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Abstract

This document contains the proof for theorem 1 of the main paper, as well as experimental results.

1. Proof of theorem 1

Theorem 1. If there corresponds one sub-hypergraph G. = (V.,C.) to each clique ¢ (where V. = {q|q € ¢}, C. = {c}),
then the algorithm in Fig. 1 of the main paper optimizes the LP relaxation of the following integer LP that is equivalent to
problem MRF (U, H):
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where a variable z4(z4), z.(X.) is associated respectively with each label x, of node q and each label x.. of clique c.

Proof. Given any hypergraph G = {V,C}, as well as unary potentials U = U% = {UqG} and higher-order potentials
H = H® = {HY}, the MRF optimization problem MRF ¢ (U%, H) can be expressed as the following integer LP:
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where (for any hypergraph G = {V,C}) the set Z¢ is defined as
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In the above problem, the variables are the components of vector z& = {{zf}qey, {28} ccc}, where we denote zl =
{25 (x¢)} and 28 = {28 (x.)} (i.e., we have introduced one variable z{' () for each label z, of node ¢, as well as one

variable z& (x..) for each label x.. of clique c).



Given the sub-hypergraph decomposition {G..} described by the theorem, along with the corresponding potentials U«
UG’

and HCe (where Ufc = \{CT\ZEC/}I’ HS = HY), the integer LP (19) can be rewritten as follows:
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Here the set of variables z&< (one per clique c) denotes:
2% =25 U {zfc}qec , (24)

i.e., for defining equivalent problem (21), we have introduced (for each clique c) the extra auxiliary variables {zqGC }qee. Note
that the vector of variables z¢ plays a similar role in slave problem MRF¢, (U% H) to that of vector z&
problem MRF ¢ (U% HY).

The algorithm in Fig. 1 of the main paper is then solving the Lagrangian dual that results from relaxing the constraints
(23) in the above integer LP. This Lagrangian dual relaxation is known to be equivalent to the following problem:
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Due to (26) and the way U<, H% are defined, it holds
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Furthermore, due to that G, containts only one clique, it is easy to show that ConvexHull(Z%<) coincides with the set that
results from replacing in Z% the integrality constraints with the relaxed constraints zf ¢(-) > 0,25(-) > 0. Hence, the
above Lagrangian dual (25) coincides with the LP relaxation of the integer program (15), which concludes the proof of the
theorem. O



Experimental results

Signal reconstruction
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(a) corrupted signal (red) and original signal (blue) (b) Gaussian filter result
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(c) bilateral filter result (d) our result with 4*2-order MRF

Fig. 11: Signal reconstruction via a 4'"-order MRF using potential (12) and 3"¢-order derivative filter 7 = [1 -3 3 1].



Image denoising

(a) original (b) noisy input (c) pairwise MRF (d) 3'9-order MRF

Fig. 12: Synthetic image denoising via a 3"4-order MRF using potential (12) and filter F = [1 -2 1].

(a) original (b) noisy input (c) pairwise MRF (d) 3"9-order MRF
Fig. 13: Real image denoising via a 3'‘-order MRF using potential (12) and filter 7 = [1 —2 1].
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Fig. 14: Primal and dual costs generated by algorithm PatB (drawn in red with solid and dashed lines respectively),
as well as primal costs generated by the generic optimizer (drawn in blue).



Stereo matching
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Fig. 15: Stereo matching results via a 3'“-order MRF using potential (13) and 2"%-order derivative filter 7 = [1 -2 1].



Segmentation, P" Potts model
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Fig. 16: Binary image segmentation via 723 Potts model (global optimum is computed).
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Fig. 17: Optimization for a random P3>3 Potts model defined on a 50 x 50 grid and using 10 labels (global optimum
is computed).



