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Abstract

We present a system that combines multiple visual navi-

gation techniques to achieve GPS-denied, non-line-of-sight

SLAM capability for heterogeneous platforms. Our ap-

proach builds on several layers of vision algorithms, in-

cluding sparse frame-to-frame structure from motion (vi-

sual odometry), a Kalman filter for fusion with inertial mea-

surement unit (IMU) data and a distributed visual land-

mark matching capability with geometric consistency verifi-

cation. We apply these techniques to implement a tag-along

robot, where a human operator leads the way and a robot

autonomously follows. We show results for a real-time im-

plementation of such a system with real field constraints on

CPU power and network resources.

1. Introduction

In order to successfully perform real-world navigation

tasks, autonomous mobile robots must be able to locate

themselves in a previously explored environment. In the

literature, collection of visual data from the environment is

often done by the robot itself, either in exploration mode or

during a training stage. The ability to use a platform with

the same dynamic properties for exploration as for naviga-

tion is an unrealistic assumption for many tasks. Ground

robotics vehicles come in a variety of sizes and holonomic-

ity. If those robots are to cooperate either among themselves

or with people, they need to be able to exchange visual in-

formation in a mutually understandable format. We propose

a system that takes a step in that direction by allowing a mo-

bile robot to follow a path automatically laid out by a human

operator exploring the environment through the exchange of

visual landmarks.

For global model based visual navigation, real-time,

dead-reckoning visual odometry has been developed over

the past few years [11, 10, 2]. Visual odometry systems

seek to maintain the vehicle’s 6-DOF pose in a global world

Figure 1. Our system in action during a leader-follower experi-

ment. The robot, equipped with stereo cameras and an IMU, is

autonomously following an operator wearing the same sensors

on his helmet. The system uses visual navigation with robot-to-

helmet landmark matching capability to achieve non-line-of-sight,

tag-along robot capability. The operator can move freely in the

environment, walking, running, looking around and walking back-

wards.

coordinate system (with respect to some initial known po-

sition). Some of the more recent approaches aim to com-

bine the visual pose estimates with readings from IMU

[13, 7], GPS [1] using Kalman filters. Pose estimates of

such systems will eventually succumb to drift (unless GPS

is used) or may experience errors due to problems with fea-

ture tracking. On the positive side, real-time implementa-

tions for a variety of camera configurations have been de-

veloped. Recently, real-time schemes that include sparse

bundle adjustment have been proposed by [3, 8].

To avoid the effects of drift of dead reckoning systems,

techniques in topological SLAM, visual servoing and global

place recognition are used. Popular appearance-based ap-
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proaches that seek to do global loop closing and recognition

rely on SIFT features [9] quantized into vocabulary trees

proposed by [12]. Examples of such systems, which also

incorporate geometric consistency, are given in [4, 16]. An-

other approach is to directly match features between images

using wide baseline algorithms and directly recover the ve-

hicle’s position with respect to target [5]. A method for

navigation using local feature graphs and visual servoing is

proposed in [14].

All of the systems where a mobile robot was required

to re-traverse a path have been developed with the image

data collected by the same platform either during an explo-

ration stage or during human-controlled training stage. On

the other hand, we describe a system where two totally dif-

ferent platforms can do SLAM in the same environment.

We develop a multilayer navigation system which we

call VideoTrek (shown in action in Figure 1) which in-

corporates elements of model-based and appearance-based

systems. First, we compute a highly accurate, distributed

aperture visual odometry pose solution. This pose is then

augmented with readings from the IMU. We then use a

vocabulary tree of quantized histogram of oriented gradi-

ents (HOG) features (landmarks) to maintain location fin-

gerprints. While the global drift introduced by dead reck-

oning algorithms is an important factor in applications, such

as place recognition and loop closing, it is not a big factor

in ours. A tag-along robot must only maintain its pose with

respect to the leader’s traversed path, not the global coordi-

nate system. Thus the visual odometry pose only serves as

input to global landmark matching and to maintain the vehi-

cle’s pose in the short term in absence of landmark matches.

The novel feature of our application is in the live, automatic

sharing of visual landmarks between the operator wearing

a sensor-equipped helmet and an autonomous robot. We

also investigate the system’s performance through a series

of real world experiments that highlight its accuracy and ro-

bustness.

2. Vision system components

The vision systems on the leader (helmet) and follower

(robot) consist of 4 wide field of view cameras, arranged

in 2 stereo pairs with one looking forward and the other

backward. Each system also has an inexpensive IMU sensor

which provides local orientation rates at 100Hz. Figure 2

contains a diagram of our system.

2.1. Dead reckoning visual navigation

The foundation of our navigation system is robust struc-

ture from motion estimation using a modified stereo scheme

from [11]. Instead of a frame-to-frame pose stitching, we

employ a dynamic local landmark matching scheme from

[15] where feature tracks are maintained to a chosen refer-
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Figure 2. A chart showing major hardware and software compo-

nents the VideoTrek system. Hardware devices are blue, and algo-

rithm blocks are red.

ence frame for as long as possible (until an unfavorable 3D

distribution of features is detected) to minimize drift accu-

mulation during small motions of the platform. These pose

estimates are computed at a rate of 15Hz on our system and

converted into frame-to-frame estimates. Since each navi-

gation system uses two mutually-calibrated stereo pairs, we

use the distributed aperture technique first described by Os-

kiper, et al [13].

For a stereo frame at time t, we extract Harris corner lo-

cations from the left and right images. The patches around

the feature locations are then matched, the matches trans-

formed into the camera coordinate system and triangulated

to produce a set of 3D points in the left camera’s coordinate

system. Some of the errors are immediately corrected with

epipolar geometry and left-right checks based on the extrin-

sic calibration. For the next pair of images at time t + 1,

we establish temporal correspondences of the Harris corner

locations with the frame at t. We now have a collection

of 2D-to-3D correspondences, from which we can compute

the pose of the camera at t+1 by using a RANSAC process

with hypotheses being generated with a 3-point 3D resec-

tion algorithm. Hypothesis scoring and the refinement is

done based on the reprojection error of the points in both

left and right images with a robust Cauchy cost function

also described in [13]. The winning hypothesis is then re-

fined with an iterative refinement process. After the pose is

established, the process repeats for frame at t + 1, starting

with re-triangulation.

After each stereo pair is processed, we robustify the vi-

sual odometry process even further by selecting the best es-

timate of the two available global scores.

Even with multiple cameras, there are still situations (al-
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though greatly minimized) where visual odometry alone

provides poor pose estimates. Therefore, in order to fur-

ther increase the robustness of our system we integrated our

system with a MEMS based IMU using the filter model sug-

gested by [13], which we will briefly summarize here. The

state vector for this constant velocity filter contains 16 el-

ements: X , (3-vector) representing position in navigation

coordinates, q, unit quaternion (4-vector) for attitude repre-

sentation in navigation coordinates, v, (3-vector) for trans-

lational velocity in body coordinates, ω, (3-vector) for ro-

tational velocity in body coordinates, and, b, (3-vector) for

angular rate sensor component (gyro) biases of the IMU.

We now define our process model as

Xk = Xk−1 + RT (qk−1)xrel), (1)

qk = qk−1 ⊗ q(ρrel), (2)

ωk = ωk−1 + nω,k−1 (3)

bk = bk−1 + nb,k−1 (4)

vk = vk−1 + nv,k−1 (5)

where

xrel = vk−1∆tk + nv,k−1∆tk (6)

ρrel = ωk−1∆tk + nω,k−1∆tk (7)

and ⊗ is the quaternion product operation. The rotation

vector ρ is in the body frame, R(q) is the rotation matrix

determined by the attitude quaternion q in the navigation

frame, and is the quaternion q obtained from the rotation

vector. Undetermined accelerations in both translational

and angular velocity components and the bias process noise

are modeled by zero mean white Gaussian noise processes.

The filter runs at the frame rate, meaning that the discrete

time index denoted by k corresponds to the frame times for

which pose outputs are available from visual odometry.

The gyro and accelerometer readings from the IMU are

used as measurements in the Kalman filter. Integrating all

the intermediate gyro velocities between consecutive video

frame time instants, rotational velocities are derived for the

frame to frame rotational motion. The multi-camera vi-

sual odometry frame to frame local pose measurements ex-

pressed in the coordinate frame of the front left camera,

Pk = P (tk, tk+1), are also converted to velocities by ex-

tracting the rotation axis vector corresponding to the rota-

tion matrix Rk, together with the camera translation given

by RT Tk, ( where Pk = [Rk|Tk]) and then dividing by the

timestep, ∆tk = tk+1 − tk. The accelerometer data corre-

sponding to frame instants is obtained by interpolating the

two accelerometer readings that arrive right before and af-

ter every frame and this information is used only when the

body acceleration is below a certain threshold to avoid con-

tamination. Hence, the observations from visual odometry

and IMU are used according to the following measurement

model:

vvo
k = vk + nvo

v,k, (8)

ωvo
k = ωk + nvo

ω,k, (9)

ωimu
k = ωk + bk + nimu

ω,k , (10)

aimu
k = R(qk)g + nimu

a,k . (11)

Here, vvo and ωvo are translational and angular velocity

measurements provided by visual odometry (vo), and ωimu,

and aimu are the gyro and accelerometers outputs provided

by the IMU, and g is the gravity vector. Uncertainty in the

visual odometry pose estimates, represented by the noise

components is estimated based by the reprojection error co-

variance of image features through backward propagation.

The gyro noise errors are modeled with fixed standard de-

viation values that are much higher than those correspond-

ing to the visual odometry noise when the pose estimates

are good (which is most often the case) and are compa-

rable in value or sometimes much less when vision based

pose estimation is difficult for brief durations. This allows

the filter to effectively combine the two measurements at

each measurement update, relying more on the sensor with

the better noise characteristics and also to estimate the gyro

component biases using the good measurements from visual

odometry that come with high confidence.

2.2. Distributed landmarkbased visual navigation

The high rate, fast dead reckoning pose is sufficient for

the robot controller to execute maneuvers in a local coordi-

nate system. In fact, the controller operates on the 3 degree

of freedom velocity estimate extracted from visual odome-

try. If we want the robot to follow a human, the path plan-

ning stage requires an estimate of robot’s pose in the hu-

man’s coordinate system. This is accomplished through the

use of visual landmarks. Both the leader and the follower

proceed by the method proposed by Zhu et al. [16] where

the sparse 3D interest points (triangulated from Harris cor-

ner locations) from the visual odometry process are used to

create HOG descriptors. The scale for these descriptors is

fixed to be proportional to the depth of the interest point

viewed from the left image of each stereo pair. The set of

descriptors, along with the 3D positions in the world of the

corresponding points and time stamp of the original image

is bundled into a data stream we call a “landmark snapshot”.

These snapshots serve as location fingerprints since they en-

code both the visual and geometric information about the

scene, and are therefore quite unique.

At this point the leader and the follower’s tasks diverge.

It is only necessary for the leader to maintain its relative

pose (relative to the start of the path), but the follower must

maintain its pose in relation to the leader. To this end, the

1103



leader sends its landmark snapshots to the follower. The fol-

lower then uses the leader’s snapshots to build up a map of

the environment by quantizing the feature descriptors into

a vocabulary tree [12] structure in follower’s memory, with

the descriptors being accessible via the inverted file struc-

ture. The features’ 3D positions and the timestamp are also

stored in the database. There are around 100 to 200 features

per frame that pass the visual odometry’s inlier criteria and

are inserted into the database.

The follower’s snapshots are then matched to the

database built with the leader’s features. From the top

matches we then select only ones taken from a location

with the Euclidean distance closer than 5m to the follower’s

present location. We then estimate the geometric consis-

tency for the remaining top matches in reverse order of in-

sertion into the database (based on the stored time stamp).

The ordering is there simply because we prefer to match

to the most recent location sighting, up to some point in

the past. The consistency check is done by estimating the

relative pose of the follower’s camera with the 3D features

collected by the leader. The set of inlier features is then

computed based on the reprojection error. If the number of

inliers is greater than a threshold, the match is considered

to be successful and the newly-computed final pose Pfinal is

output. Since dead reckoning and landmark matching oper-

ate in parallel on our system, we must compute the pose cor-

rection as Pc = P−1

f Pfinal where Pf is the follower’s pose

at the time that the matched frame was captured. This cor-

rection, which is, essentially, an accumulated error in pose

between the leader and follower, is then applied as an off-

set to all subsequent poses until a new match is found and a

new correction calculated.

3. Motion planning and control

The corrected globally aligned 6 DOF pose measure-

ments from both the helmet and the robot visual process-

ing blocks are projected into ground aligned 3 DOF poses

(planar position and orientation) for robot motion planning

and control. Since the coordinate systems are aligned, we

use the leader’s trajectory to generate the path plan for the

follower after appropriate (for robot path tracking) process-

ing for smoothness and continuity. The follower (robot)

uses a nonlinear steering controller [6] for path follow-

ing using cross track error as feedback. The controller

also compensates for delays in the low level actuators and

slows down the robot on tight curves to reduce slip.The

path planning and vehicle control run asynchronously with

landmark-corrected visual pose estimation. The maximum

speed of the follower robot was set at 0.8m/s with lower

speeds during turns.

Figure 3. The VideoTrek follower system installed on a mobile

robot. The sensors are in the white boxes on the platform and the

processor is in a black box visible on the side of the robot.

Figure 4. The VideoTrek leader system. The cameras are visible

on the sides of the helmet. The gray cable connects the sensors on

the helmet with the processing inside the backpack.

4. System integration

In the VideoTrek system, the leader, shown in Figure

4 and the follower, shown in Figure 3, use identical sen-

sors. Each system has two stereo pairs, looking forward

and backward (with respect to the dominant motion direc-
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Figure 5. A plot of leader’s trajectory (blue) for the “Circle 2”

experiment and follower’s estimated position with respect to the

leader’s trajectory (red) based on follower’s dead reckoning and

visual landmark matching.

tion of the platform), and an inexpensive IMU unit. The

stereo baseline and inter-stereo pose are different for each

system due to different packaging requirements of the hel-

met and robot systems. The baseline is 17cm for the robot’s

stereo cameras, and 23cm for the helmet. The 640x480

pixel FireWire cameras are used with 70 degree field of

view lenses. The leader’s sensors are built into a helmet

with the PC residing inside a backpack and the follower

system is integrated with a mobile robot. In both cases the

cameras were pointing toward the ground at an angle of ap-

proximately 15 degrees from horizontal in order to capture

nearby features.

Each system contains an Intel CoreDuo-based PC, but

image processing rates are different on the leader and the

follower, according to the tasks. The helmet-based leader

system needs to have high frame rate to keep up with fast

head motions, and thus was operating dead reckoning nav-

igation at 15Hz, while the slower moving robot system op-

erated at 10Hz, and the extra processing time was used by

path planning and robot control. Both systems generate and

matched landmarks asynchronously at 1Hz.

Each system is equipped with an 802.11-based wireless

network capability used for path and landmark communica-

tion. The average bandwidth use with our system is about

100KB/s, which corresponds to the size of an average land-

mark snapshot.

4.1. System operation

The VideoTrek system was field-tested with the follow-

ing procedure for each experiment:
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Figure 6. Trajectory for the leader (blue) and follower (red) for one

of the Repeatability Experiment runs from Table 2.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frame Number

L
e
a
d
e
r 

to
 F

o
ll
o
w

e
r 

D
is

ta
n
c
e

Figure 7. Estimated distance between the leader and follower,

based on landmark matching between the two for one of the re-

peatability experiments from Table 2. This demonstrates that the

drift is kept in check by the matching. The initial 167 frames oc-

curred before the coordinate systems synchronized.

1. The operator puts on the helmet system and stands next

to the robot.

2. The operator activates the navigation systems of the

leader and the follower via a tablet computer interface.

3. The operator moves his head until the field of view of

the helmet and the robot overlap sufficiently to estab-

lish a landmark match, synchronizing the coordinate

systems. The operator is notified of this event.

4. The operator is now free to move about in the environ-

ment, making sure to move only in places where the
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Figure 8. Trajectory shape comparison between the landmark-

corrected robot path (blue) and Kalman filter output (green). With-

out landmark correction, the robot’s visual navigation calculated it

was taking the green path. (Note: the green trajectory is not nec-

essarily the path the robot would have taken if landmark matching

was not present.)
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Figure 9. Landmark-corrected robot path (blue) with landmark

match locations indicated by stars. The match locations are not

necessarily on the path because the corrections take several frame

times to calculate and consequently can only be applied to several

frame times in the future.

robot can operate safely. He can look around freely,

kneel, run, walk backwards and sideways.

5. Once the operator comes to a stop, the robot traverses

the remaining distance, and then stops at a safe dis-

tance from the operator. If the operator chooses to start

moving again, the robot will follow.

6. Upon reaching the destination, the operator deactivates

the system via the tablet computer interface.

At the beginning of each experiment, the operator wear-

ing the helmet should stand alongside the robot for the ini-

tial synchronization to take place. This makes it easy to

overlap the fields of view of the robot and helmet. The syn-

chronization usually happens within a few seconds follow-

ing activation.

4.2. Results

The system was evaluated with respect to follower ac-

curacy and robustness to leader’s pose change. We did not

evaluate the leader’s absolute pose accuracy since long-term

drift in leader’s pose does not result in degradation of the

follower’s performance. The goal was to allow the leader

the maximum freedom of motion, so in many of the exper-

iments the operator looked around the evironment freely,

turned around, stopped, walked backwards and sideways,

jogged and crouched. A qualitative assessment shows that

the system recovers well from these disturbances. The vi-

sual navigation performance was evaluated by computing

the distance between the leader’s position and follower’s po-

sition in the leader’s coordinate system. This distance relies

on the follower to correctly estimate its pose with respect

to the leader. Dead reckoning drift due to lack of matches

as well as mismatches will result in large relative distances

since the robot’s controller tries to maintain a minimum pos-

sible distance between leader and follower (with a safety

distance around the operator where the robot cannot go).

Two experiments with duration of about 11 minutes and 15

minutes respectively are shown in Figures 5 and 6. The

plots shows the leader’s position in red and follower’s posi-

tion in blue. The discontinuities in the robot’s position re-

sult from landmark matches, which adjust the robot’s notion

of where it is. We cannot expect the robot’s controller to fol-

low the operator’s path exactly and maintain speed during

turns, which accounts for some amount of deviation from

the path. The landmark match locations are shown with

stars in Figure 9. Note that due to time taken to compute

the matches, the pose corrections are not applied for several

frames after an image is taken.

The system underwent extensive field testing for per-

formance as well as reliability. It proved to be quite reli-

able throughout the day and on multiple surfaces, including

sand, asphalt and grass. Another major issue for the system

is its handling of different height disparities between the op-

erator and the robot. The helmet was worn by people with

heights ranging from 1.62m to 1.83m, giving us a disparity

1106



Trial Name Duration (s) Length (m) Avg. Error (m) Max. Error (m) Avg. Speed (m/s)

Long 1 1101 868 0.21 1.9 0.53

Long 2 1187 673 0.25 2.5 0.54

Loops 942 400 0.15 0.81 0.64

Circle 1 925 346 0.15 1.3 0.64

Circle 2 641 309 0.22 1.2 0.70

Retrace 1 700 305 0.18 1.3 0.66

Retrace 2 725 280 0.11 0.89 0.56

Retrace 3 454 135 0.22 0.96 0.62

Desert 1 658 229 0.34 2.1 0.50

Desert 2 327 106 0.31 1.1 0.60

Table 1. Experimental evaluation statistics. The duration column is the amount of time the robot took to traverse the path. The time duration

includes any operator pauses during which navigation was running. The path length column is the distance travelled by the robot. Total

distance travelled by the operator was a few meters greater since the safety system stopped the robot when it achieved a distance of 2m

from the operator. Average speed refers to the forward speed of the robot during following.

Date/Time Duration (s) Length (m) Avg. Error (m) Max. Error (m) Avg. Speed (m/s)

2008.09.21/16.37.16 285 87 0.25 0.88 0.51

2008.09.21/16.42.48 260 82 0.26 0.97 0.51

2008.09.21/17.14.02 293 85 0.29 1.0 0.51

2008.09.21/21.19.13 409 91 0.17 0.68 0.51

2008.09.22/18.53.31 331 83 0.32 0.93 0.51

2008.09.22/19.00.26 274 79 0.24 1.1 0.52

2008.09.22/21.34.27 397 81 0.14 0.95 0.50

2008.09.23/17.09.59 267 84 0.28 0.97 0.52

2008.09.23/17.40.56 261 85 0.29 1.22 0.51

2008.09.23/19.34.46 283 87 0.26 1.15 0.52

2008.09.23/20.20.51 263 84 0.28 0.85 0.51

2008.09.23/20.49.22 262 82 0.27 0.94 0.51

2008.09.24/14.20.35 266 85 0.28 0.97 0.52

2008.09.24/16.33.17 255 79 0.20 0.75 0.43

2008.09.24/17.29.18 271 86 0.27 0.92 0.52

2008.09.24/20.15.03 275 90 0.26 0.88 0.50

2008.09.24/21.02.18 264 91 0.27 0.91 0.51

2008.09.25/17.16.14 272 88 0.24 0.90 0.51

2008.09.25/18.07.13 317 87 0.27 0.85 0.50

2008.09.25/20.06.08 373 94 0.19 1.03 0.52

2008.09.25/21.01.20 243 88 0.30 1.10 0.51

Table 2. Repeatability experiments consisted of the system traversing the same route over 5 days at different times during the day.

range of 0.42m to 0.63m without impacting performance.

The most common cause of failure during field demonstra-

tions was loss of power, followed by the loss of network

connectivity. The robot never visibly strayed from the path

traversed by the operator.

Time synchronization between sensors within each

multi-sensor rig is of great importance. By employing ex-

ternal triggering for the cameras and the IMU, the images

and IMU readings were synchronized within a few millisec-

onds. The tightly-coupled Kalman filter does not perform

well if the input data is more than 5ms out of synchroniza-

tion.

In practice the landmark matching system never con-

fused one place for another, even on asphalt. This can be

explained by the abundance of Harris corners (even in the

aforementioned environments) combined with the discrim-

inative power of HOG features and uniqueness of 3D con-

figurations of features (even planar).In areas with a shortage

of usable landmarks (such as when a person is looking off

to the side), the dead-reckoning visual odometry system al-

lows the robot to follow for 10s of meters (see [13] for a

quantitative evaluation of this system) without registering a
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Figure 10. Path of the 868m leader (blue) and follower (red) run.

landmark match. See Figure 8 for an example of Kalman

filter only path.

Figure 7 shows the distances (in the main motion plane)

between the robot’s and operator’s perceived positions.

The Table 2 summarized results from 21 nearly identical

runs in a desert environment, which constituted an official

evaluation of the prototype. These runs took place during

various times of the day. Other runs, with several different

operators and including ones in suburban environment (see

Figure 1) are shown in Figure 1. The longest recorded run

of 868m is shown in 10. These results clearly show robust-

ness and consistent performance under a variety of circum-

stances.

5. Conclusions

We presented algorithms and a system for a basic au-

tonomous tag-along robot, capable of following the visual

landmark trail sent to it automatically and in real time by

an operator. While this system is in the prototype stage,

it demonstrates the potential for relieving the burden on

a human operator of a future robot in a very natural way.

Equipped with obstacle avoidance, such a robot can follow

any moving platform, forming a convoy of different robots

and people. This robot also knows enough about the envi-

ronment to retrace its steps, which is a useful capability (and

a subject of research) that is naturally accomplished within

our framework.
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