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Abstract a given image. As a consequence, region-based attempts “°°
to recognition have been done with inaccurate segmenta- %’
e propose an algorithm that constructs a hierarchy of tions, often relying on one of the following strategies: (1) %%
regions from the output of any given contour detector. This an over-segmentatio3?, 16], where the image domain is 069
method provides a powerful generic grouping mechanism partitioned into a large number of “super-pixels”, subse- °7°
when applied to the output of a high-performance contour quently assembled using object-specific knowledge; (2) a °’*
detector. The primary focus of this paper is on experi- large number of candidate segments, collected from differ- /2
mental evaluation. For this purpose, we examine a num- ent sets of parameters from one or several segmentation al- °/*
ber of different evaluation metrics and standard segmen- gorithms P8, 20); (3) transitive closure of a segmentation 074
tation datasets in detail. We also benchmark several pub- tree [1]. 075
lished segmentation algorithms which are in common use. It also appears to be difficult to define a single criterion 076
The consensus results of these varied benchmarks suggest ~ for benchmarking segmentations which is robust to variabil ~ °’
that the method proposed here provides state-of-the-art seg- ity in the number of segments while remaining sensitive to ore
ments and contours. the segmentation quality. The lack of a commonly agreed °7°

upon measure of segmentation performance has had a lim- °¢°
iting effect on research progress in this area. o8l

1. Introduction In this paper, we propose an alternate solution to some vz
. ) of these difficulties. We describe an algorithm that, starti o83
Contour detection, image segmentation, and perceptua.,m the output of a contour detector, constructs a hiesarch %%

grouping lie at the heart of computer vision, reducing the of segmentations. Our method, based on a variant of the 085

complexity of an image with millions of pixels to a small -\ eneraple watershed]| can be seen as generic machinery €6
n_umber of cohesive entities swtable_ for hlgh-l_evel anqu- for going from contours to hierarchical regions. Contours os7
sis. For example, contours convey important information g ded in the hierarchical segmentation retain realecalu use

about shape and object identity which has been exploited,, oiqhts indicating their likelihood of being a true boungar ~ °%°
successfully in detection and recognition. While extragti For a given threshold, the output is a set of closed contours 090

contours from local image features is an old problem, there y, s can e treated as either a segmentation or as a boundary%*
have been significant advances in contour detection in theyatactor for the purposes of benchmarking. 092

last few years 13, 30, 22, 9, 39]. This is best summarized To establish the value of this technique, we examine a ’%*

by the boundary bgnc_hmark Sh(.)wn in Figuravhich is umber of different evaluation metrics and standard datase ~ °**

based on the quantitative evaluation methodology proposecfor both boundary and region detection. We also evaluate

in [22], measuring the precision and recall of a contour de- several other publicly available segmentation algorithms 096

tectorW|_th respect to human-marked boundaries. Based on this extensive testing, we report two important
Despite these successes, contours are not always enoqumpirical results: 098

For many applications such as recognition, a segmenta- ' 099

tion of the image into closed regions is far more natural. 1. Weighted boundary maps can be converted into hierar- 100
Segments have the advantage of automatically providing chical segmentations without loss of boundary preci- 101

spatial support and scale estimation for the objects in the sion or recall. 102
image. Applications utilizing segments typically exploit 103
one of a handful of generic segmentation methods such as 2. Using the high-performange” contour detectorl[c] 104
[8, 12, 7]. However, these segmentation algorithms often as input, our method provides a powerful mid-level ;05
fail to deliver the desired segmentation without carefaktu grouping mechanism which outperforms existing seg- 105
ing of parameters and choice of the number of segmentsin ~ Mentation algorithms. 107
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Figure 1. Boundary benchmark on the Berkeley dataset [4]. Left: Contours. Leading approaches to contour detection are ranked 179
according to their F-measure (harmonic mean of precisiahranall) with respect to human ground-truth boundarie-Hscurves 180
are shown in green. The leading approaglb [18], does not produce closed boundaries required to form a ee@iion. Right: 181
Hierarchical Regions. Our algorithm produces a hierarchical segmentation fragnotlitput of any contour detector. Benchmarking the g5
resulting segment boundaries (UCM) shows that our methadtanacts regions without losing performance on the boyntdanchmark. 183
In fact, we obtain a boost in performance when usinggtRé detector as input. 184
185
2. Prior Work such as the variational formulations suggestediy P4] 186
_ _or the discrete algorithms of], 17]. The utility of inte- 187
While contours and segments are closely related (equ'v'grating both edge and region cues in order to segment im- 188
alent in the case of closed, non-self-intersecting cosour ages of natural scenes has been quantified statistically [ 189
researchers have largely pursued the sub-problems of conzp g hractically demonstrated in full segmentation systems 20
tour detection and segmentation independently. [35 19]. 191
~ Common approaches to segmentation involve integrat-" \ypile these unified approaches integrate contour infor- 192
ing features such as color or texture over local patches Ofmation, they still operate on a segment based representa- 193
the image and then clustering those feature vectors baseg,, contours have the advantage that it is fairly straight 194
on, e.g., fitting mixture models 3], mode-finding [], or  forward to represent uncertainty in the presence of a true 19
graph partitioning {3, 5, 19, 17]. One challenge that such  n4eriying contour, i.e. by associating a binary random 19
clustering approaches must face is _that smoot_h changes i riaple to it. It is not immediately obvious how to rep- 197
texture or brightness due to perspective or shading ca®caus,egsent uncertainty about a segmentation. One possibility, %8
dlgtant patch_es on the same s_urface to a_\ppeard|s_5|mllarde\7vhich we exploit here, is the Ultrametric Contour Map 199
spite belonging to the same image region, creating a te”'(UCM) [2] which defines a duality between closed, non- 290
dency towarcbver-segmentation. o self-intersecting weighted contours and a hierarchy of seg  29%
_ Contour based approaches ignore smooth variations bymentations. We show that making this shift in representa- 202
directly searching for locations in the image where bright- +ion from a single segmentation to a nested collection of 203
ness or other features undergo rapid local chang€s7].  segmentations allows us to garner benefits from both ap- 204
These high-gradient edge fragments can then be "nkedproaches. 205
together in order to identify extended, smooth contours 206
[26, 37, 10,_31]. However, in the con_tour based approach, 3. Hierarchical Regions 207
there remains the problem of producing segments from non- 208
closed boundary fragments. Without some mechanism for \We consider a contour detector, whose oug@t;, y, 6) 209
enforcing closure, a segmentation built up from locally de- predicts the probability of an image boundary at location 210
tected contours will mistakenly join regions due to “leaks” (x,y) and orientatiorf. We build our hierarchical regions 211
in the bounding contour and tend to result in amder- by exploiting the information in this contour signal. Fosbe 212
segmentation. results, we employ the high-performance detegfob [ 1], 213
There have been several proposals for including con-but any source of such a signely. the Canny edge detector 214
tour information with segmentation in a single framework, before thresholding, can be used. 215
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233 Figure 2. Transferring boundary strength onto watershed arcs. Left: Input boundary signgbb(z, ). Middle Left: Watershed arcs 287
234 computed fronpb(x,y). Note that thin regions give rise to artifacMiddle: Watershed arcs with an approximating straight line segment 288
235 subdivision overlaid. We compute this subdivision in aedal/ariant manner by recursively breaking an arc at thetpoaximally distant 289
236 from the straight line segment connecting its endpointshd&ision terminates when the distance from the line sedrteervery point 290
237 on the arc is less than a fixed fraction of the segment lerigttidle Right: Oriented boundary strenggib(x, y, 6) for four orientations 291
238 6. In practice, we sample eight orientatiori®ight: Watershed arcs reweighted accordingbcat the orientation of their associated line 292
239 segments. Artifacts are suppressed as their orientatmnstdagree with the underlyingh(z, y, 0) signal. 293
240 294
zj; First, we construct a finest partition for the hierarchy, regions are ordered by the inclusion relation. ig:
s an over-segmentation whose regions determine the high- |4 our case, we use as similarity between two adjacent

..,  estlevel of detail considered. This is done by computing regions the average strength of their common boundary in
the maximal response of th& operator over orientations. Ko. Since this value cannot decrease during the merging

245 . . . . 299

a6 Theg_,dfotIIO\lNlngt_thetr]:'sldltrl]on in morphology, we c?hn3|der_as rocess, the above algorithm is guaranteed to produce an -
candidate locations for homogeneous regions the regiona i di

247 s o q | t?] ‘ hgdt ¢ wg ltrametric distance oy x Py [?]. As a consequence, 5,

a8 minima of pb(z,y) and apply the watershed transford} [ the constructed region tree has the structure of indexed hi- 202

s on this topographical surface. As a result, the catchmenterarchy and can be described by a dendrogram, where the .

..,  Dasins of the minima, notel, provide the regions of the  hejght of each node is the value of the similarity at whichit -,
finest partition and the corresponding watershed arcsgdnote fjg¢ appears. Furthermore, the whole hierarchy can in this

;2; Ko, the possible locations of the boundaries. case be represented as an Ultrametric Contour Map (UCM), 382
253 Next, we transfer the strength of the boundaries, giventhe real-valued image obtained by weighting each boundary -,
254 by the probabilitypb(x, y, #), to the locationdCy. For this between two regions by its scale of disappearance. 308
255 burpose, we approximate the watershed arcs with line seg- rigyre3 presents an example of our method. The UCM 309
256 ments, and weight each pointity by thepb(z,y,0) value g 5 \weighted contour image that, by construction, has the 310

257 atthatpoint, in the directiofigiven by the orientation ofthe  remarkable property of producing a set of closed curves for 311
258 corresponding line segment, as detailed in FighireThis any threshold. Conversely, it is a convenient represemtati 312

259 procedure enforces consistency between the strength of thet the region tree since the segmentation at a seatan 313
260 boundaries ok’y and the underlyingb signal and servesto e easily retrieved by thresholding the UCM at lekelln 314
261 remove possible artifacts of the watershed algorithm. our case, since our notion eégmentation scale is the av- 315
262 The hierarchy itself is constructed by a graph-based re-erage contour strength, our UCM values reflect a notion of 316

263 gion merging algorithm. An initial graph is defined, where contrast between neighboring regions. We explore the use 317
264 the nodes are the regionsy, and the links join adjacent  of two different contour detectors in constructing the UCM, 318

265 regions and are weighted by a measure of similarity be- Canny without thresholding angPb, and refer to the re- 319
266 tween regions. The algorithm proceeds by sorting the links sulting hierarchical segmentations as Canny-ucm and gPb- 320
267 by similarity and iteratively merging the regions. This pro ucm, respectively. Figuré illustrates results of our state- 321
268 cess produces a tree of regions, where the leaves are thef-the-art gPb-ucm algorithm on images selected from the 322
269 elements ofP,, the root is the entire image domain and the Berkeley Segmentation datasét]. 323
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340 Figure 3. Overview of our approach. Left: Original image.Middle Left: Maximal response of contour deteciglPb over orientations. 394
341 Middle Right: Ultrametric Contour Map (UCM) produced by our systeRight: Segmentation obtained by thresholding the UCM at 395
342 level 0.4, with segments represented by their mean color. 396
343 397
344 . ) ) , ) ) 398
s 4. Other Segmentation Methods domain by concatenating their spatial coordinates and-colo -
346 To provide a basis of comparison for the performance yalugs nto a sm_gle vector. Applying mean shift f||ter_|ng 400
247 of our segmentation method, we make use of the publicly in th_|s domain yields a convergence point for _each pixel. 401
348 available implementations of,the other segmentation meth-Reglons are formed by grouping together all pixels whose
249 ods described below convergence points are clgser thianin the spatial domain 403
250 : and ST |r(1j thde r:ange domain, v(;/gerfeS a}nd h, are resptlac— ) 404
tive bandwidth parameters. Additional merging can also be
gg; 4.1. Felzenszwalb and Huttenlocher (Felz-Hutt)[] performed to enforce a constraint on minimum region area. jg:
353 The region-merging approach advocated by Felzen- 207
354 Szwalb and Huttenlocherlf] has been widely used by 4 3. Multiscale Normalized Cuts (NCuts) f] 408
355 the computer vision community. This algorithm attempts 09

N . 4
455 to partition image pixels into components such that the — Graph partitioning approaches based on the Normalized |
resulting segmentation is neither too coarse nor too fine.Cuts criterion have also been the focus of much recent work

gg; Given a graph in which pixels are nodes and edge weightsOn image segmentation. In this framework, image cues are ji
450 Measure the dissimilarity between nodes (e.g. color differ used to define an affinity matri¥” whose entries encode .
150 ences), each node is initially placed in its own component. Pixel similarity. Image segmentation is performed by par-
41 Define the internal difference of a componént(C) asthe titioning the graphz = (V, E, W) with pixels as node$’ 415
s, largestweight in the minimum spanning treetafConsid- ~ and edge weightsl” using the generalized eigenvectors of -
23  ering edges in non-decreasing order by weight, each step othe linear systeniD — W)z = ADx, whereD;; = . Wi;. e
364 the algorithm merges componeidis andCy connected by We compare against the latest variant of this approach
365 the current edge if the edge weight (equivalently diffeeenc which exploits multiscale informatiors]. The fact thati’ 419
366 between components) is less than must be sparse in order to avoid a prohibitively expensive .
367 computation limits the naive approach to using only local
368 min(Int(C1) + 7(C1), Int(C2) + 7(C2)) (1) pixel affinities. Couret al. solve this limitation by com- .,
369 ) puting sparse affinity matrices at multiple scales, settipg 423
4o Wherer(C) = k/|C|. kis a scale parameter that can be cross-scale constraints, and deriving a new eigenvalte pro .,
.,  usedtoseta preference for componentsize. Merging Stopgem for this constrained multiscale Normalized Cut. 4on

when the difference between components exceeds the inter-

372 . 426
nal component difference. . )
378 5. Empirical Evaluation 421

374 . 428
4.2. Mean Shift .

375 Shift [7] We evaluate the performance of the segmentation al- 429

376 Mean shift is another popular image segmentation tech-gorithms discussed previously using multiple benchmarks 430

377 nique. In [7] pixels are represented in the joint spatial-range across several datasets. 431
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Figure 4. Hierarchical segmentation results. From left to right: Original image, Ultrametric Contour Map (UCM) produced g
ucm, and segmentations obtained by thresholding at thenaptlataset scale (ODS) and optimal image scale (OIS).

5.1. Benchmarks

There have been thousands of papers on image segmer{-:go’ 13,9, 2,39, 19). This framework considers two aspects

. . of detection performance. Precision measures the fraction
tation. However, only recently has the community acknowl- R
. of true positives in the contours produced by a detector. Re-

edged the ne_cessny of quanutatlve performanct_a anaiys_ls ' call measures the fraction of ground-truth boundaries de-
order to monitor and guide the progress of the field. A first . ) .
. S tected. If the algorithm provides a binary output, one ob-
step in that direction was the release of the Berkeley Seg-, _. . L .
. tains a point in the precision-recall plane for each imafe. |
mentation Dataset (BSDS) 4], a database of 300 natural . ; .
. . the output is real-valued, one obtains a curve parametrized
images, manually segmented by a number of different sub- P
. . . by the threshold of the detector, quantifying its perforagen
jects. The ground-truth data for this large collection skow . .
at all regimes. The global F-measure, defined as the har-

the diversity, yet high consistency, of human segmentation . 2. .
. . . : monic mean of precision and recall, may provide a useful
We examine metrics for evaluating both boundaries and re- :
summary score for the algorithm.

gions.

In the experimental section, we report three different
guantities for an algorithm: th®ptimal Dataset Scale
In the last years, the boundary-based evaluation method{ODS) or best F-measure on the dataset for a fixed scale,
ology developed by Martiret al. [27] on the BSDS, has the Optimal Image Scale (OIS)or aggregate F-measure

5.1.1 Precision-Recall on Boundaries
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on the dataset for the best scale in each image, an8the as 004
erage Precision (AP)on the full recall range (equivalently, 1 95
the area under the precision-recall curve). PRI(S,{Gx}) = T Z[cijpij + (I —cij)(1—pi5)] 3) 223
This benchmarking methodology possess the appeal- i<j con
ing property that it allows the comparison of region-based wherec,; is the event of pixels andj having the same .

segmentation and contour detection methods in the sam

Sabel andp; its probability. When the sample mean is used
framework. Any segmentation algorithm automatically pro- G its p y b oo

_ : ) ~~ _toestimate the,;, (3) amounts to averaging the Rand Index

y|des contours n the form of the boundaries of the regions among differeﬁnzt7 g(ro)und—truth segment%tigns. However, the 28;

in the segmentation. ) . PRI has been reported to suffer from a small dynamic range 603
However, for an algorithm that produces a segmentation,[35 35| and its values across images and algorithms are 504

amethodology that directly evaluates the quality of the Seg qen very similar. In $6], this drawback is addressed by a 605

ments is also desirable. Some types of erregsa missing  ormalization with an empirical estimation of its expected 606
pixelin the boundary between two segments, may notbe re- 4 e. 607

flected in the boundary benchmark, but can have substantial

608
gg:\rsei?luences_ for the quality of the segmentatsmn,in- d5.1.4 Segmentation Covering 609
y merging two large segments. It can also be argue 610
that the boundary benchmark favors contour detectors overTheoverlap between two region®& andR’, defined as: 611
segmentation methods, since the latter have the additional , 612
constraint of producing closed curves. We will therefore O(R,R) = RN R (4) 613
also consider various region-based metrics and now briefly ’ |[RU R 1
review three of them. has been used for the evaluation of the pixel-wise classifi- 615
cation task in recognitior?D, 11]. 616
5.1.2 Variation of Information [ 23] We (_define thecovering of a segmentatioly by a seg- 617
mentationS’ by: 618
This metric was introduced for the purpose of clustering 619
comparison. It measures the distance between two segmen- C(S’ = 8) = > > O(R,argmin O(R,R')) ~ (5) 620
tations in terms of their average conditional entropy given RESpeER frest 621
by Similarly, the covering of a machine segmentatioby 222
VIC,C"Y=H(C)+ H(C') —2I(C,C") (2) a family of ground truth segmentatiof&; } is defined by 5ou
_ _ first coveringS separately with each human még';} in 605
whereH and! represent respectively the entropies and mu- tym, and then averaging over the different humans, so that
tual information between two clusterings of datandC”.  tg achieve perfect covering the machine segmentation must
In our case, the two clusterings are test and ground-truthexplain all of the human data.
segmentations. Although VI possesses some interesting e can then define two quality descriptors for regions, 223
theoretical properties’[d], its perceptual meaning and ap- the covering ofS by {G;} and the covering of G;} by .
plicability in the presence of several ground-truth segmen g pye to space constraints, we only include results for
tations remains unclear. the covering of the ground-truth by. For a family of ma- 620
chine segmentatior{sS; }, corresponding to different scales 633
of a hierarchical algorithm or different set of parameters, 532
5.1.3 Rand Index P9 we report three different quantities: ODS, OIS, and the best 635
Originally, the Rand Indexd], was introduced for gen-  POSSible covering of the ground-truth by segmentsS. 636
eral clustering evaluation. It operates by comparing the 637

D : . .~ 5.2. Additional Datasets
compatibility of assignments between pairs of elements in 638

the clusters. In our case, the Rand Index between test and We concentrated our experiments on the BSDS, because 639
ground-truth segmentatiorts and G is given by the sum it is the most complete dataset available for our purposes, 640
of the number of pairs of pixels that have the same label in has been used in several publications and has the advantages41
S andG and the number that have different labels in both of providing several human-labeled segmentations per im- 642
segmentations, divided by the total number of pairs of pix- age. In addition, we present in this section experiments on 643
els. Variants of the Rand Index have been proposedid] two other publicly available labeled datasets: MSRC and 644
for dealing with the case of multiple ground-truths when the segmentation subset of the PASCAL 2008 challenge. 645
evaluating segmentations. Given a set of ground-truth seg-Due to time limitations, we report only the comparison be- 646
mentations{G}}, the Probabilistic Rand Index is defined tween Canny-ucm and gPb-ucm for these datasets. 647
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Figure 5. Evaluating segmentation boundaries on the BSDS.
Our hierarchical segmentation algorithm gPb-ucm prodsees
ments whose boundaries match human ground-truth bettar tha
those produced by alternative Mean Shift, Normalized Calts,
region-merging (Felz-Hutt) segmentation approaches.qliadity

of the contour detector (gPb vs Canny) on which we build $igni
cantly influences the quality of the resulting segmentation

5.2.1 MSRC [34]

We consider the MSRC object recognition database, com-
posed of 591 natural images belonging to 21 object classes
The images are fully parsed and offer enough variety. The
evaluation is performed using the ground-truth object in-
stance labeling of4(], which is cleaner and more precise
than the original data.

5.2.2 PASCAL challenge 200811]

We use the train and validation sets of the segmentation task

on the PASCAL challenge 2008, composed of 1023 images.
This is one of the most challenging and varied datasets for
recognition. We evaluate performance with respect to the
objectinstance labels provided. However, it should bechote
that only the objects belonging to the 20 categories of the
challenge are labeled, aid% of all pixels are unlabeled.

6. Results

Figure5 and Tablel present results for the BSDS bound-
ary benchmark, while Figuré and Table2 present re-
gion benchmarks for this dataset. The boundary benchmark

appears best able to discriminate the performance of theperformance on every dataset and for every benchmark

different segmentation algorithms. Taldalisplays addi-

tional region benchmark results on the MSRC and PASCAL forward, fast, and has no parameters to tune. We hope that

datasets.
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Method ODS| OIS | AP 02
human 0.79 | 0.79 703
gPb-ucm | 0.71 | 0.74| 0.77 o4
Mean Shift | 0.63 | 0.66 | 0.62 70
NCuts 0.62 | 0.66 | 0.59 706
Canny-ucm| 0.58 | 0.63 | 0.59 or
Felz-Hutt | 0.58 | 0.62 | 0.54 /08
gPb 0.70 | 0.72 | 0.75 709
Canny 0.58 | 0.62 | 0.60 710
711
Table 1. Boundary benchmarks on the BSDSWe benchmark 712
boundaries produced by five different segmentation metfguls 713
per table) and two contour detectors (lower table) againstan 714

Our segmentation algorithm, gPb-ucm, offers the besttion applications.

ground-truth. Shown are the F-measures when choosing & opt 715
mal scale for the entire dataset (ODS) or per image (OIS),als w 716
as the average precision (AP). Figirshows the full precision- 717
recall curves for the boundaries produced by the segmentati 718
gorithms. 719
720
e 721
: — \ e 722
& T 723
724
. 725
o ~ B 726
N R 727
728
Figure 6. Evaluating regions on the BSDSThe influence of 729
the contour detector on segmentation quality is also evideen 730
benchmarking the regions of the resulting hierarchicahsaga- 731
tion. Left: Probabilistic Rand IndexRight: Variation of Infor- 732
mation. 733
734
Method ODS | OIS | best PRI | VI 735
human 0.73 | 0.73 0.87 | 1.16 736
gPb-ucm 0.58 | 0.64 | 0.74 0.81] 1.68 737
Mean Shift | 0.54 | 0.58 | 0.64 0.78 | 1.83 738
Felz-Hutt 0.51 | 0.58 | 0.68 0.77 | 2.15 739
Canny-ucm| 0.48 | 0.56 | 0.67 0.77 | 2.11 740
NCuts 0.44 | 0.53 | 0.66 0.75 | 2.18 741
Table 2. Region benchmarks on the BSDSFor each segmenta- ;ii
tion m_ethod, the leftmost three columns repgrt the sco_rleeobtast )
covering of ground-truth segments according to optimaasiztt
scale (ODS), optimal image scale (OIS), or best coverirgriai. 745
The rightmost two columns compare the segmentation methods /%6
against ground-truth using the probabilistic Rand IndeXIjRnd 747
Variation of Information (V1) benchmarks, respectively. 748
749
750
751
criteria we tested. In addition, our algorithm is straight- 752
753
our generic grouping machinery will be useful for recogni- 754
755
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MSRC ODS | OIS | best
gPb-ucm 0.66 | 0.75] 0.78
Canny-ucm | 0.57 | 0.68 | 0.72
PASCALO8 | ODS | OIS | best
gPb-ucm 0.45 | 0.58 | 0.61
Canny-ucm | 0.40 | 0.53 | 0.55

Table 3. Region benchmarks on MSRC and PASCALO8.
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