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Abstract

Fusion of 3D laser radar (LIDAR) imagery and aerial
optical imagery is an efficient method for constructing 3D
virtual reality models. One difficult aspect of creating such
models is registering the optical image with the LIDAR
point cloud, which is characterized as a camera pose
estimation problem. We propose a novel application of
mutual information registration methods, which exploits the
statistical dependency in urban scenes of optical apperance
with measured LIDAR elevation. We utilize the well known
downhill simplex optimization to infer camera pose pa-
rameters. We discuss three methods for measuring mutual
information between LIDAR imagery and optical imagery.
Utilization of OpenGL and graphics hardware in the
optimization process yields registration times dramatically
lower than previous methods. Using an initial registra-
tion comparable to GPS/INS accuracy, we demonstrate
the utility of our algorithm with a collection of urban im-
ages and present 3D models created with the fused imagery.

1. Introduction
Virtual reality 3D models are useful for understanding a

scene of interest. Urban 3D modeling has also gained pop-
ularity in entertainment and commercial applications, and
has been implemented with geographical image libraries
such as Google Earth and Live Search Maps [5, 11]. 3D
models are valuable for applications such as urban planning
and simulation, interpretation of reconnaissance data, and
real-time emergency response. Models are constructed by
texture mapping aerial and ground images onto 3D geome-
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try models of the scene. While geometry models have tradi-
tionally been constructed manually, recent advances in air-
borne laser radar (LIDAR) imaging technology have made
the acquisition of high resolution digital elevation data more
efficient and cost effective.

One challenge in creating such models is registering 2D
optical imagery with the 3D LIDAR imagery. This can
be formulated as a camera pose estimation problem where
the transformation between 3D LIDAR coordinates and 2D
image coordinates is characterized by camera parameters
such as position, orientation, and focal length. Manual
camera pose selection is difficult as it requires simultane-
ous refinement of numerous camera parameters. Registra-
tion can be achieved more efficiently by manually selecting
pairs of correspondence points, but this task becomes labo-
rious for situations where many images must be registered
to create large 3D models. Some methods have been devel-
oped for performing automatic registration, but they suffer
from being computationally expensive and/or demonstrat-
ing low accuracy rates. In this paper, we discuss a novel
methodology for performing automatic camera pose esti-
mation wherein we exploit the observed statistical depen-
dency between LIDAR elevation and optical appearance in
urban scenes. We also consider an additional attribute avail-
able from some LIDAR devices and investigate its utility for
registration.

There has been a considerable amount of research in
registering multi-view optical images with LIDAR imagery
and other geometric models. Liu, et al. applied structure-
from-motion to a collection of photographs to infer a sparse
set of 3D points, and then performed 3D-3D registration
[10]. While 2D-3D registration is considered, their work
emphasizes 3D-3D registration. Zhao, et al. used stereo vi-
sion techniques to infer 3D structure from video sequences,
followed by 3D-3D registration with the iterative closest
point (ICP) algorithm [20]. Both of these methods demon-
strate notable results with little or no prior camera infor-
mation, such as global positioning system (GPS) data, but
they require numerous overlapping images of the scene of
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interest.
In the area of single-view registration, Vasile, et al. used

LIDAR data to derive a pseudo-intensity image with shad-
ows for correlation with aerial imagery [17]. Their regis-
tration procedure starts with GPS and camera line of sight
information and then uses an exhaustive search over trans-
lation, scale, and lens distortion. Frueh, et al. developed a
similar system based on detection and alignment of line seg-
ments in the optical image and projections of line segments
from the 3D image [4]. Using a prior camera orientation
with accuracy comparable to that of a GPS and inertial nav-
igation system (INS), they used an exhaustive search over
camera position, orientation, and focal length. Their sys-
tem requires approximately 20 hours of computing time on
a standard computer. Both methods demonstrate accurate
registration results, but are computationally expensive.

There are a variety of algorithms that utilize specific im-
age features to perform registration. Troccoli and Allen
used matching of shadows to align images with a 3D model
[16]. This requires a strong presence of shadows as well
as knowledge of the relative sun position when the pho-
tographs were taken. Kurazume, et al. used detection of
and matching of edges for registration [7]. One drawback
of this method is that it requires a relatively dense 3D point
cloud to infer edges. Stamos and Allen used matching of
rectangles from building facades for alignment[15]. Yang,
et al. use feature matching to align ground images, but they
work with a very detailed 3D model [19]. These methods
are not robust for all types of urban imagery, and are not
optimal for sparse point clouds.

Other approaches have employed vanishing points. Lee,
et al. extracted lines from images and 3D models to find
vanishing points [8]. Their system cannot register all types
of imagery, as it was designed for ground-based images
with clearly visible facades. Ding et al. used vanishing
points with aerial imagery to detect corners in a similar
manner, and used M-estimator sample consensus to iden-
tify corner matches [1]. Starting with a GPS/INS prior,
their algorithm runs in approximately 3 minutes, but only
achieves a 61% accuracy rate for images of a downtown
district, a college campus, and a residential region. Liu and
Stamos used vanishing points and matching of features to
align ground images with 3D range models [9]. All of these
approaches are dependent on the strong presence of parallel
lines to infer vanishing points, which limits their ability to
handle different types of imagery.

2. Methodology
We suggest a straightforward approach that combines an

information-theoretic similarity measure with optimization
over parameters in a camera model. Our optical images are
oblique aerial photographs provided by [14]. The LIDAR
data is an ungridded 3D point cloud where each point has

an x, y, and z value, as well as probability of detection
value that represents how many photons the LIDAR sen-
sor measured. The LIDAR data has a planimetric density
of approximately 6 points per square meter. Our problem is
a 2D-3D registration problem, but is more accurately char-
acterized as a camera pose estimation problem, where the
camera parameters corresponding to the optical image must
be estimated. Here we briefly review the criterion used for
registration, the camera model, our approach for obtaining
ground truth registration, and the method for 3D model gen-
eration.

2.1. Mutual Information Registration

Statistical and information-theoretic methods have been
used extensively for multi-modal registration of medical
imagery. Methods based on these principals have demon-
strated excellent performance for a wide variety of 2D-2D
and 2D-3D registration applications, e.g. [21, 22]. The
methods were originally proposed contemporaneously by
Viola and Wells [18] and Maes et al [12]. Since their orig-
inal proposal, these methods (and variations thereof) have
become the standard method for automatic registration of
dense volumetric medical imagery (e.g. CT and MRI). As
these algorithms use grayscale intensity values to evaluate
statistics, there is not a direct way to apply them to our prob-
lem. Consequently, we attribute features to both types of
imagery and evaluate registration statistics over the features.

Since our problem involves registration of imagery in
two dimensions with a point cloud in three dimensions, we
evaluate registration statistics in the 2D image plane via pro-
jection of the LIDAR features within the constraints of a
camera model for comparison with the image features. We
define u(x, y) and v(x, y) as the the image features and pro-
jected LIDAR features on the x-y image plane such that the
images are correctly registered. We denote vo as the initial
unregistered projection of LIDAR features obtained from a
user selected pose approximation or GPS/INS data. For a
specific camera matrix T (defined in Section 2.2), the pro-
jected LIDAR features are given by vT .

Mutual information (MI) based registration methods
seek the camera matrix that maximizes the MI between the
distribution of photograph features and projected LIDAR
features:

TMI = argmax
T

I(u; vT ). (1)

One definition of mutual information is the Kullback-
Leibler (KL) divergence of the joint distribution and the
product of marginals:

I(u; vT ) = D(p(u, v;T )||p(u)p(v;T )). (2)

Consequently, maximizing MI is equivalent to maximizing
the KL divergence between the joint distribution under eval-
uation and the case where the images are independent. This
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inherently assumes that the images are best aligned when
their statistical dependence is high. KL divergence, defined
as an expectation can be approximated from a sample his-
togram as

I(u; vT ) =
∫ ∫

p(u, v;T ) log
(
p(u, v;T )
p(u)p(v;T )

)
dudv (3)

≈
Nu∑
i=1

Nv∑
j=1

p̂(ui, vj ;T ) log
(
p̂(ui, vj ;T )
p̂(ui)p̂(vj ;T )

)
(4)

where p̂(•) denotes a marginal or joint histogram estimate
of a density and Nu and Nv denote the number of distinct
bins for each modality. See [22] for a detailed discussion of
these approximations. All of the features that we work with
have 8-bit precision, yieldingNu,Nv = 256. Our images all
have dimensions of 1002 x 668 pixels to give approximately
600,000 samples over which to estimate the PMF.

Mutual information can also be expressed in terms of
entropies of the LIDAR features, optical features, and their
joint entropy:

I(u; vT ) = H(u) +H(vT )−H(u, vT ). (5)

In our case, the entropy of the image features remains con-
stant, and the entropy of the LIDAR features remains ap-
proximately constant for small perturbations. Accordingly,
the calibration matrix that minimizes the joint entropy is a
sufficient approximation for the calibration matrix that max-
imizes the mutual information. That is, minimizing

H(u; vT ) ≈
Nu∑
i=1

Nv∑
j=1

p̂(ui, vj ;T ) log (p̂(ui, vj ;T )) (6)

is an equivalent to maximizing MI over T .

2.2. Camera Model

The camera model we use is the finite projective camera
described in [6]. The transformation from 3D homogeneous
coordinates to 2D homogeneous coordinates is given by the
3× 4 matrix

T = KR[ I | − C ] (7)

where C = [Cx, Cy, Cz]T is the camera center, I is the
identity matrix, and R is the rotation matrix describing the
orientation of the camera. R is given by the product of ro-
tation matrices

R =

 cγcβ cαsγ + sαcγβ sγα− cγcαsβ
−cβsγ cαcγ − sαsγsβ sαcγ + cαsγsβ
sβ sαcβ cαcβ


(8)

where α, β, and γ are the Euler angles describing yaw,
pitch, and roll. The notation c indicates cosine while s
indicates sine. The matrix K is the camera calibration
matrix and has the form

K =

 fx t x0

0 fy y0
0 0 1

 (9)

where fx and fy are the focal lengths in the x and y direc-
tions, (x0, y0) are the coordinates of the principal point, and
t is the skew. The principal point indicates the location of
the center of the image on the image plane and the skew
determines the angle between the image plane x- and y-
axis. For our images, the skew and principal point parame-
ters are unnecessary, yielding t, xo, yo = 0. Additionally, fx

= fy under the assumption of square pixels. This leaves a
constrained finite projective camera parameterized by seven
variables: Cx, Cy , Cz , α, β, γ, and the field-of-view (which
can be computed from the focal length).

2.3. Ground Truth Registration

Expert chosen correspondence points are utilized to de-
termine ground truth. Correspondence points are chosen
by identifying salient geometric features visible in both im-
ages. We use the algorithm given by [6, p. 184] to determine
the best camera matrix. That algorithm minimizes the sum
of squared algebraic errors between correspondence points
in the image plane,

TG = argmin
T

∑
i

dalg(X′
i, TXi) (10)

where X′ represents a 2D homogeneous point and X repre-
sents a 3D homogeneous point. All images are registered
using 30 correspondence points.

2.4. Registration Algorithm

Our algorithm renders 3D points that are projected onto
the image plane for evaluating statistics. The point cloud is
rendered in OpenGL for each iteration. The LIDAR point
cloud data sets tend to be very large (on the order of millions
of points). Newer graphics cards have sufficient memory
to store the entire data set in graphics card memory, which
makes 3D rendering extremely efficient. For all MI mea-
sures tested, we used downhill simplex optimization, which
is derivative free [13].

An important issue is how to attribute the 3-D LIDAR
point cloud data so that information-theoretic methods can
be applied. We use three different methods for evaluating
mutual information between the two image modes. The
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first is simply the mutual information between elevation in
the LIDAR point cloud and luminance in the optical image.
The point cloud is rendered with height intensities, where
brighter points indicate a higher elevation. Only image pix-
els that have a corresponding projected LIDAR point are
used for calculating registration statistics. While this is a
simple attribution, for urban scenes it provides useful re-
sults (as we will demonstrate). The intuition for this simple
feature is that the visual appearance of urban scenes tend to
vary in a structured way by height for architectural reasons.
Consequently, there is measurable dependence between the
optical appearance and the measured LIDAR height. A
scene shown by both modalities is shown in Figure 1(a) and
(b). We see that similar structure exists across both images.

The second measure that we use is the mutual informa-
tion between the luminance in the optical image and proba-
bility of detection (pdet) values in the LIDAR point cloud.
Probability of detection values indicate the number of pho-
tons returned to the LIDAR sensor for each point, yielding a
point cloud representation that looks similar to a grayscale
aerial image, as shown in Figure 1(c). For example, one can
see details of the walkway between buildings.

Finally, we consider the joint entropy among optical im-
age luminance, LIDAR elevation, and LIDAR pdet values.
We approximate the LIDAR pdet values as statistically in-
dependent of the elevation values conditioned on the opti-
cal image luminance values. This leads to the following
approximation of joint entropy:

H(u, ve, vp) = H(u, ve) +H(u, vp), (11)

where u is the image luminance, ve is the LIDAR elevation,
and vp is the LIDAR pdet values.

2.5. 3D Model Generation

We create 3D models by texture mapping registered op-
tical images onto a mesh that is inferred from the LIDAR
point cloud. Since the sampling rate of our LIDAR data
is relatively high compared to the sizes buildings, perform-
ing a Delaunay triangulation produces a mesh that closely
represents the true 3D structure. An example of a mesh
structure is shown in Figure 2 (a).

While the resulting mesh without texture has a some-
what jagged appearance, the texture mapped rendering in
Figure 2 (b) is relatively smooth. The texture mapping is
performed using hardware accelerated shadow mapping to
provide occlusion reasoning and automatic texture genera-
tion in OpenGL [2, 3]. The dark regions in the figure result
from occlusions in the projective texture mapping.

(a) optical image

(b) height-encoded LIDAR rendering

(c) Pdet LIDAR
Figure 1. Detail of LIDAR/optical scene. (a) Shows an optical
image of two buildings with pathways between, (b) shows the reg-
istered LIDAR data set of the same scene with intensity encoded
by height, while (c) shows the LIDAR date with the Pdet attribute.

3. Results

We show the results of our algorithm with a collection
of eight urban images of Lubbock, Texas. As with previous
work, it is conventional to start with an approximate initial
registration that is available from a GPS/INS system. We
simulate a variety of initial approximate registrations and
characterize the accuracy of the final registration using the
three different measures of mutual information. Overall,
the results demonstrate that the MI measures are reliable
for registration and that the algorithm is fast.
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(a) 3-D mesh obtained from Delaunay triangulation

(b) Registered image textured onto 3-D mesh
Figure 2. For dense LIDAR measurements, Delaunay triangulation
provides sufficient structure for registration of optical images onto
a 3D model. The image at left shows a detail of the mesh over
a larger area, while the image at right shows the resulting texture
map after registration.

For each of the eight images, we simulated 100 initial
coarse registrations. Table 1 describes the range of camera
parameter perturbations over which the registration method
was tested. Some of the angle perturbations seem small, but
it is important to note that the long standoff distance mag-
nifies the effect of the Euler angles and field-of-view angle.
For example, Figure 3 shows a blend of the LIDAR data and
the corresponding image with an α perturbation of one de-
gree. Our images did not contain focal length information,
so we included the field-of-view parameter in our parameter
search. When the focal length is known, the complexity of
the search is reduced to six parameters. We randomly sam-
pled parameters from this range to obtain initial parameters
for registration.

It was apparent by simple inspection whether or not
the images were correctly registered. In all cases, the im-
age was either registered close enough for projective tex-
ture mapping or clearly unaligned. Examples of post-
registration texture maps are shown in Figure 2 (b) and Fig-
ure 5 (b).

Results of the experiments are shown in Tables 2,3, and

Figure 3. Fade between LIDAR image and optical image with an
α perturbation of one degree.

Parameter Range Units
Cx 20 meters
Cy 20 meters
Cz 20 meters
α 0.5 degrees
β 0.5 degrees
γ 5 degrees

fov 0.5 degrees

Table 1. Range of camera parameter perturbations.

4, describing the number of successes, duration of the op-
timization, and the number of iterations, respectively. As
expected, the dual measure of MI (which uses LIDAR ele-
vation and pdet) demonstrates the best results, with an over-
all accuracy of 98.5%. However, it is interesting to note that
marginal benefit of using the pdet MI measure (95.8%) and
the dual MI measure (98.5%) over the elevation MI measure
(93.5%) is relatively small. This an important result since
not all LIDAR sensors provide pdet values. Table 3 shows
fast registration times, which all averaged to be less than 20
seconds. The dual registration times are approximately the
sum of the elevation and pdet registration times, which is
expected since two images must be rendered for each itera-
tion with our implementation. An example of an initial and
final alignment are shown in Figure 6.

Figure 4 depicts the measured joint entropy for an image
as camera parameters are varied smoothly from the ground
truth. While the camera parameter being evaluated is varied,
the other parameters are held constant at their correct val-
ues. The plots demonstrate adequate quasiconvexity, which
is necessary for downhill simplex optimization. All seven
parameters exhibit similar behavior; the parameters plotted
yield the smallest capture range, and so, in some sense, re-
flect worst-case results.
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JE Measure: Elev Pdet Dual
Image 1 100 93 100
Image 2 97 99 99
Image 3 83 100 96
Image 4 76 83 97
Image 5 97 97 99
Image 6 100 100 100
Image 7 96 95 97
Image 8 99 99 100
Total: 93.5% 95.8% 98.5%

Table 2. Number of correctly registered images (out of 100) ran-
domly sampled perturbations.

JE Measure: Elev Pdet Dual
Image 1 6.30 8.12 14.18
Image 2 6.80 7.14 13.39
Image 3 6.44 8.59 14.67
Image 4 5.76 5.79 10.88
Image 5 6.55 6.58 12.39
Image 6 6.19 7.13 11.89
Image 7 6.77 8.27 14.44
Image 8 5.99 6.53 12.40
Total: 6.35 7.27 13.03

Table 3. Mean registration times in seconds (for correctly regis-
tered images)

JE Measure: Elev Pdet Dual
Image 1 114.8 115.9 112.1
Image 2 127.4 123.1 118.5
Image 3 116.7 119.9 115.0
Image 4 98.5 104.0 99.6
Image 5 112.4 116.6 112.9
Image 6 114.9 116.9 110.0
Image 7 118.4 115.2 110.5
Image 8 111.2 118.4 108.8
Total: 115.6 116.2 110.9

Table 4. Mean number of iterations (for correctly registered im-
ages)

4. Model Renderings

As described previously, 3-D mesh structures are con-
structed over the entire LIDAR point cloud using Delaunay
triangulation. Figures 5 depicts optical images of the same
area from three perspectives. Next to these are the rendered
3D models from an off-camera view. All of these images
were registered using the automatic registration method de-
scribed.

Figure 4. Plots of normalized joint entropy as three of the camera
parameters are smoothly perturbed from the point of registration.

5. Conclusions

We have presented a novel application of mutual infor-
mation for registration of 3D laser radar (LIDAR) imagery
and aerial optical imagery. The approach is efficient in that
it is fast and automatic for constructing 3D virtual real-
ity models of urban scenes. Registration is achieved using
3D-2D renderings of height and probability of detection at-
tributes of the LIDAR. Empirical results demonstrate that
these attribute choices are suitable for achieving dense reg-
istration over these modalities, with registration accuracies
averaging over 90%. The results also show that having only
elevation information for the LIDAR data provides notable
registration results, while using pdet values provides a slight
benefit in registration accuracy. We further characterized
the robustness of the approach via probing experiments in
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(a) optical images (b) texture maps after registration
Figure 5. The column on the left depicts optical images of the same scene from three different perspectives. Results of texture mapping
post-registration are shown on the right.

which we randomly perturbed the camera parameters from
known ground truth. Our results show the bounds of camera
parameter perturbations over which a reliable registration
can be achieved; on the order of 20 meters of displacement;
0.5 degrees of yaw, pitch, and field-of-view; and 5 degrees
of roll. The method was implemented in OpenGL utilizing
advanced graphics hardware in the optimization process,
yielding registration times on the order of seconds.
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