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Abstract

In this paper, we investigate a recently proposed effi-
cient subspace learning method, Spectral Regression Dis-
criminant Analysis (SRDA), and its kernel version SRKDA
for head pose estimation. One important unsolved issue
of SRDA is how to automatically determine an appropriate
regularization parameter. The parameter, which was em-
pirically set in the existing work, has great impact on its
performance. By formulating it as a constrained optimiza-
tion problem, we present a method to estimate the optimal
regularization parameter in SRDA and SRKDA. Our exper-
iments on two databases illustrate that SRDA, especially
SRKDA, is promising for head pose estimation. Moreover,
our approach for estimating the regularization parameter
is shown to be effective in head pose estimation and face
recognition experiments.

1. Introduction
Head pose estimation [15] is a key component in many

applications for human-computer interaction and visual

surveillance. For example, head pose can be used to ana-

lyze a person’s focus of attention in smart environments. In

practical face analysis systems, head pose estimation is cru-

cial for high-level tasks such as face recognition and facial

expression analysis. There have been a number of studies

on head pose estimation, and many methods have been pro-

posed [15].

One of successful methods is manifold or subspace

learning [15], which seeks to model continuous head pose

variation in the low-dimensional space [7, 1]. Traditional

subspace methods such as Principal Components Analy-

sis (PCA) and Linear Discriminant Analysis (LDA) have

been exploited for modeling head pose variation [6, 13].

Recently a number of graph-based subspace learning tech-

niques have been proposed, such as Locality Preserving

Projections (LPP) [12] and Locally Embedded Analysis

(LEA) [7]. These methods have shown to be effective

for head pose estimation. One common problem of these

methods is the high computational cost due to the eigen-

decomposition of dense matrices. To address this problem,

recently Cai et al. [4, 3, 5] proposed an efficient subspace

learning algorithm, Spectral Regression Discriminant Anal-

ysis (SRDA). By casting projective function learning into a

regression framework, SRDA avoids eigen-decomposition

of dense matrices. Compared to other subspace learning

algorithms with the cubic-time complexity, SRDA has the

linear-time complexity. SRDA has shown promising per-

formance in different applications including face recogni-

tion [4], text clustering and categorization [3], spoken let-

ter recognition [5], and handwritten digit classification [5].

SRDA has also been extended for nonlinear problems using

the kernel trick, called Spectral Regression Kernel Discrim-

inant Analysis (SRKDA) [2]. In the PASCAL VOC chal-

lenge 20081, SRKDA provides the best results on object

recognition.

In this paper, we aim to investigate SRDA and SRKDA

for head pose estimation, which has not be studied in the

existing work. One important unsolved issue of SRDA is

how to automatically determine an appropriate regulariza-

tion parameter α [3]. The parameter α, which was em-

pirically set in the existing work, controls the smoothness

of the estimator. Experiments in [3, 4, 5] implies that the

performance of SRDA is closely related to the choice of

α. Therefore, estimating an optimal α is an essential prob-

lem for SRDA. In this work, by formulating the problem as

a constrained optimization problem, we present a method

to estimate the optimal regularization parameter in SRDA.

Compared to the existing regularization parameter estima-

tion methods including General Cross-Validation (GCV) [9]

and the L-curve [11], our approach is much more efficient,

and provides more accurate estimation. Our experiments

on two databases illustrate that SRDA, especially SRKDA,

is effective for head pose estimation. We also test our ap-

proach for estimating the regularization parameter in head

pose estimation and face recognition experiments; its effec-

tiveness and efficiency are evidently verified.

1pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/workshop/index.html
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2. Spectral Regression Discriminant Analysis
Given a data set {xi}m

i=1 in R
n, dimensionality reduc-

tion methods aim to find a low-dimensional representa-

tion of {xi}. In the graph-based subspace learning meth-

ods [18], a symmetric matrix W (= [wij ]m×m) is built,

where wij is the weight of the similarity between xi and

xj . Let y = [y1, · · · , ym]T be the 1-dimensional projection

of X = [x1, · · · , xm], the optimal y is given by minimizing

[12] ∑
i,j

(yi − yj)2wij . (1)

Eqn. (1) can be rewritten in the matrix form:∑
i,j

(yi − yj)2wij = 2yT (D − W )y = 2yT Ly (2)

where D is a diagonal matrix whose entries are column (or

row) sums of W . A constraint yT Dy = 1 can be imposed

[12], and the minimization problem reduces to find the op-

timal y∗

y∗ = arg min
yT Dy=1

yT Ly = arg min
y

yT Ly
yT Dy

. (3)

Notice that L = D−W , the above optimization problem is

equivalent to

y∗ = arg max
yT Dy=1

yT Wy = arg max
y

yT Wy
yT Dy

. (4)

which is solved as the maximum eigen-problem:

Wy = λDy. (5)

To obtain a projective mapping for all samples, including

new testing samples, a linear function yi = f(xi) = aT xi

is chosen, i.e., y = XT a, Eqn. (4) can be rewritten as

a∗ = arg max
a

aT XWXT a
aT XDXT a

(6)

which can be solved as the maximum eigen-problem

XWXT a = λXDXT a (7)

With different choices of W , the above framework leads

to different subspace learning methods. A common prob-

lem of these methods is the high computational cost from

the eigen-decomposition of dense matrices. To address this

problem, Cai et al. [3, 4, 5] introduced SRDA which, in-

stead of solving the eigen-problem in Eqn. (7), derives the

linear projective functions via two steps:

1. Solve the eigen-problem in Eqn. (5) to get y.

2. Find a which satisfies XT a = y. In reality, such a
might not exist. A possible solution is to find a which

best fits the equation in the least squares sense:

a∗ = arg min
a

m∑
i=1

(aT xi − yi)2 (8)

In the first step, SRDA constructs weight matrix W by in-

corporating the label information. Suppose c classes in the

data set and mt samples in the t-th class, i.e., m1 + · · · +
mc = m, W is defined as

wij =
{

1/mt , if xi and xj both belong to the t-th class

0 , otherwise
(9)

In the second step, the minimization problem in Eqn. (8)

is usually ill-posed in reality. Instead of using maximum

likelihood estimation [8], which leads to the ordinary least

squares (OLS) estimator

â = (XXT )−1Xy, (10)

SRDA adopts the regularization technique [17] to obtain the

regularized estimator:

â∗ = (XXT + αI)−1Xy (11)

where α(≥ 0) is a regularization parameter to control the

smoothness of the estimator â∗.

As illustrated in [3, 4, 5], the performance of SRDA

varies greatly as α changes; a non-zero α was empirically

set in these experiments. An inappropriate setting of α may

result in poor performance in practice. In the next section,

we present an efficient method to estimate the optimal reg-

ularization parameter for SRDA.

3. Optically Regularized SRDA
3.1. Regularization Parameter Estimation

Before we present our approach for estimating α,

we first discuss two existing methods for regularization

parameter estimation.

Generalized Cross-Validation — GCV is based on sta-

tistical consideration that a good regularization parameter

should predict the missing data. More precisely, if an ar-

bitrary data point yi of y is left out, the corresponding reg-

ularized solution â∗
should be able to predict it correctly.

Accordingly estimating the optimal regularization parame-

ter α is reduced to minimizing the GCV function[9]:

G(α) ≡ ‖XT â∗(α) − y‖2
2

(trace(I − XT (XT )−1(α)))2
, (12)

where (XT )−1(α) is an arbitrary matrix which maps

the right-hand side y onto the estimator â∗(α), i.e.,
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â∗(α) = (XT )−1(α)y. Solving Eqn. (12) has the time

complexity of O(m3), therefore GCV is not suitable for

large datasets due to its computational complexity.

L-curve — The L-curve method is based on a log-log plot

of the norm of a regularized solution ‖â∗‖2 versus the norm

of the corresponding residual ‖XT â∗−y‖2. In the L-shaped

plot, the point with the maximum curvature locates where

the solution â∗
changes in nature from being dominated by

regularization errors to being dominated by the errors in the

right-hand side. Hence the α value corresponding to the

corner suggests an solution wherein both the solution norm

and the residual norm simultaneously attain low values.

The corner is derived by examining the curvature of points,

which is computational demanding. Hansen [11] proposed

an heuristic algorithm which starts with a few points and

adaptively adds more points when necessary. As the calcu-

lation of the eigenvectors of XXT cannot be avoided, the

L-curve method has the time complexity of O(n3).

3.2. Optically Regularized SRDA

The difference between the regularized estimator â∗ in

Eqn. (11) and the OLS estimator â in Eqn. (10) can be ana-

lyzed by using Singular Value Decomposition (SVD). Sup-

pose X is a wide matrix (m > n), we have XT = USV T ,

where U ∈ R
m×m and V ∈ R

n×n are unitary matrices,

and S ∈ R
m×n is the singular value matrix with the rank of

r (r ≤ n). The solution â∗ of Eqn. (11) can be reduced as

â∗ =
(
XXT + αI

)−1
Xy (13)

=
(
V ST UT USV T + αV V T

)−1
V ST UT y (14)

= V
(
ST S + αI

)−1
ST UT y (15)

=
n∑

i=1

vi

(
s2

i + α
)−1

siuT
i y (16)

=
n∑

i=1

vi

(
uT

i y
si

· s2
i

s2
i + α

)
, (17)

where ui and vi denote the orthonormal column vectors in

U and V respectively, si represents the i-th largest singular

value of XT (when i > r, si = 0 ), and y is the constant

response calculated from Eqn. (5).
s2

i

s2
i +α

∈ [0, 1] is called

filter factor in [11]. Similarly, the solution â in Eqn. (10)

can be reduced as

â =
r∑

i=1

vi

(
uT

i y
si

)
. (18)

By comparing Eqn. (17) and Eqn. (18), we can find that

both â∗ and â are linear combinations of basis vectors

{v1, . . . , vm}, and the regularization technique in SRDA

changes only the coefficients of the linear combination by

adding a filter factor. The coefficients in â∗ can be seen as

functions of the singular values of X and the regularization

parameter α.

In order to estimate the optimal α, we first investigate the

constraint on α itself. SRDA is solved as the multivariate

linear regression problem

XT a + ε = y, (19)

where ε is an (n× 1) vector of random error with E[ε] = 0
and V ar[ε] = σ2In. A good regularization parameter α
should reduce the mean square error (MSE) of the regu-

larized estimator â∗
[8]. Otherwise, â∗ will be far away

from the a computed from Eqn. (19). In order to evaluate

the MSE of â∗
with respect to α, it is necessary to derive

E[D2(α)], where D(α) denotes the distance from â∗ to a.

For the OLS estimator â, we have

â = a + (XXT )−1Xε (20)

E[â] = a. (21)

From Eqn. (10) and Eqn. (11), we can obtain the relation-

ship between â and â∗ as follows:

â∗ = (XXT )(XXT + αI)−1â

=
(
I − α(XXT + αI)−1

)
â

=: Râ (22)

where R is used for simplicity. Hence we have

E[D2(α)]

=E
[
(â∗ − a)T (â∗ − a)

]
(23)

=E
[
(Râ − Ra + Ra − a)T (Râ − Ra + Ra − a)

]
(24)

=E
[
(â − a)T RT R(â − a)

]
+ (Ra − a)T (Ra − a). (25)

Substituting Eqn. (20) in the first term of Eqn. (25), we ob-

tain

E
[
(â − a)T RT R(â − a)

]
=E[εT XT (XXT )−1RT R(XXT )−1Xε] (26)

=Trace(XT (XXT )−1RT R(XXT )−1X V ar[ε])

+ E[ε]2Trace(XT (XXT )−1RT R(XXT )−1X) (27)

=σ2Trace((XXT )−1RT R) (28)

With Eqn. (22), we then have

E[D2(α)]

= σ2Trace
(
(XXT )−1RT R

)
+ aT (R − I)T (R − I)a

(29)

= σ2Trace
(
(XXT + αI)−1(I − α (XXT + αI)−1)

)
+ aT (α2(XXT + αI)−2)a (30)

= σ2
(
Trace(XXT + αI)−1 − α Trace(XXT + αI)−2

)
+ α2aT (XXT + αI)−2a. (31)
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Let c = [c1, c2, · · · , cn]T , which satisfies c = V T a, we

obtain

E[D2(α)] = σ2

(
n∑

i=1

1
(s2

i + α)
−

n∑
i=1

α

(s2
i + α)2

)

+ α2cT (ST S + αI)−2c (32)

= σ2
n∑

i=1

s2
i

(s2
i + α)2

+ α2
n∑

i=1

c2
i

(s2
i + α)2

.

(33)

It is obvious that, for any α > 0, the first and second

terms in Eqn. (33) are monotonically decreasing and in-

creasing functions of α respectively. Taking the derivative

of Eqn. (33) with respect to α, we have

∂E[D2(α)]
∂α

= 2
n∑

i=1

s2
i (αc2

i − σ2)
(s2

i + α)3
(34)

Now we can see that

∂E[D2(α)]
∂α

< 0, for 0 < α < min
{

σ2

c2
i

, ∀i

}
(35)

and

∂E[D2(α)]
∂α

> 0, for max
{

σ2

c2
i

, ∀i

}
< α < ∞. (36)

Thus, the minimum of MSE falls in the following interval

of α [
min

{
σ2

c2
i

}
, max

{
σ2

c2
i

}]
, ∀i. (37)

Therefore, the optimal α should be neither too large nor too

small.

The criteria we consider for estimating α is the robust-

ness of the regularized estimator â∗ to noises in the data X .

More precisely, â∗ with respect to the optimal α should be

robust to the perturbation in the parameter space of the sin-

gular values {si} of X , since â∗ can be seen as a function of

α and {si}. In this way, estimating the optimal α is reduced

to solve the minimization problem

α∗ = arg min
α

E
[‖â∗(α, s + ε) − â∗(α, s)‖2

2

]
s.t. α∗ ∈

[
min

{
σ2

c2
i

}
, max

{
σ2

c2
i

}]
, ∀i (38)

where ε ∼ N (0, δ2) is the perturbation in the parameter

space. Since

‖â∗(α, s + ε) − â∗(α, s)‖2
2

=
(
â∗(α, s + ε) − â∗(α, s)

)T (
â∗(α, s + ε) − â∗(α, s)

)
(39)

=
n∑

i=1

n∑
j=1

yT uivT
i vjuT

j y
(

si

s2
i + α

− si + ε

(si + ε)2 + α

)2

(40)

where uiuT
j = 0, vT

i vj = 0, when i 
= j, and uT
i uj = 1,

vT
i vj = 1, when i = j. Thus, only the terms with i = j

remain in Eqn. (40). So we have

α∗ = arg min
α

E

[
n∑

i=1

yT y
(

si

s2
i + α

− si + ε

(si + ε)2 + α

)2
]

.

(41)

Note that yT y is a positive constant, where y is calculated

from Eqn. (5). Eqn. (41) is equivalent to

α∗ = arg min
α

E

[
n∑

i=1

(
(α − s2

i )ε − siε
2

(s2
i + α)((si + ε)2 + α)

)2
]

.

(42)

Considering ε is very small, we neglect the term siε
2. Thus,

we have

α∗ = arg min
α

n∑
i=1

(
α − s2

i

(s2
i + α)((si + ε)2 + α)

)2

E(ε2)

(43)

= arg min
α

n∑
i=1

(α − s2
i )

2

((s2
i + α)((si + ε)2 + α))2

· δ2 (44)

= arg min
α

n∑
i=1

(α − s2
i )

2

ρ(α)2
(45)

where ρ(α) := (s2
i +α)((si +ε)2 +α). Now the minimiza-

tion problem (38) can be rewritten as follows:

α∗ = arg min
α

n∑
i=1

(α − s2
i )

2

ρ(α)2

s.t. α∗ ∈
[
min

{
σ2

c2
i

}
, max

{
σ2

c2
i

}]
, ∀i (46)

It is difficult to solve the minimization problem in Eqn (46)

analytically, as α∗ and ci are coupled. Considering the in-

trinsic bound of α and ρ(α), the problem is relaxed to a

simple form

α∗ = arg min
α

n∑
i=1

(α − s2
i )

2 (47)

By setting the derivative with respect to α equal to 0, we

obtain the solution

α∗ =
1
n

n∑
i

s2
i . (48)

In practice, the above solution can be computed with-

out extra computational cost, because {s2
1, · · · , s2

n} are the

eigenvalues of the symmetric data matrix XXT and their

sum is the trace of XXT , which has been calculated in

SRDA.
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3.3. Extension to SRKDA

Spectral regression was extended for Kernel Discrimi-

nant Analysis (KDA) [2]. Considering the problem in a fea-

ture space F induced by a nonlinear mapping φ: R
n → F ,

KDA seeks the optimal projective function v in the feature

space by solving the following optimization problem:

v∗ = arg max
v

vT Sφ
b v

vT Sφ
wv

= arg max
v

vT Sφ
b v

vT Sφ
t v

(49)

where Sφ
b , Sφ

w and Sφ
t are the between-class, within-class,

and total scatter matrices in the feature space respectively.

The solution is a linear combination of φ(xi) such that

v∗ =
∑m

i=1 piφ(xi). Let p = [p1, · · · , pm]T , Eqn. (49)

is equivalent to:

p∗ = arg max
p

pT KWKp
pT KKp

(50)

where K is the kernel matrix, W is defined in Eqn. (9),

and vT v = pT Kp = 1. SRKDA first solves the eigen-

problem Wy = λy to get y, and then finds p by solving

(K + αI)p = y, where I is the identify matrix.

Considering the Gaussian kernel, it can be proved that

the kernel matrix K is strictly positive definite when all

vectors in K are different [14]. Thus, if the triangular ma-

trix R obtained by the Cholesky decomposition of K, i.e.,

K = RT R, we have v = Rp. The optimal projective func-

tion v can then be calculated as

v = R(RT R + αI)−1y = (RRT + αI)−1Ry (51)

Therefore, we can use the technique proposed above to de-

termine the regularization parameter for SRKDA.

4. Experiments
4.1. Head Pose Estimation

We carried out experiments on two databases: (1) the

FacePix database [1] contains head pose images of 30 sub-

jects, each of which has 181 images of different head poses.

In our experiments, for each subject, we selected 91 im-

ages representing pose angles from −90◦ to +90◦ at in-

crements of 2◦. (2) the Pointing’04 database [10] consists

of 15 subjects. Each subject has 2 series of 93 images at

different poses, including 13 yaw poses and 7 pitch poses,

plus two extreme cases with yaw angle 0◦ and pitch an-

gle 90◦ and −90◦. We used all these images in our exper-

iments, which are manually cropped and aligned based on

nose. Some example images of two databases are shown in

Figure 1 and Figure 2. All face images were down-scaled

to 32×32 pixels in the gray-scale space, thus represented as

1024-dimensional vectors.

Figure 1. Example images from the FacePix database.

Figure 2. Example images from the Pointing’04 database.

p subjects (p = 3, 6, 9, 12, 15, 18, 21 in the FacePix

database and p = 2, 4, 6, 8, 10, 12 in the Pointing’04

database) were randomly selected for training and the rest

were used for testing. For each p, we average the results

over 30 random splits and report the average estimation er-

ror. We show in Figure 3 and Figure 5 the performance of

SRDA and SRKDA as a function of the parameter α, where

the dimension of the projection subspace is set to c− 1, and

c is the number of classes (i.e., c = 91 in the FacePix data

and c = 93 in the Pointing’04 data). We choose an expo-

nentially incremental sampling of α to present the complete

variation. It is evident that the performance of SRDA and

SRKDA changes greatly with the variation of α. SRDA

achieves significantly better performance when the projec-

tion space is smoothed (with α > 10−1) than with α close

to 0. But SRKDA achieves the best performance when is

smoothed with α = 100. There always exists an optimal

regularization parameter in all these experiments, although

the performance of SRDA does not change much for large

α on the FacePix data and Pointing’04 (Yaw) data.

We applied our method to estimate the optimal regular-

ization parameter α for SRDA and SRKDA. The SRDA and

SRKDA with the optimal α estimated by our approach are

denoted as OR-SRDA and OR-SRKDA. The average per-

formance of OR-SRDA and OR-SRKDA are ploted in Fig-

ure 4 and Figure 6. For comparison, we show the best per-

formance of SRDA and SRKDA obtained by exhaustively

examining different α, and the performance of SRDA and

SRKDA with α = 0 (denoted as Z-SRDA and Z-SRKDA).

For SRDA, we also included results of PCA, LDA, and

the supervised LPP. We can draw the following conclusions

from these figures: (1) The regularization parameter is es-

sential for SRDA and SRKDA. SRDA and SRKDA with

α = 0 provides much worse performance than that with a

proper α. (2) With the α automatically estimated by our ap-

proach, OR-SRDA and OR-SRKDA achieves much similar

results to the best performance of SRDA and SRKDA re-

spectively. This evidently illustrates our approach is effec-

tive for estimating α in SRDA and SRKDA. (3) Regarding

head pose estimation, OR-SRDA performs better than PCA,

LDA, and LPP; OR-SRKDA provides better performance

than OR-SRDA. These comparative experiments demon-
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Figure 3. The mean error angle of SRDA with respect to different α. (Left) the FacePix database; (Middle) the Pointing’04 database in the

Yaw direction); (Right) the Pointing’04 database in the Pitch direction.
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Figure 4. Head pose estimation performance of SRDA and other methods. (Left) the FacePix database; (Middle) the Pointing’04 database

in the Yaw direction; (Right) the Pointing’04 database in the Pitch direction.

strate that SRDA and SRKDA are promising for head pose

estimation.

We compare our approach with the GCV and L-curve

methods for estimating the regularization parameter on the

FacePix database. Figure 7 shows the performance of

SRDA with the parameters estimated by these methods and

also their computational cost 2. The experiments were per-

formed in a linux PC (CPU 3.0 GHz, cache 1024kb, RAM

4GB). It is observed that the GCV method fails to esti-

mate a proper regularization parameter for SRDA on the

database, while the L-curve method performs much better,

and our method outperforms both. Regarding the computa-

tional cost, our approach is much more efficient than other

methods.

The performance of OR-SRDA varies with the reduced

dimension. In the above experiments, the reduced dimen-

sion is set as c − 1, and c is the number of classes. Figure

8 shows the average performance versus dimensionality re-

duction on FacePix database. It is observed that OR-SRDA

indeed achieves the best performance with the reduced di-

mension of c − 1.

We implemented a real-time head pose estimation sys-

tem based on the above approach. Some examples are

shown in Figure 9.

2The GCV and L-curve methods are implemented in Regularization

Tools Version 4.1, http://www2.imm.dtu.dk/˜pch/Regutools/

4.2. Face Recognition

To further test our approach for estimating α, we con-

ducted experiments on face recognition using the CMU PIE

database [16], Following [4], we used the data online 3,

which includes face images of 68 subjects with near-frontal

poses and different illuminations and facial expressions, re-

sulting 170 images for each subject. For each subject, p

(=10,20,30,40,50,60) images were randomly selected for

training and the rest were used for testing. For each p,

we average the results over 30 random splits and report the

mean.

Figure 10 shows the performance of SRDA as a function

of the parameter α, where the dimension of the reduced sub-

space is set c − 1 (c = 68). Similarly, we observe that the

regularization parameter has impact on the performance of

SRDA. Compared to head pose estimation (shown in Fig-

ure 3), where the training images in the same class are from

different subjects, the “oversmooth” effect due to a large α
is very obvious for face recognition. For example, the error

rate with α = 1e3 is bigger than that of α = 0. However, as

observed before, there always exists an optimal regulariza-

tion parameter in each experiment. We applied our method

to estimate the optimal α, and compare different algorithms

in Figure 11. Again we can see that, with the α estimated by

3http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html
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Figure 5. The mean error angle of SRKDA with respect to different α. (Left) the FacePix database; (Middle) the Pointing’04 database in

the Yaw direction; (Right) the Pointing’04 database in the Pitch direction.
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Figure 6. Head pose estimation performance of SRKDA. (Left) the FacePix database; (Middle) the Pointing’04 database in the Yaw

direction; (Right) the Pointing’04 database in the Pitch direction.

our approach, OR-SRDA provides results that is much close

to the best performance of SRDA obtained by exhaustively

searching α. Moreover, the difference between OR-SRDA

and the best SRDA becomes much smaller with larger train-

ing data. This further verify the validity of our approach for

estimating the optimal regularization parameter in SRDA.

It is also observed that OR-SRDA consistently provides su-

perior performance to LDA and LPP for face recognition.

5. Conclusion

SRDA is an efficient subspace learning method, which

has been proven powerful in different applications. In

this paper, we investigate SRDA and its kernel version

SRKDA for head pose estimation. Determining an appro-

priate regularization parameter is an important unsolved is-

sue for SRDA. By formulating it as a constrained optimiza-

tion problem, we present a method to estimate the optimal

regularization parameter in SRDA and SRKDA. Our ex-

periments on two databases illustrate the SRDA especially

SRKDA, is promising for head pose estimation. Moreover,

our approach for estimating the regularization parameter

is shown to be effective in head pose estimation and face

recognition experiments.
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