component xi in the vector x1:N is labeled

as a chromosome. The goal of Pop-MCMC is to generate

samples x1:N which follow the new target distribution π∗.

A collection of chromosomes from the kth chain, which has

the target distribution πk = π, is what we want to obtain in

the end.

In general, Pop-MCMC employs three types of

moves [9]: mutation, exchange and crossover. Muta-

tion move is same as the conventional Metropolis-Hastings

move for a single chain MCMC. Exchange and crossover

moves help samples exchange information with each other.

This makes it possible to efficiently explore the solution

space.

4. Combined Method

As we mentioned above, by combining stochastic and

deterministic methods, we can take advantages of both ap-

proaches. Careless combination of the two methods be-

comes, however, problematic. If we simply apply deter-

ministic methods as the kernel of the sampling method,
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Figure 2. Dynamic anchor-based proposal

it might violate the reversibility condition of the Markov

Chain Monte Carlo. Consequently, it is impossible to sat-

isfy detailed balance. That is, we are not able to sample

from the target probability function in that way. In the fol-

lowing subsections, we explain three novel algorithms in

which the Pop-MCMC method and the deterministic meth-

ods are elegantly combined through a new proposals by

the snooker crossover move [14]. Note that in our current

framework, we do not use the mutation and exchange moves

since we have empirically found that our new crossover pro-

posal is so powerful and other moves are redundant.

4.1. Combination of MCMC and movemaking de
terministic algorithms

In this subsection, we introduce our first algorithm

called MCMC-D (Markov Chain Monte Carlo with Dy-

namic anchor-based proposal) which effectively combines

the sampling-based method and deterministic methods. Our

MCMC-D algorithm has a similar structure to Pop-MCMC.

It runs multiple chains at different temperatures Ti. Given

the energy function E(x), we first change the domain of x

from the discrete domain to the continuous domain accord-

ing to:

Ereal(x) = E(round(x)). (4)

From now on, x is a continuous random variable. And

then, we define probability distribution of chain i as

πi(xi) =
1

Z
exp

{

−
Ereal(xi)

Ti

}

, (5)

where Z is a normalizing constant. Note that πi is defined

on real number space. The appropriate sequence of the tem-

peratures depends on the given energy function. It is em-

pirically determined. In this method, we propose a new

scheme to make a proposal which exploits move-making

deterministic algorithms. Using deterministic algorithms,

we dynamically generate anchors, so that it is called dy-

namic anchor-based proposal. It satisfies reversibility as

well as detailed balance. This proposal is iteratively applied

to update populations until convergence. Now, we explain

how dynamic anchor-based proposal works.

The dynamic anchor-based proposal is well illustrated in

Fig 2. The black circles represent the current population.

Given the current population x1:N = {x1,x2, · · · ,xN},
two samples are randomly chosen to be a candidate xc and

a parent xp, respectively. Then, we apply a deterministic

move to the parent. That is, with the parent as the ini-

tial point, we perform single or multiple iterations of any

move-making deterministic algorithm (e.g. α-Expansion,

αβ-Swap, and QPBO). The result of the deterministic move

from the parent is considered as an anchor point. We call

it a dynamic anchor point because it is generated and de-

stroyed dynamically while the algorithm is running. With

this dynamic anchor point and the candidate xc, we perform

snooker crossover. A newly-generated sample yc lies on the

line going through the anchor and the candidate according

to:

yc = xcκ exp (s) + M(xp)(1− κ exp (s)), (6)

where s and κ are control parameters of snooker crossover

and M(·) is the move by the move-making deterministic al-

gorithm. s is the random variable taken from the predefined

set S with probability distribution r(s). The set S can be

designed as any set closed under the operator s̄, which is

defined by 1− s. The parameter s controls the distance be-

tween the newly-generated sample and the anchor. Small s
results in the new sample being close to the anchor and large

s results in the new sample being far away from the anchor.

κ can be fixed either by +1 and −1 or randomly chosen

among +1 and −1 with equal probability. κ will decide if

the new sample, started from the candidate, passes over the

anchor or not. When κ is −1, the newly-generated sample

lies on the ray from the anchor in the opposite direction to

the candidate. That is, the new sample passes over the an-

chor point. When κ is +1, the newly-generated sample lies

on the ray from the anchor through the candidate. When s
is 0 and κ is +1, the candidate xc and the new sample yc

are exactly the same.

The candidate xc is substituted with the new sample yc

according to the Metropolis-Hastings rule with the accep-

tance probability:

α = min(1, γ), (7)

where
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Algorithm 1 MCMC-D algorithm

1: (Initialize)

2: Initialize the population X1:N

3: Set the temperatures T1 < T2 < · · · < TN

4: repeat

5: c ∼ {1, 2, · · · , N}
6: p ∼ {1, 2, · · · , N} − {c}
7: A←M(xp)
8: (Snooker crossover)

9: κ ∼ {+1,−1}
10: s ∼ S
11: yc ← xc · κ exp (s) + A · (1− κ exp (s))
12: Determine whether accept the new population or not

by the Metropolis-Hastings rule.

13: until The algorithm converges.

γ =
πc(yc)πp(yp)

πc(xc)πp(xp)
·
q(xc,xp|yc,yp)

q(yc,yp|xc,xp)

=
πc(yc)

πc(xc)
·
q(xc|yc,xp)

q(yc|xc,xp)

=
πc(yc)

πc(xc)
·
r(1− s)

r(s)

= exp

[

E(xc)− E(yc)

Tc

]

·
r(1− s)

r(s)
.

(8)

Note that the reverse move is attained by selecting 1 − s
from S.

Instead of a single candidate, we can also pick multi-

ple candidates at each iteration. The opposite extreme of

using a single candidate is to take all the samples as can-

didates except the parent. Our MCMC-D that employs a

move-making deterministic algorithm is summarized in Al-

gorithm 1.

4.2. Combination of MCMC and nonmovemaking
deterministic algorithms

MCMC-D algorithm exploits move-making determinis-

tic algorithms such as α-Expansion, αβ-Swap, and QPBO.

This method cannot, however, exploit message passing

methods since message passing methods do not make

moves. In this subsection, we propose a new algorithm

called MCMC-S (Markov Chain Monte Carlo with Static

anchor-based proposal) which exploits non-move-making

algorithms such as message passing algorithms. The idea

is similar to MCMC-D. The only difference is the an-

chor points. In MCMC-S, we initially run message pass-

ing methods and save solutions before the algorithm starts.

Those solutions are used as the anchor points while the al-

gorithm is running. We call these anchor points the static

3

2

1

2

anchor
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Figure 3. Static anchor-based proposal

Algorithm 2 MCMC-S algorithm

1: (Initialize)

2: Initialize the population X1:N

3: Set the temperatures T1 < T2 < · · · < TN

4: Run message passing methods to get solutions

F1, F2, · · · , FK

5: repeat

6: c ∼ {1, 2, · · · , N}
7: k ∼ {1, 2, · · · ,K}
8: A← Fk

9: (Snooker crossover)

10: κ ∼ {+1,−1}
11: s ∼ S
12: yc ← xc · κ exp (s) + A · (1− κ exp (s))
13: Determine whether accept the new population or not

by the Metropolis-Hastings rule.

14: until The algorithm converges.

anchor points since they are fixed until the algorithm ter-

minates. We call the new proposal the static anchor-based

proposal. The static anchor-based proposal is illustrated in

Fig 3, and MCMC-S algorithm is summarized in Algorithm

2.

4.3. Combination of MCMC and general determin
istic algorithms

In this subsection, we propose our third algorithm called

MCMC-GD (Markov Chain Monte Carlo combined with

General Deterministic methods) which unifies MCMC-D

and MCMC-S. In MCMC-GD algorithm, we use both of

dynamic and static anchor-based proposals. At each itera-

tion we choose a random number U uniformly from inter-

val [0, 1), and compare U with predefined dynamic anchor-
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Algorithm 3 MCMC-GD algorithm

1: (Initialize)

2: Initialize the population X1:N

3: Set the temperatures T1 < T2 < · · · < TN

4: Run message passing methods to get solutions

F1, F2, · · · , FK

5: repeat

6: c ∼ {1, 2, · · · , N}
7: if U ∼ [0, 1] < QD then

8: p ∼ {1, 2, · · · , N} − {c}
9: A←M(xp)

10: else

11: k ∼ {1, 2, · · · ,K}
12: A← Fk

13: end if

14: (Snooker crossover)

15: κ ∼ {+1,−1}
16: s ∼ S
17: yc ← xc · κ exp (s) + A · (1− κ exp (s))
18: Determine whether accept the new population or not

by the Metropolis-Hastings rule.

19: until The algorithm converges.

based proposal rate QD which controls the relative weight

of the dynamic and static anchor-based proposals. Accord-

ing to the value of U , we choose either the dynamic or static

anchor-based proposals as the next proposal. MCMC-GD is

described in Algorithm 3.

5. Experimental results

5.1. Analysis of synthetic MRF problems

To analyze the performance of the proposed algorithm

thoroughly, we apply our algorithm on the synthesized

MRF problems. Unlike real problems, we can easily con-

trol the hardness of the problems. We control the ratio of

the non-submodular terms and the coupling strength of the

graphs. For comparison, we also apply other methods in-

cluding QPBOF, TRW-S and BPM to the same problems.

For our experiments, we constructed 30 by 30 grid

graphs with four-neighborhood structures. In graph con-

struction, we followed the synthetic MRF construction in

Komodakis’s work [12]. We set the unary term of each node

with a randomly generated number from Gaussian distribu-

tion N (0, 1). The pairwise terms were set as:

θst(xs, xt) =

{

0 if xs = xt,

λst if xs 6= xt,
(9)

where λst was drawn from |N (0, σ2)| for submodular terms

and from −|N (0, σ2)| for non-submodular terms. We var-

ied the percentage of non-submodular terms with parameter

ρ. We also varied the parameter σ to control the coupling

strength.

We applied different algorithms to randomly generated

MRF problems while changing parameters. ρ was set to

1%, 25%, and 50% and σ was set to 0.1, 2, 4, 6, and 8.

For each parameter setting, experiments were repeated 20

times with different random number seeds and the average

of the final energies was obtained. We also performed the

proposed three algorithms, QPBO, TRW-S, and BP. For our

algorithms, we used 100 chains and the temperature of ith
chain was set to i. At each iteration, we selected single can-

didate. For the dynamic anchor-based proposal, we used a

single iteration of QPBO algorithm. In the single iterations

of QPBO, the proposal label was drawn from a uniform dis-

tribution and unlabeled pixels were fixed to current labels.

For the static proposal, static anchors were obtained using

TRW-S and BP. For the snooker crossover, κ was randomly

chosen among +1 and −1 with equal probability. exp (s)
was drawn from {0.1, 0.5, 2, 10} with probability 0.5, 0.2,

0.2, and 0.1, respectively. QD was set to 0.9. In QPBO

algorithm, unlabeled pixels were set to current labels.

The results of synthetic MRF problems are sum-

marized in Fig 4. The x-axis are coupling strength

and the y-axis are relative energy given by 100 ×
(energy ofsolution)/(minimum energy). We obtained

better results by combination. MCMC-D which is com-

bined with QPBO is better than QPBO alone in most cases.

And, MCMC-S which is combined with TRW-S and BP is

also better than the original TRW-S and BP. The enhance-

ment in MCMC-S is, however, not as large as MCMC-D.

Thus, under the condition that the performances of the de-

terministic methods are similar, MCMC-D is more effective

than MCMC-S. Note that MCMC-GD which employs both

the dynamic and static anchor-based proposals always ob-

tain teh lowest energy among all other methods. The run-

ning time of our algorithms are set to 8 seconds. QPBO is

fastest among all the methods. It takes less than 0.1 sec-

ond to converge. For TRW-S and BP, the maximum number

of iterations is set to 2000. TRW-S takes 3∼5 seconds to

terminate and BP takes 7∼9 seconds to terminate. All the

experiments are performed on the Intel Quad Core 2.4GHz

PC platform.

5.2. Results on a real problem: Photomontage

We also applied our algorithm to a practical vision

problem known as photomontage [1, 18]. Among all the

benchmark MRF problems in Szeliski et al.’s comparative

study [18], the photomontage is considered as the most dif-

ficult problem due to the intrinsic property of the energy

formulation. It is because the energy of the photomontage

problem is dominated by the smoothness cost. As shown

in the previous subsection, large coupling strength makes

the problem more difficult. In addition, the function itself
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Figure 4. Experimental results on the synthetic MRF problems

Figure 5. Input images of photomontage. The white circles in the

input images represent the user strokes.

is non-submodular which consequently leads the truncation

for α-Expansion method. We also empirically found that

fewer user strokes and larger clutter in the image made the

problem even harder. In this experiment, the energy model

was set to be the same as that in Szeliski et al.’s paper [18]

(second benchmark in photomontage). We used five input

images so that the number of labels was also five. We ap-

plied our MCMC-GD algorithm as well as other methods.

Now, the settings for MCMC-GD algorithm are as fol-

lows. First of all, we used 100 chains and the temperature

of ith chain was set to i× 100. The optimal choice of tem-

peratures depends on the scale of minimum energy of the

target problem. At each iteration, we selected every sample

except the parent as candidates. This is better than single

candidate because single move of the move-making deter-

ministic algorithm takes long time in this problem. For the

dynamic anchor-based proposal, we used five iterations of

α-Expansion algorithm. Note that the number of iterations

was set to be the same as the number of labels. For the

static proposal, static anchors were obtained using TRW-S.

The parameter settings for the snooker crossover were the

same as used for the synthetic MRF problems in the previ-

ous subsection.

The input images are shown in Fig 5. User strokes are

represented by the white circles. Quantitative results are

provided in Fig 6. Upper row shows the resulting pho-

tomontage image of the each algorithm, and the lower row

exhibits the corresponding color-coded image according to

the labeling. Fig 7. presents the comparative energy plots

of all the test algorithms against running time in seconds.

Note that MCMC-GD algorithm still reached the lowest en-

ergy state among all other methods. The preprocessing time

for obtaining the static anchor was not counted on the graph.

6. Conclusion

Although there have been great advances in solving sim-

ple MAP-MRF based vision problems, solution of more

complex MRF models are still remaind as challenging

ones. Examples of the complex MRF models include non-

submodular energy functions, highly connected MRFs and

high-order clique potentials. Most existing optimization

methods have inherent limitations in solving those diffi-

cult problems. In this paper, we propose new efficient

algorithms called MCMC-D, MCMC-S, and MCMC-GD

that can cope with those difficult MRF problems. They

are sampling-based method (Pop-MCMC) combined with

deterministic methods. By combination, the deterministic

methods help the sampling-based method to rapidly move

into lower energy state. Moreover, the deterministic meth-

ods make the sampling-based method jump easily from one

basin to another over the energy barrier. Consequently, mix-

ing rate is increased and we achieve faster convergence and

better solutions. On the other hand, the sampling-based

method helps deterministic methods not to be stuck in local

minima. We experimentally showed that the proper com-

bination of the two different approaches could substantially

improve the overall performance. Our new energy mini-

mization framework will be useful in solving many chal-

lenging vision problems. And consequently, this will en-

courage the design of better yet more complex energy mod-

els for practical vision applications.
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(a) MCMC-GD (b) ICM (c) α-Expansion (d) αβSwap (e) TRW-S (f) BP-S (g) BP-M

Figure 6. Photomontage results. Upper row shows the resulting photomontage images of the each algorithm. Lower row represents the

corresponding color-coded image according to the labeling
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Figure 7. Experimental results on the photomontage problem
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