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Abstract

The variations of pose lead to significant performance
decline in face recognition systems, which is a bottleneck
in face recognition. A key problem is how to measure the
similarity between two image vectors of unequal length that
viewed from different pose. In this paper, we propose a
novel approach for pose robust face recognition, in which
the similarity is measured by correlations in a media sub-
space between different poses on patch level. The media
subspace is constructed by Canonical Correlation Analysis,
such that the intra-individual correlations are maximized.
Based on the media subspace two recognition approaches
are developed. In the first, we transform non-frontal face
into frontal for recognition. And in the second, we perform
recognition in the media subspace with probabilistic model-
ing. The experimental results on FERET database demon-
strate the efficiency of our approach.

1. Introduction
As one of the most active research topic, automatic face

recognition has received significant attention in computer

vision and pattern recognition. After more than 30 years

of research, high performance can now be achieved under

controlled conditions. But when variations due to extrinsic

factors like pose, illumination and expression are present

the performance drops significantly[18]. The problem of

face recognition is far from being solved, for these varia-

tions are very common in real-world applications. Of these,

pose change is one of the most important and difficult issues

for face recognition. In this paper, we focus on the most

common and challenging scenario in which only a single

enrolled image is available for each person and the probe

image is taken from a different viewpoint.

Figure 1. Illustration of how maximizing intra-individual correla-

tions leads to viewpoint invariance. In the above figure, s denotes

the correlation value between a pair of corresponding patches.

p(s|same) and p(s|dif) are the distributions of the same and dif-

ferent identity respectively. (a) Pose variations confuse the distri-

butions. (b) In the correlation-maximized subspace, the distribu-

tions become better separated.

Variations in face appearance due to pose are related to

two factors: the viewpoint and the 3D facial shape. In the

2D image taken from a different viewpoint, the locations of

surface points on face change differently by reason of 3D fa-

cial shape. That is to say, a pair of closer points in one pose

may become far away from each other in another pose. This

inner structure distortion of image leads to the difficulty
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of alignment. Furthermore, the 3D shape of human face

is not ideally convex. Its concavity can cause occlusion,

viz. when pose changes, some visible parts on face may

become invisible while some invisible parts may become

visible.It leads to a special phenomenon in the pose prob-

lem that the distance between two different individual with

similar pose is smaller than the distance between the same

individual under different pose. Typical frontal face recog-

nition methods, such as Eigenface[17] and Fisherface[2],

usually convert face images directly into equal length vec-

tors without any treatment to the problem of image inner

structure distortion and occlusion. Thus, it is not surpris-

ing that their performances degrade dramatically when pose

variation gets bigger.

For the tight connection between the pose variation and

3D shape, 3D prior information is used to enhance the

recognition performance. In this type of approaches, the

3D morphable model proposed by Blanz and Vetter[4] is

considered the state of the art. By fitting the statistical

3D model to the input face, high recognition rate can be

achieved using the representation coefficients or the trans-

formed images[3]. Although the optimization process of

fitting guarantees the reconstruction accuracy, but it also

bring the problem of high computational complexity. Liu

and Chen[12] proposed a similar approach using a simple

3D ellipsoid instead of complex 3D face model. The sim-

plicity of ellipsoid can reduce the computational cost, but

obviously, it also limits the accuracy. Although promising,

the 3D geometry based approaches still face some hard ob-

stacles, such as accurate initial feature point alignment.

Besides the 3D geometry based approaches, building sta-

tistical models is another popular way to tackle the pose in-

variant face recognition problem. Hitherto, a typical statis-

tical approach is the eigen light-field method proposed by

Gross et al.[6]. They build a complete appearance model

including all possible pose variations. A test image can

be viewed as a part of this complete model. The missing

parts are estimated from the available parts. Recognition

is performed by comparing the coefficients of the complete

appearance model. To reduce variations between different

poses, one approach is to transform the model from one

pose to another. Sanderson et al.[16] transform the frontal

face model to non-frontal views for extending the gallery

set and perform the verification using a Bayesian classi-

fier based on mixtures of Gaussians. Similarly, Lee and

Kim [10]transform the non-frontal image to frontal in lin-

ear feature space. Recently Prince et al.[15] propose a new

algorithm based on learning the tied factors between dif-

ferent view points. Based on these factors, recognition is

performed with probabilistic distance metirc modeling.

Since local patches are considered more robust to the

pose variations than the holistic appearance, patch based

approaches are developed in recent years. Kanade and

Yamada[8] propose a patch based approach for pose invari-

ant face recognition using Gaussian probabilistic model and

Bayesian classifier. Lucey and Chen[13] extend Kanade

and Yamada’s approach by modeling the joint appearance

of frontal patches and holistic non-frontal images. Recently,

Ashraf et al.[1] make a further improvement by learning the

patch correspondences based on 2D affine transform. By

learning the parameters of affine transform on face images

across pose, some 3D geometry information is involved.

Different from the foregoing approaches that directly mea-

sures similarity between patches, Chai et al.[5] perform lin-

ear regression on local patches for virtual frontal view syn-

thesis. Each frontal patch is predicted from the correspond-

ing non-frontal patch, then the final virtual frontal view can

be synthesized by overlapping the predicted patches. Fi-

nally, recognition is performed on the synthesized images.

A key problem in pose robust face recognition is how to

measure the similarity between two vectors with unequal

length and inner distortion. For example, for a rectan-

gle patch on frontal face, its corresponding region on non-

frontal face will expand or shrink with geometric distortion.

Thus, a pair of corresponding vectors viewed from different

poses are different in length and inner structure. Previous

approaches usually measure the similarity of vectors by di-

rectly point-to-point matching, e.g. the sum of the squared

differences (SSD) in [8, 12, 13, 1]. This measurement re-

quires aligned vectors with equal length, which is a contra-

diction for the pose variation. To tackle this problem, we

propose a novel approach for pose robust face recognition,

in which the similarity is measured by correlations in a me-

dia subspace between different poses on patch level. The

contributions of this paper include:

• We construct a media subspace between different

poses by Canonical Correlation Analysis (CCA) [7].

The intra-individual correlations are maximized in this

subspace, such that the similarity of patches between

different poses can be well measured by the correla-

tion of their projections in the subspace (see Figure 1).

• Based on the media subspace we develop two recog-

nition approaches, i.e., generating virtual frontal views

and correlation based classification in the media sub-

space with probabilistic modeling.

The rest of the paper is organized as follows. In sec-

tion 2, we describe how the intra-individual correlations are

maximized by CCA and 3D patch correspondences. Two

correlation based recognition methods are given in section

3. Section 4 shows experimental results of the proposed

method. Finally, we draw conclusions in section 5.
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2. Maximizing Intra-individual Correlations

In this section, we describe two strategies for maximiz-

ing the intra-individual correlations. In the first, we employ

3D patch correspondences to reduce geometric distortion

induced by pose. In the second, we construct a media sub-

space between frontal and non-frontal poses.

2.1. 3D Patch Correspondence

Previous patch based works[8, 12, 13, 5, 1] proved that

local patches on face are more invariant to pose change than

the holistic images. However, human face has a complex

3D geometric structure. So, if a frontal face is divided

into rectangle patches, it is hard to accurately model their

corresponding regions on non-frontal face in similar rect-

angles. To tackle this problem, Chai et al.[5] use a cylin-

drical 3D model to reduce horizontal distortion, while Liu

and Chen[12] use a 3D ellipsoid to map faces into a tex-

ture map. However, due to the complexity of 3D faces, nei-

ther the cylindrical model nor the ellipsoid model is good

enough to represent 3D facial structure. Recently, Ashraf

et al.[1] proposed a method to learn the parameters of 2D

affine transform between frontal and non-frontal patches.

The warped patches in non-frontal view obtained in their

approach can reflect some 3D structure information of face.

But these patches are not adjacent to their neighbor patches,

and this approach can not deal with the problem of the in-

visible regions.

Figure 2. Example of 3D patch correspondences based on a

generic 3D face model.(a) Non-overlapping patch division on the

frontal face. (b) The corresponding regions on non-frontal face.

(c) The generic 3D face model.

In this paper, we find that the patch misalignment can be

reduced efficiently by simply using a generic mean 3D face

model. By rotating the 3D model, the corresponding region

of a frontal patch in non-frontal view can be obtained easily.

As illustrated in Figure 2, the corresponding regions can fit

the geometric structure of the non-frontal faces pretty well.

Compared with the results in [1], the patch correspondences

obtained by our method are more close to the real facial

shape. The geometric distortion induced by pose can be

greatly reduced. Thus, the correlation of each frontal and

non-frontal patch pair can be enhanced.

2.2. Constructing the Correlation-Maximized Sub-
space

As shown in last sub-section, if we vectorize the cor-

responding patches of different poses, the vectors we get

might be different in length due to the visibility or invis-

ibility of some surface points. Thus, the frontal and non-

frontal patches form two different subspaces. For measur-

ing the similarity, we use Canonical Correlation Analysis

[7] to construct a media subspace between the frontal and

non-frontal subspaces.

Let (X, Y ) be the training set of vectorized patches on

a certain facial region from two different views as we de-

fined in last sub-section, where X = {x1, x2 . . . , xn},

Y = {y1, y2 . . . , yn}. Both X and Y are normalized to

zero mean. Our Goal is to find two sets of basis vectors,

each for one pose, such that the correlations between the

projections of variables onto them are mutually maximized.

Denote the basis vectors as Wx = {wx1, wx2 . . . , wxk} and

Wy = {wy1, wy2 . . . , wyk}. For a pair of basis vectors

(wx, wy), the correlation ρ between the projections wT
x X

and wT
y Y is

ρ =
E[wT

x XY T wy]√
E[wT

x XXT wx]E[wT
y Y Y T wy]

(1)

Here, E[f(x, y)] is the empirical expectation of function

f(x, y).
Considering the means of X and Y are zero, the total

covariance matrix of (X, Y ) can be written as:

Ctotal =
(

Cxx Cxy

Cyx Cyy

)
= E

[(
X
Y

)(
X
Y

)T
]

(2)

where Cxx and Cyy are the within-pose covariance matrices

of X and Y respectively and Cxy = CT
yx is the within-

individual covariance matrix between two different poses.

Thus, the object function can be described as:

ρ = max
Wx,Wy

WT
x CxyWy√

WT
x CxxWxWT

y CyyWy

(3)

The solution of Wx and Wy can be found by solving the

following eigenvalue equations:

C−1
xx CxyC−1

yy CyxWx = ρ2Wx

C−1
yy CyxC−1

xx CxyWy = ρ2Wy

(4)

Only one of the equations needs to be solved, because

the solutions are related by

CxyWy = ρλxCxxWx

CyxWx = ρλyCyyWy

(5)
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where

λx = λ−1
y =

√
WT

y CyyWy

WT
x CxxWx

(6)

When Wx and Wy are optimized, the correlation be-

tween projection WT
x xi and WT

y yi is maximized. That is to

say, the correlation between a pair of variables that labeled

as the same identity is maximized. Thus, we denote the

constructed media subspace as intra-individual correlation-

maximized subspace.

Additionally,when the unequal-length vectors of differ-

ent view are projected into the media subspace using the

basis vectors respectively, the length of the projected vec-

tors will become equal. Therefore, the problem of mea-

suring similarity between unequal-length vectors can be

solved. How maximizing intra-individual correlations leads

to viewpoint invariance is illustrated in Figure 1.

3. Recognition Algorithms
Based on the correlation-maximized subspaces, two

recognition algorithms are developed, i.e., virtual frontal

view synthesis and correlation based classification with

probabilistic modeling. As illustrated in Figure 3, the key

difference is that the former approach performs recognition

in the frontal face subspace, while the latter approach per-

forms recognition in the correlation-maximized subspace.

Figure 3. Illustration of two recognition algorithms. In the virtual

frontal view based algorithm recognition is performed in frontal

face subspace, while in the correlation based classification recog-

nition is performed in the correlation-maximized subspace

3.1. Generating Virtual Frontal Views

Generating virtual frontal views is a popular way to

tackle pose invariant face recognition, which is served as

a pre-processing phase for the recognition task. Due to

the pose variations different poses form different subspaces.

Virtual frontal views synthesis can be formulated as a re-

gression procedure that transforms the face from the non-

frontal subspace to frontal subspace. An example work of

this approach is proposed by Chai et al.[5], in which linear

regression is applied. The essence of linear regression is

coefficients sharing. That is to say, it uses the best-fit co-

efficients in non-frontal subspace to reconstruct faces in the

frontal subspace. But for two different subspaces, the best-

fit coefficients in one subspace are not necessarily the best

in another.

Based on the correlation-maximized subspace described

in previous section, we can build a bridge between the

frontal and non-frontal subspaces. With the constraints de-

rived from both subspaces the coefficients mismatch can be

reduced. As shown in Figure 3, at the first step, we project

the non-frontal patches into the correlation-maximized sub-

space. And then, regress them into the frontal face sub-

space. Similar to [11], we use ridge regression for trade

off between accuracy and generalization. The virtual view

generating process can be summarized as:

yvirtual = ymean + RWT
x (xinput − xmean) (7)

where xinput and yvirtual are the input non-frontal and the

virtual frontal patch respectively. Wx is the optimized basis,

and the R is the regression function:

R = Y X̂(X̂X̂T + λI)−1 (8)

Here, X̂ = WT
x X is the projection of non-frontal patches,

λ is the control parameter of ridge regression.

To smooth the blocking effect, patches are sampled with

overlapping. The intensities of overlapped pixels are calcu-

lated as the mean of overlapping. Using the virtual frontal

images, frontal images based recognition algorithms can be

adopted for further recognition.

3.2. Correlation Based Classification with Proba-
bilistic Modeling

Besides the virtual view synthesis, recognition can be

conducted directly using the correlation of patches. At

first, frontal and non-frontal patches are projected into the

correlation-maximized subspace the using the basis vectors

Wx and Wy .

x̂i = WT
x (xi − xmean)

ŷi = WT
y (yi − ymean)

(9)

Here, (xi, yi) is the i-th patch pair. Then the similarities of

corresponding patch pairs are measured by correlation.

si =
x̂i · ŷi

‖x̂i‖‖ŷi‖ (10)

Recognition can then be conducted directly by compar-

ing the sum of correlations values of all patches. However,

since different patches have different discriminating pow-

ers. It is not reasonable to treat them equally. Consider-

ing this point, Kanade and Yamada[8] proposed a proba-

bilistic framework for modeling the discriminating power
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of patches. We combine this framework with the patch cor-

relations. The modeling process is illustrated in Figure 4,

and formally described as follows.

Figure 4. The probabilistic modeling of correlations (a)Example

patch (b)The correlation values, diagonal elements are the corre-

lations of same identities. (c)Histograms of correlations: same

identity and different identity. (d)The Gaussian fits of (c)

For the i-th patch pair, the conditional probability den-

sity that they belong to the same identity is denoted as

P (si|same, φp). Here, si is the similarity and φp is

the probe viewpoint. Likewise P (si|dif, φp) denotes the

conditional probability density that of different identities.

These distributions are approximated by a Gaussian distri-

bution. Accordingly,

P (si|same, φp) =
1√

2πσsame
i

exp[−1
2
(
si − μsame

i

σsame
i

)2]

P (si|dif, φp) =
1√

2πσdif
i

exp[−1
2
(
si − μdif

i

σdif
i

)2]

(11)

where μsame and μdif , σsame and σdif are the means and

standard deviations respectively. Based on Bayes rule, the

posteriori probability that a patch pair belong to the same

identity is

P (same|si, φp) =
P (si|same, φp)P (same)

P (si|same, φp)P (same) + P (si|dif, φp)P (dif)
(12)

P (same) and P (dif) are the priori probability of the

same identity and that of different identity respectively.

Based on the sum rule of combining classifiers[9, 8], the

total similarity between a gallery image and the probe im-

age can be computed as the sum of the probability values.

S(same|Ig; Ip) =
k∑

i=1

P (same|si, φp) (13)

where k is the total number of patches.In the classification

step, the clamant probe is identified to the gallery identity

with highest S value.

4. Experiments
Experiments are performed on the multi-pose subset

of FERET database[14]. The FERET database con-

sists of images of 200 subjects captured at 9 different

viewpoints. Subsets of each viewpoint are denoted as

ba, bb, bc, bd, be, bf, bg, bh and bi, which roughly refer to

viewpoint angle of 0◦, 60◦, 40◦, 25◦, 15◦, -15◦, -25◦, -

40◦, -60◦ respectively. We randomly select 100 subjects

for training, while the remaining subjects are used for test-

ing. Images are normalized according to three manually

labeled points, i.e., the centers of mouth and two eyes re-

spectively. The frontal face region is divided into patches

each of size 16 × 16. To keep the smoothness, patches are

sampled with overlapping. The overlapping step is set to 4

pixels for balance between smoothness and computational

cost. Thus, we have 309 patches totally. Figure 5 illustrate

the non-overlapped division of 27 patches and the overlap-

ping effect.

Figure 5. The patch dividing and overlapping. (a) Non-overlapped

division of 27 patches. (b) The overlapping effect of 309 patches

4.1. Virtual Frontal View Based Recognition

As described in previous section, frontal faces can be

synthesized using patches transformed from non-frontal

faces. In Figure 6, example results of virtual frontal view

synthesis are shown. For comparison, the results of linear

regression on the 3D corresponding patches are also given.

We can see that, the proposed synthesis approach is more

immune to geometric distortion.

When virtual frontal views are synthesized, recognition

can be performed using any frontal face recognition algo-

rithm. In this paper we choose the Fisherface[2] method for

its effectiveness and popularity in face recognition. In the

FERET database there is only one image of frontal view for

each subject. However, the Fisherface method requires at

609



Figure 6. Example results of virtual frontal view synthesis. (a) Input non-frontal image. (b) Virtual views generated by the proposed

method. (c) Virtual views generated by linear regression. (d) The ground truth frontal view

least two samples per subject. We solve this problem by ex-

panding the training set with virtual frontal views obtained

from cross validation. We divide the training set into five

subsets. For each subset, the non-frontal images are trans-

formed to frontal using the regression function trained on

the remaining four subsets. Then we can get a virtual frontal

view for each subject. Generating the virtual samples for all

poses, we can expand the training set to 9 samples per sub-

ject, i.e., one real sample and 8 virtual samples respectively.

We compare the recognition performance using three

different kinds of images, i.e., the virtual views synthesized

by our approach, those obtained through linear regression

and the original images respectively. As shown in Figure 7,

under the viewpoints close to frontal, the performances on

all kinds of images are close. But when pose angle become

larger, our approach performs noticeably better.
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Figure 7. Comparison of recognition performance on virtual

frontal view synthesis.

4.2. Correlation Based Recognition

Besides the virtual frontal view synthesis, recognition

can also be performed using the correlations. But, when

conducting the recognition, we meet similar problem in the

virtual frontal views based approach. We have to learn both

the correlation-maximized subspace and the prior distribu-

tion of correlations on the same training set. To avoid this

problem, similar cross validation procedure is performed to

learn the prior distributions of correlations. The training

set is divided into 5 subsets. In each subset, the vectorized

patches are projected into the correlation-maximized sub-

space that learned from the remaining 4 subsets. Then we

get a correlation value for each patch pair in the training

set. Hereafter, the prior distribution of same identities and

different identities are approximated using these correlation

values.
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Figure 8. Performance of recognition using probabilistic correla-

tion and correlation and fisherface

In the recognition experiments we set P(Same) = P(Dif

) = 0.5. Since there is no prior knowledge, we assume

that the probability is equal. To validate the proposed

method, we compare the probabilistic approach with the

non-probabilistic approach. As shown in Figure 8, the prob-

abilistic approach outperforms the non-probabilistic ap-

proach. The probabilistic modeling on correlations can im-
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prove the performance. Moreover, if we treat the holistic

image as a ”bigger patch”, and build similar probabilistic

model on them, the performance in large pose angle can be

considerably improved. The results are shown in Figure 9.

When viewpoint angle becomes larger, the corresponding

regions of frontal patch become smaller and smaller on non-

frontal face. The information in these patches is declined, so

that the information between frontal and non-frontal patch

pairs is unbalanced. Using the holistic images or enlarging

the corresponding regions in non-frontal images can reduce

this information declination. This may explain the perfor-

mance promotion induced by using holistic images.
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Figure 9. Comparison of performance between the approach using

only local patches and that combining with holistic images

5. Conclusions
In this paper, we explore the problem of similarity mea-

surement in pose robust face recognition. A novel mea-

surement approach is proposed, in which the similarity of

patches between different poses is measured by correlations

in a media subspace constructed by Canonical Correlation

Analysis. Based on the media subspace two different recog-

nition algorithms are developed. In the first, we transform

non-frontal faces into frontal for recognition, while in the

second we perform recognition in the media subspace with

probabilistic modeling. Experimental results demonstrate

that both of them are efficient. Therefore the proposed sim-

ilarity measurement is suitable for pose robust face recog-

nition.

A limitation of our approach is the assumption of known

pose. Although the head pose can be estimated, it is not

clear that how robust to the error of pose estimation our

approach is. We will analyze it and combine our approach

with pose estimation in the future work.
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