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Abstract

This document contains the proof for theorem 1 of the main paper, as well as experimental results.

1. Proof of theorem 1

Theorem 1. If there corresponds one sub-hypergraph Gc = (Vc, Cc) to each clique c (where Vc = {q|q ∈ c}, Cc = {c}),
then the algorithm in Fig. 1 of the main paper optimizes the LP relaxation of the following integer LP that is equivalent to

problem MRFG(U,H):

min
z

∑

q

∑

xq

Uq(xq)zq(xq) +
∑

c

∑

xc

Hc(xc)zc(xc) (15)

s.t.
∑

xq

zq(xq) = 1 , ∀q (16)

∑

xc:xq=l
zc(xc) = zq(l) , ∀c ∈ C, q ∈ c (17)

zq(·), zc(·) ∈ {0, 1} , (18)

where a variable zq(xq), zc(xc) is associated respectively with each label xq of node q and each label xc of clique c.

Proof. Given any hypergraph G = {V , C}, as well as unary potentials U = U
G = {UG

q } and higher-order potentials

H = H
G = {HG

c }, the MRF optimization problem MRFG(UG,HG) can be expressed as the following integer LP:

min
zG

E(zG,UG,HG) =
∑

q∈V

U
G
q · zG

q +
∑

c∈C

H
G
c · zG

c (19)

s.t. z
G ∈ ZG , (20)

where (for any hypergraph G = {V , C}) the set ZG is defined as

ZG =
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∣
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∣

∣

∣

∣

∣

∑

xq

zG
q (xq) = 1, ∀ q ∈ V

∑

xc:xq=l

zG
c (xc) = zG

q (l), ∀ c ∈ C, q ∈ c

zG
q (·), zG

c (·) ∈ {0, 1}, ∀ q, c























.

In the above problem, the variables are the components of vector z
G =

{

{zG
q }q∈V , {zG

c }c∈C

}

, where we denote z
G
q =

{zG
q (xq)} and z

G
c = {zG

c (xc)} (i.e., we have introduced one variable zG
q (xq) for each label xq of node q, as well as one

variable zG
c (xc) for each label xc of clique c).
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Given the sub-hypergraph decomposition {Gc} described by the theorem, along with the corresponding potentials U
Gc

and H
Gc (where U

Gc
q =

U
G
q

|{c′∈C|q∈c′}| , H
Gc = H

G
c ), the integer LP (19) can be rewritten as follows:

min
{zGc},zG

∑

c

E(zGc ,UGc ,HGc) (21)

s.t. z
Gc ∈ ZGc , ∀c ∈ C (22)

z
Gc

q = z
G
q , ∀c ∈ C, q ∈ c . (23)

Here the set of variables z
Gc (one per clique c) denotes:

z
Gc = z

G
c ∪ {zGc

q }q∈c , (24)

i.e., for defining equivalent problem (21), we have introduced (for each clique c) the extra auxiliary variables {zGc
q }q∈c. Note

that the vector of variables z
Gc plays a similar role in slave problem MRFGc

(UGc ,HGc) to that of vector z
G in master

problem MRFG(UG,HG).
The algorithm in Fig. 1 of the main paper is then solving the Lagrangian dual that results from relaxing the constraints

(23) in the above integer LP. This Lagrangian dual relaxation is known to be equivalent to the following problem:

min
{zGc},zG

∑

c

E(zGc ,UGc ,HGc) (25)

s.t. z
Gc

q = z
G
q , ∀c ∈ C, q ∈ c (26)

z
Gc ∈ ConvexHull(ZGc) , ∀c ∈ C . (27)

Due to (26) and the way U
Gc , HGc are defined, it holds

∑

c

E(zGc ,UGc ,HGc) = E(zG,UG,HG) . (28)

Furthermore, due to that Gc containts only one clique, it is easy to show that ConvexHull(ZGc) coincides with the set that

results from replacing in ZGc the integrality constraints with the relaxed constraints zGc
q (·) ≥ 0, zG

c (·) ≥ 0. Hence, the

above Lagrangian dual (25) coincides with the LP relaxation of the integer program (15), which concludes the proof of the

theorem.



Experimental results

Signal reconstruction
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(a) corrupted signal (red) and original signal (blue)
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(b) Gaussian filter result
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(c) bilateral filter result

50 100 150 200 250 300 350 400 450

−100

−50

0

50

100

(d) our result with 4
th-order MRF

Fig. 11: Signal reconstruction via a 4th-order MRF using potential (12) and 3rd-order derivative filter F = [1−3 3−1].



Image denoising

(a) original (b) noisy input (c) pairwise MRF (d) 3rd-order MRF

Fig. 12: Synthetic image denoising via a 3rd-order MRF using potential (12) and filter F = [1 −2 1].

(a) original (b) noisy input (c) pairwise MRF (d) 3rd-order MRF

Fig. 13: Real image denoising via a 3rd-order MRF using potential (12) and filter F = [1 −2 1].
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(a) primal-dual costs for the denoising

result in Fig. 12
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(b) primal-dual costs for the denoising

result in Fig. 13

Fig. 14: Primal and dual costs generated by algorithm PatB (drawn in red with solid and dashed lines respectively),

as well as primal costs generated by the generic optimizer (drawn in blue).



Stereo matching
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(a) ‘venus’
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(b) ‘cones’
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(c) ‘teddy’
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(d) ‘tsukuba’

Fig. 15: Stereo matching results via a 3rd-order MRF using potential (13) and 2nd-order derivative filter F = [1−2 1].



Segmentation, Pn Potts model
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(b)

Fig. 16: Binary image segmentation via P3×3 Potts model (global optimum is computed).
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Fig. 17: Optimization for a random P3×3 Potts model defined on a 50 × 50 grid and using 10 labels (global optimum

is computed).


