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Abstract

Efficient and accurate fitting of Active Appearance
Models (AAM) is a key requirement for many applications.
The most efficient fitting algorithm today is Inverse Com-
positional Image Alignment (ICIA). While this algorithm
is extremely fast, it is also known to have a small conver-
gence radius. Convergence is especially bad when training
and testing images differ strongly, as in multi-person AAMs.
We describe a consistent theory of compositional image
alignment and use it to develop two novel fitting methods.
The first method Compositional Gradient Descent (CoDe)
is approximately four times slower than ICIA, while having
a convergence radius which is even larger than that achiev-
able by direct minimisation with a Quasi-Newton method.
The second method, LinCoDe, an approximation of CoDe,
is as fast as ICIA while having an intermediate convergence
radius. The success rate of the novel methods is 10 to 20
times higher than that of the original ICIA method.

This is the supplementary Material for “On Composi-
tional Image Alignment with an Application to Active Ap-
pearance Models”. In addition to more detailed figures and
videos, it includes the implementation details for the map-
ping step and a closer examination of the absolute conver-
gence rate, which had to be left out of the paper because of
space limitations.

1. Videos

Two videos are included, corresponding to the two track-
ing experiments described in the paper. Both videos are
encoded with the msmpeg4v2 codec, for maximum porta-
bility. The codec can be downloaded from http://www.
mediacodec.org/.

2. Convergence Rate

While the success rates shown in figure 3 in the origi-
nal paper are significantly higher for our methods than for
ICIA, they might appear to be relatively small in the abso-

Figure 1. CoDe can track a full 5000 frames sequence without
reinitialisation, LinCoDe and keeps track for over 2500 frames
while ICIA – even with the orthonormalized incremental warp –
looses track completely after 600 frames and does not reach the
accuracy of CoDe and LinCoDe.

lute measure. Our methods achieve in these experiments
between 55% and 68% success rate. This is because of
the large starting displacements of up to 20% inter eye dis-
tance. For closer starting distances these success rates be-
come even higher. Whilte the tracking experiments show
that the achieved success rate is large enough for practi-
cal applications, it can be made even higher by random ini-
tialisations. To implement an efficient random initialisation
scheme it is necessary to detect divergence. We show in fig-
ure 3 that it is possible to reliably detect divergence (and
try again from an offset starting position) by classifying
the results based on the residual. We plot the ratio of de-
tected covergence failures versus the number of sucessfull
runs misclassified as convergence failurs for varying thresh-
olds on the residual. This shows, that when accepting no
misclassfications of converged runs as non-converged it is
possible to detect 95% of the failed runs. If we are willing
to invest more restarts even from converged positions, than
99% of the failed runs can be detected when misclassifing
half of the converged runs.
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Figure 4. The first shape components

3. Model
The principal axis of the model can be explored inter-

actively in the attached webpage. Note that we were able
to learn quite a large number of components from the data,
because of the large variabilty in the input data. Images
of the shape and appearance variation can be accessed by
opening the index.html file, and clicking on the link An
overview of the active appearance model used in the experi-
ments. Moving the mouse over the images allows a direct
comparision of the effect of each component.

4. Mapping and Regularisation
In this section we will describe how to efficiently calcu-

late the mapping q = C(q0,p) for the model used in this
paper and incorporate regularisation into this step.

Concatenating warps means solving (4.2), i.e. finding the
model warp which best describes the concatenated warps.
Denote the concatenated warp positions as

r† , [W (q0) ◦ V (p)](r) (4.1)

Expanding the mapping Equation

C◦(q0,p) = arg min
q∗

‖W (q∗)−W (q0) ◦ V (p)‖2D .

(4.2)

gives

q = arg min
ρ,τ ,α

∥∥Rρ(r +M(r)α) + τ − r†
∥∥2

r∈D d2r

(4.3)

Performing a rotation and scaling of the residual vector does
not change the minimum. Multiply with −R−1

ρ to get

ρ′ ,
[

1+a
(1+ρ1)

2+ρ2
2
− 1 −b

(1+ρ1)
2+ρ2

2

]T
(4.4)

τ ′ , Rρ′τ

q = arg min
ρ′,τ ,α

1
2

∫
r

∥∥−r −M(r)α− τ ′ +Rρ′r†
∥∥2

which when discretized can be written as

q = arg min
ρ,τ ,α

∥∥∥∥∥∥[C D
] ρ′τ ′
α

− µ
∥∥∥∥∥∥

2

(4.5)

C ,



r†1x r†1y

r†1y −r†1x
...

...
r†N x r†N y

r†N y −r†N x

 D , −


1 0
0 1
...

... M
1 0
0 1

 µ ,

r1

...
r2


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Figure 5. The first appearance components

The above minimisation problem can be solved rela-
tively efficiently inO(N3

Shape Parameter+NShape ParameterNPixel),
which for a typical AAM with NPixel > N2

Shape Parameter

(e.g. 2002 pixel and 100 shape parameter) is dominated
by O(NShape ParameterNPixel). This can be done as only C
changes between iterations. The minimum is attained forρ′o′

α

 =
[
CTC CTD

DTC DTD

]−1 [
CTµ

DTµ

]
. (4.6)

It is possible to precalculate DTD and DTµ, leaving the
multiplications of CTC, DTC and CTµ and solving a
N2

Shape Parameter linear system for each iteration.

Regularisation The shape coefficients are independently
normal distributed, if we assume that the original distribu-
tion of face shapes is normally distributed. Knowledge of
the probability density of face shape makes it possible to use
a maximum likelihood estimation for the concatenated warp
shapes. This corresponds to a regularisation of the shape
coefficients, which can be introduced at this point without
incurring additional cost. The regularisation parameter λ

should depend on the noise characteristic of the test images.
With Λ ,

[
0 λI

]
we can add regularisation to (4.5) as

qt+1 ≈ arg min
ρ,τ ,α

∥∥∥∥∥∥
[
C D
0 Λ

]ρ′τ ′
α

− [µ0
]∥∥∥∥∥∥

2

(4.7)

.

For which the minimum is attained atρ′o′
α

 =
[
CTC CTD

DTC DTD +ΛTΛ

]−1 [
CTµ

DTµ

]
. (4.8)

5. Discretisation
The domain is discretized into pixel, such that the bound-

ary is composed of segments of length one with either hor-
izontal or vertical direction and the area is sampled at the
pixel centers, where each pixel center accounts for an area
of one pixel. We choose the mapping D such that it picks
the values of the closest pixel for each border sample.
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Figure 2. Tracking a low resolution video shows that ICIA does
not generalize well, while CoDe tracks sucessfully.
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Automatic Detection of Convergence

Figure 3. Convergence can be detected reliably, allowing to in-
crease the success rate arbitraily by random reinitializations.
We plot the number of misclassifications as a function of a thresh-
old on the residual, for the CoDe method with regularisation.

Figure 6. The parametrisation used. Squares are pixel, crosses
pixel centers where the function is evaluated and circles are bound-
ary points where the boundary is sampled. The value of a− Iq at
the boundary is set to the value of the corresponding pixel.
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