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Abstract

We propose an algorithm that constructs a hierarchy of
regions from the output of any given contour detector. This
method provides a powerful generic grouping mechanism
when applied to the output of a high-performance contour
detector. The primary focus of this paper is on experi-
mental evaluation. For this purpose, we examine a num-
ber of different evaluation metrics and standard segmen-
tation datasets in detail. We also benchmark several pub-
lished segmentation algorithms which are in common use.
The consensus results of these varied benchmarks suggest
that the method proposed here provides state-of-the-art seg-
ments and contours.

1. Introduction

Contour detection, image segmentation, and perceptual
grouping lie at the heart of computer vision, reducing the
complexity of an image with millions of pixels to a small
number of cohesive entities suitable for high-level analy-
sis. For example, contours convey important information
about shape and object identity which has been exploited
successfully in detection and recognition. While extracting
contours from local image features is an old problem, there
have been significant advances in contour detection in the
last few years [13, 30, 22, 9, 39]. This is best summarized
by the boundary benchmark shown in Figure1 which is
based on the quantitative evaluation methodology proposed
in [22], measuring the precision and recall of a contour de-
tector with respect to human-marked boundaries.

Despite these successes, contours are not always enough.
For many applications such as recognition, a segmenta-
tion of the image into closed regions is far more natural.
Segments have the advantage of automatically providing
spatial support and scale estimation for the objects in the
image. Applications utilizing segments typically exploit
one of a handful of generic segmentation methods such as
[8, 12, 7]. However, these segmentation algorithms often
fail to deliver the desired segmentation without careful tun-
ing of parameters and choice of the number of segments in

a given image. As a consequence, region-based attempts
to recognition have been done with inaccurate segmenta-
tions, often relying on one of the following strategies: (1)
an over-segmentation [32, 16], where the image domain is
partitioned into a large number of “super-pixels”, subse-
quently assembled using object-specific knowledge; (2) a
large number of candidate segments, collected from differ-
ent sets of parameters from one or several segmentation al-
gorithms [28, 20]; (3) transitive closure of a segmentation
tree [1].

It also appears to be difficult to define a single criterion
for benchmarking segmentations which is robust to variabil-
ity in the number of segments while remaining sensitive to
the segmentation quality. The lack of a commonly agreed
upon measure of segmentation performance has had a lim-
iting effect on research progress in this area.

In this paper, we propose an alternate solution to some
of these difficulties. We describe an algorithm that, starting
from the output of a contour detector, constructs a hierarchy
of segmentations. Our method, based on a variant of the
venerable watershed [4], can be seen as generic machinery
for going from contours to hierarchical regions. Contours
encoded in the hierarchical segmentation retain real-valued
weights indicating their likelihood of being a true boundary.
For a given threshold, the output is a set of closed contours
that can be treated as either a segmentation or as a boundary
detector for the purposes of benchmarking.

To establish the value of this technique, we examine a
number of different evaluation metrics and standard datasets
for both boundary and region detection. We also evaluate
several other publicly available segmentation algorithms.
Based on this extensive testing, we report two important
empirical results:

1. Weighted boundary maps can be converted into hierar-
chical segmentations without loss of boundary preci-
sion or recall.

2. Using the high-performancegPb contour detector [18]
as input, our method provides a powerful mid-level
grouping mechanism which outperforms existing seg-
mentation algorithms.
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Figure 1. Boundary benchmark on the Berkeley dataset [14]. Left: Contours. Leading approaches to contour detection are ranked
according to their F-measure (harmonic mean of precision and recall) with respect to human ground-truth boundaries. Iso-F curves
are shown in green. The leading approach,gPb [18], does not produce closed boundaries required to form a segmentation. Right:
Hierarchical Regions. Our algorithm produces a hierarchical segmentation from the output of any contour detector. Benchmarking the
resulting segment boundaries (UCM) shows that our method constructs regions without losing performance on the boundary benchmark.
In fact, we obtain a boost in performance when using thegPb detector as input.

2. Prior Work

While contours and segments are closely related (equiv-
alent in the case of closed, non-self-intersecting contours),
researchers have largely pursued the sub-problems of con-
tour detection and segmentation independently.

Common approaches to segmentation involve integrat-
ing features such as color or texture over local patches of
the image and then clustering those feature vectors based
on, e.g., fitting mixture models [3, 38], mode-finding [7], or
graph partitioning [33, 5, 19, 12]. One challenge that such
clustering approaches must face is that smooth changes in
texture or brightness due to perspective or shading can cause
distant patches on the same surface to appear dissimilar de-
spite belonging to the same image region, creating a ten-
dency towardover-segmentation.

Contour based approaches ignore smooth variations by
directly searching for locations in the image where bright-
ness or other features undergo rapid local changes [6, 27].
These high-gradient edge fragments can then be linked
together in order to identify extended, smooth contours
[26, 37, 10, 31]. However, in the contour based approach,
there remains the problem of producing segments from non-
closed boundary fragments. Without some mechanism for
enforcing closure, a segmentation built up from locally de-
tected contours will mistakenly join regions due to “leaks”
in the bounding contour and tend to result in anunder-
segmentation.

There have been several proposals for including con-
tour information with segmentation in a single framework,

such as the variational formulations suggested by [25, 24]
or the discrete algorithms of [21, 17]. The utility of inte-
grating both edge and region cues in order to segment im-
ages of natural scenes has been quantified statistically [15]
and practically demonstrated in full segmentation systems
[35, 19].

While these unified approaches integrate contour infor-
mation, they still operate on a segment based representa-
tion. Contours have the advantage that it is fairly straight-
forward to represent uncertainty in the presence of a true
underlying contour, i.e. by associating a binary random
variable to it. It is not immediately obvious how to rep-
resent uncertainty about a segmentation. One possibility,
which we exploit here, is the Ultrametric Contour Map
(UCM) [2] which defines a duality between closed, non-
self-intersecting weighted contours and a hierarchy of seg-
mentations. We show that making this shift in representa-
tion from a single segmentation to a nested collection of
segmentations allows us to garner benefits from both ap-
proaches.

3. Hierarchical Regions

We consider a contour detector, whose outputpb(x, y, θ)
predicts the probability of an image boundary at location
(x, y) and orientationθ. We build our hierarchical regions
by exploiting the information in this contour signal. For best
results, we employ the high-performance detectorgPb [18],
but any source of such a signal,e.g. the Canny edge detector
before thresholding, can be used.
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Figure 2. Transferring boundary strength onto watershed arcs. Left: Input boundary signalpb(x, y). Middle Left: Watershed arcs
computed frompb(x, y). Note that thin regions give rise to artifacts.Middle: Watershed arcs with an approximating straight line segment
subdivision overlaid. We compute this subdivision in a scale-invariant manner by recursively breaking an arc at the point maximally distant
from the straight line segment connecting its endpoints. Subdivision terminates when the distance from the line segment to every point
on the arc is less than a fixed fraction of the segment length.Middle Right: Oriented boundary strengthpb(x, y, θ) for four orientations
θ. In practice, we sample eight orientations.Right: Watershed arcs reweighted according topb at the orientation of their associated line
segments. Artifacts are suppressed as their orientations do not agree with the underlyingpb(x, y, θ) signal.

First, we construct a finest partition for the hierarchy,
an over-segmentation whose regions determine the high-
est level of detail considered. This is done by computing
the maximal response of thepb operator over orientations.
Then, following the tradition in morphology, we consider as
candidate locations for homogeneous regions the regional
minima ofpb(x, y) and apply the watershed transform [4]
on this topographical surface. As a result, the catchment
basins of the minima, notedP0, provide the regions of the
finest partition and the corresponding watershed arcs, noted
K0, the possible locations of the boundaries.

Next, we transfer the strength of the boundaries, given
by the probabilitypb(x, y, θ), to the locationsK0. For this
purpose, we approximate the watershed arcs with line seg-
ments, and weight each point inK0 by thepb(x, y, θ) value
at that point, in the directionθ given by the orientation of the
corresponding line segment, as detailed in Figure2. This
procedure enforces consistency between the strength of the
boundaries ofK0 and the underlyingpb signal and serves to
remove possible artifacts of the watershed algorithm.

The hierarchy itself is constructed by a graph-based re-
gion merging algorithm. An initial graph is defined, where
the nodes are the regions inP0, and the links join adjacent
regions and are weighted by a measure of similarity be-
tween regions. The algorithm proceeds by sorting the links
by similarity and iteratively merging the regions. This pro-
cess produces a tree of regions, where the leaves are the
elements ofP0, the root is the entire image domain and the

regions are ordered by the inclusion relation.

In our case, we use as similarity between two adjacent
regions the average strength of their common boundary in
K0. Since this value cannot decrease during the merging
process, the above algorithm is guaranteed to produce an
ultrametric distance onP0 × P0 [2]. As a consequence,
the constructed region tree has the structure of indexed hi-
erarchy and can be described by a dendrogram, where the
height of each node is the value of the similarity at which it
first appears. Furthermore, the whole hierarchy can in this
case be represented as an Ultrametric Contour Map (UCM),
the real-valued image obtained by weighting each boundary
between two regions by its scale of disappearance.

Figure3 presents an example of our method. The UCM
is a weighted contour image that, by construction, has the
remarkable property of producing a set of closed curves for
any threshold. Conversely, it is a convenient representation
of the region tree since the segmentation at a scalek can
be easily retrieved by thresholding the UCM at levelk. In
our case, since our notion ofsegmentation scale is the av-
erage contour strength, our UCM values reflect a notion of
contrast between neighboring regions. We explore the use
of two different contour detectors in constructing the UCM,
Canny without thresholding andgPb, and refer to the re-
sulting hierarchical segmentations as Canny-ucm and gPb-
ucm, respectively. Figure4 illustrates results of our state-
of-the-art gPb-ucm algorithm on images selected from the
Berkeley Segmentation dataset [14].
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Figure 3. Overview of our approach. Left: Original image.Middle Left: Maximal response of contour detectorgPb over orientations.
Middle Right: Ultrametric Contour Map (UCM) produced by our system.Right: Segmentation obtained by thresholding the UCM at
level0.4, with segments represented by their mean color.

4. Other Segmentation Methods

To provide a basis of comparison for the performance
of our segmentation method, we make use of the publicly
available implementations of the other segmentation meth-
ods described below.

4.1. Felzenszwalb and Huttenlocher (Felz-Hutt)[12]

The region-merging approach advocated by Felzen-
szwalb and Huttenlocher [12] has been widely used by
the computer vision community. This algorithm attempts
to partition image pixels into components such that the
resulting segmentation is neither too coarse nor too fine.
Given a graph in which pixels are nodes and edge weights
measure the dissimilarity between nodes (e.g. color differ-
ences), each node is initially placed in its own component.
Define the internal difference of a componentInt(C) as the
largest weight in the minimum spanning tree ofC. Consid-
ering edges in non-decreasing order by weight, each step of
the algorithm merges componentsC1 andC2 connected by
the current edge if the edge weight (equivalently difference
between components) is less than

min(Int(C1) + τ(C1), Int(C2) + τ(C2)) (1)

whereτ(C) = k/|C|. k is a scale parameter that can be
used to set a preference for component size. Merging stops
when the difference between components exceeds the inter-
nal component difference.

4.2. Mean Shift [7]

Mean shift is another popular image segmentation tech-
nique. In [7] pixels are represented in the joint spatial-range

domain by concatenating their spatial coordinates and color
values into a single vector. Applying mean shift filtering
in this domain yields a convergence point for each pixel.
Regions are formed by grouping together all pixels whose
convergence points are closer thanhs in the spatial domain
andhr in the range domain, wherehs andhr are respec-
tive bandwidth parameters. Additional merging can also be
performed to enforce a constraint on minimum region area.

4.3. Multiscale Normalized Cuts (NCuts) [8]

Graph partitioning approaches based on the Normalized
Cuts criterion have also been the focus of much recent work
on image segmentation. In this framework, image cues are
used to define an affinity matrixW whose entries encode
pixel similarity. Image segmentation is performed by par-
titioning the graphG = (V, E, W ) with pixels as nodesV
and edge weightsW using the generalized eigenvectors of
the linear system(D−W )x = λDx, whereDii =

∑
j Wij .

We compare against the latest variant of this approach
which exploits multiscale information [8]. The fact thatW
must be sparse in order to avoid a prohibitively expensive
computation limits the naive approach to using only local
pixel affinities. Couret al. solve this limitation by com-
puting sparse affinity matrices at multiple scales, settingup
cross-scale constraints, and deriving a new eigenvalue prob-
lem for this constrained multiscale Normalized Cut.

5. Empirical Evaluation

We evaluate the performance of the segmentation al-
gorithms discussed previously using multiple benchmarks
across several datasets.
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Figure 4. Hierarchical segmentation results. From left to right: Original image, Ultrametric Contour Map (UCM) produced by gPb-
ucm, and segmentations obtained by thresholding at the optimal dataset scale (ODS) and optimal image scale (OIS).

5.1. Benchmarks

There have been thousands of papers on image segmen-
tation. However, only recently has the community acknowl-
edged the necessity of quantitative performance analysis in
order to monitor and guide the progress of the field. A first
step in that direction was the release of the Berkeley Seg-
mentation Dataset (BSDS) [14], a database of 300 natural
images, manually segmented by a number of different sub-
jects. The ground-truth data for this large collection shows
the diversity, yet high consistency, of human segmentation.
We examine metrics for evaluating both boundaries and re-
gions.

5.1.1 Precision-Recall on Boundaries

In the last years, the boundary-based evaluation method-
ology developed by Martinet al. [22] on the BSDS, has

become a standard, as demonstrated by its widespread use
[30, 13, 9, 2, 39, 18]. This framework considers two aspects
of detection performance. Precision measures the fraction
of true positives in the contours produced by a detector. Re-
call measures the fraction of ground-truth boundaries de-
tected. If the algorithm provides a binary output, one ob-
tains a point in the precision-recall plane for each image. If
the output is real-valued, one obtains a curve parametrized
by the threshold of the detector, quantifying its performance
at all regimes. The global F-measure, defined as the har-
monic mean of precision and recall, may provide a useful
summary score for the algorithm.

In the experimental section, we report three different
quantities for an algorithm: theOptimal Dataset Scale
(ODS) or best F-measure on the dataset for a fixed scale,
the Optimal Image Scale (OIS)or aggregate F-measure
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on the dataset for the best scale in each image, and theAv-
erage Precision (AP)on the full recall range (equivalently,
the area under the precision-recall curve).

This benchmarking methodology possess the appeal-
ing property that it allows the comparison of region-based
segmentation and contour detection methods in the same
framework. Any segmentation algorithm automatically pro-
vides contours in the form of the boundaries of the regions
in the segmentation.

However, for an algorithm that produces a segmentation,
a methodology that directly evaluates the quality of the seg-
ments is also desirable. Some types of errors,e.g. a missing
pixel in the boundary between two segments, may not be re-
flected in the boundary benchmark, but can have substantial
consequences for the quality of the segmentation,e.g. in-
correctly merging two large segments. It can also be argued
that the boundary benchmark favors contour detectors over
segmentation methods, since the latter have the additional
constraint of producing closed curves. We will therefore
also consider various region-based metrics and now briefly
review three of them.

5.1.2 Variation of Information [ 23]

This metric was introduced for the purpose of clustering
comparison. It measures the distance between two segmen-
tations in terms of their average conditional entropy given
by

V I(C, C′) = H(C) + H(C′) − 2I(C, C′) (2)

whereH andI represent respectively the entropies and mu-
tual information between two clusterings of dataC andC′.
In our case, the two clusterings are test and ground-truth
segmentations. Although VI possesses some interesting
theoretical properties [23], its perceptual meaning and ap-
plicability in the presence of several ground-truth segmen-
tations remains unclear.

5.1.3 Rand Index [29]

Originally, the Rand Index [29], was introduced for gen-
eral clustering evaluation. It operates by comparing the
compatibility of assignments between pairs of elements in
the clusters. In our case, the Rand Index between test and
ground-truth segmentationsS andG is given by the sum
of the number of pairs of pixels that have the same label in
S andG and the number that have different labels in both
segmentations, divided by the total number of pairs of pix-
els. Variants of the Rand Index have been proposed [36, 38]
for dealing with the case of multiple ground-truths when
evaluating segmentations. Given a set of ground-truth seg-
mentations{Gk}, the Probabilistic Rand Index is defined

as

PRI(S, {Gk}) =
1

T

∑

i<j

[cijpij + (1 − cij)(1 − pij)] (3)

wherecij is the event of pixelsi and j having the same
label andpij its probability. When the sample mean is used
to estimate thepij , (3) amounts to averaging the Rand Index
among different ground-truth segmentations. However, the
PRI has been reported to suffer from a small dynamic range
[36, 38], and its values across images and algorithms are
often very similar. In [36], this drawback is addressed by a
normalization with an empirical estimation of its expected
value.

5.1.4 Segmentation Covering

Theoverlap between two regionsR andR′, defined as:

O(R, R′) =
|R ∩ R′|

|R ∪ R′|
(4)

has been used for the evaluation of the pixel-wise classifi-
cation task in recognition [20, 11].

We define thecovering of a segmentationS by a seg-
mentationS′ by:

C(S′ → S) =
∑

R∈S

∑

p∈R

O(R, arg min
R′∈S′

O(R, R′)) (5)

Similarly, the covering of a machine segmentationS by
a family of ground truth segmentations{Gi} is defined by
first coveringS separately with each human map{Gi} in
turn, and then averaging over the different humans, so that
to achieve perfect covering the machine segmentation must
explain all of the human data.

We can then define two quality descriptors for regions,
the covering ofS by {Gi} and the covering of{Gi} by
S. Due to space constraints, we only include results for
the covering of the ground-truth byS. For a family of ma-
chine segmentations{Si}, corresponding to different scales
of a hierarchical algorithm or different set of parameters,
we report three different quantities: ODS, OIS, and the best
possible covering of the ground-truth by segments in{Si}.

5.2. Additional Datasets

We concentrated our experiments on the BSDS, because
it is the most complete dataset available for our purposes,
has been used in several publications and has the advantage
of providing several human-labeled segmentations per im-
age. In addition, we present in this section experiments on
two other publicly available labeled datasets: MSRC and
the segmentation subset of the PASCAL 2008 challenge.
Due to time limitations, we report only the comparison be-
tween Canny-ucm and gPb-ucm for these datasets.
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Figure 5. Evaluating segmentation boundaries on the BSDS.
Our hierarchical segmentation algorithm gPb-ucm producesseg-
ments whose boundaries match human ground-truth better than
those produced by alternative Mean Shift, Normalized Cuts,or
region-merging (Felz-Hutt) segmentation approaches. Thequality
of the contour detector (gPb vs Canny) on which we build signifi-
cantly influences the quality of the resulting segmentation.

5.2.1 MSRC [34]

We consider the MSRC object recognition database, com-
posed of 591 natural images belonging to 21 object classes.
The images are fully parsed and offer enough variety. The
evaluation is performed using the ground-truth object in-
stance labeling of [20], which is cleaner and more precise
than the original data.

5.2.2 PASCAL challenge 2008 [11]

We use the train and validation sets of the segmentation task
on the PASCAL challenge 2008, composed of 1023 images.
This is one of the most challenging and varied datasets for
recognition. We evaluate performance with respect to the
object instance labels provided. However, it should be noted
that only the objects belonging to the 20 categories of the
challenge are labeled, and76% of all pixels are unlabeled.

6. Results

Figure5 and Table1 present results for the BSDS bound-
ary benchmark, while Figure6 and Table2 present re-
gion benchmarks for this dataset. The boundary benchmark
appears best able to discriminate the performance of the
different segmentation algorithms. Table3 displays addi-
tional region benchmark results on the MSRC and PASCAL
datasets.

Our segmentation algorithm, gPb-ucm, offers the best

Method ODS OIS AP
human 0.79 0.79
gPb-ucm 0.71 0.74 0.77
Mean Shift 0.63 0.66 0.62
NCuts 0.62 0.66 0.59
Canny-ucm 0.58 0.63 0.59
Felz-Hutt 0.58 0.62 0.54
gPb 0.70 0.72 0.75
Canny 0.58 0.62 0.60

Table 1. Boundary benchmarks on the BSDS.We benchmark
boundaries produced by five different segmentation methods(up-
per table) and two contour detectors (lower table) against human
ground-truth. Shown are the F-measures when choosing an opti-
mal scale for the entire dataset (ODS) or per image (OIS), as well
as the average precision (AP). Figure5 shows the full precision-
recall curves for the boundaries produced by the segmentation al-
gorithms.

Figure 6. Evaluating regions on the BSDS.The influence of
the contour detector on segmentation quality is also evident when
benchmarking the regions of the resulting hierarchical segmenta-
tion. Left: Probabilistic Rand Index.Right: Variation of Infor-
mation.

Method ODS OIS best PRI VI
human 0.73 0.73 0.87 1.16
gPb-ucm 0.58 0.64 0.74 0.81 1.68
Mean Shift 0.54 0.58 0.64 0.78 1.83
Felz-Hutt 0.51 0.58 0.68 0.77 2.15
Canny-ucm 0.48 0.56 0.67 0.77 2.11
NCuts 0.44 0.53 0.66 0.75 2.18

Table 2. Region benchmarks on the BSDS.For each segmenta-
tion method, the leftmost three columns report the score of the best
covering of ground-truth segments according to optimal dataset
scale (ODS), optimal image scale (OIS), or best covering criteria.
The rightmost two columns compare the segmentation methods
against ground-truth using the probabilistic Rand Index (PRI) and
Variation of Information (VI) benchmarks, respectively.

performance on every dataset and for every benchmark
criteria we tested. In addition, our algorithm is straight-
forward, fast, and has no parameters to tune. We hope that
our generic grouping machinery will be useful for recogni-
tion applications.

7



756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

CVPR
#1134

CVPR
#1134

CVPR 2009 Submission #1134. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

MSRC ODS OIS best
gPb-ucm 0.66 0.75 0.78
Canny-ucm 0.57 0.68 0.72

PASCAL08 ODS OIS best
gPb-ucm 0.45 0.58 0.61
Canny-ucm 0.40 0.53 0.55

Table 3. Region benchmarks on MSRC and PASCAL08.
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[2] P. Arbeláez. Boundary extraction in natural images using
ultrametric contour maps.POCV, 2006.2, 3, 5

[3] S. Belongie, C. Carson, H. Greenspan, and J. Malik. Color-
and texture-based image segmentation using EM and its ap-
plication to content-based image retrieval. pages 675–682,
1998.2

[4] S. Beucher and F. Meyer.Mathematical Morphology in Im-
age Processing, chapter 12: The Morphological Approach to
Segmentation: The Watershed Transformation, pages 433–
481. Marcel Dekker, 1992.1, 3

[5] E. Borenstein and S. Ullman. Combined top-down/bottom-
up segmentation.PAMI, 2008.2

[6] J. Canny. A computational approach to edge detection.
PAMI, 1986.2

[7] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis.PAMI, 2002.1, 2, 4

[8] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with
multiscale graph decomposition.CVPR, 2005.1, 4

[9] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of
edges and object boundaries.CVPR, 2006.1, 5

[10] J. Elder and S. Zucker. Computing contour closures.ECCV,
1996.2

[11] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
A. Zisserman. PASCAL 2008 Results. http://www.pascal-
network.org/challenges/VOC/voc2008/workshop/index.html.
6, 7

[12] P. Felzenszwalb and D. Huttenlocher. Efficient graph-based
segmentation algorithm.IJCV, 2004.1, 2, 4

[13] P. Felzenszwalb and D. McAllester. A min-cover approach
for finding salient curves.POCV, 2006.1, 5

[14] C. Fowlkes, D. Martin, and J. Malik. The Berke-
ley Segmentation Dataset and Benchmark (BSDB).
www.cs.berkeley.edu/projects/vision/grouping/segbench/. 2,
3, 5

[15] C. Fowlkes, D. Martin, and J. Malik. Learning affinity func-
tions for image segmentation: combining patch-based and
gradient-based approaches.CVPR, 2003.2

[16] D. Hoiem, A. Efros, and M. Hebert. Geometric context from
a single image.ICCV, 2005.1

[17] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries as minimum ratio weight cycles.PAMI, 2001.2

[18] M. Maire, P. Arbelaez, C. Fowlkes, and M. Malik. Using
contours to detect and localize junctions in natural images.
CVPR, 2008.1, 2, 5

[19] J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and
texture analysis for image segmentation.IJCV, 2001.2

[20] T. Malisiewicz and A. A. Efros. Improving spatial support
for objects via multiple segmentations.BMVC, 2007.1, 6, 7

[21] R. Malladi, J. Sethian, and B. Vemuri. Shape modelling with
front propogation: A level set approach.PAMI, 1995.2

[22] D. Martin, C. Fowlkes, and J. Malik. Learning to detect nat-
ural image boundaries using local brightness, color and tex-
ture cues.PAMI, 2004.1, 5

[23] M. Meila. Comparing clusterings: An axiomatic view.
ICML, 2005.6

[24] J.-M. Morel and S. Solimini.Variational Methods in Image
Segmentation. Birkhäuser, 1995.2
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